• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convolutions,Tensor Products and Multipliers of the Orlicz-Lorentz Spaces?

    2015-06-06 08:19:12HongliangLIJiechengCHEN

    Hongliang LI Jiecheng CHEN

    1 Introduction

    The convolution operator has been studied for many years.The classical type,called Young inequality,Lp?LqLr(1

    LetAbe a Banach algebra.By a left(right)BanachA-module we mean(see[8])a Banach spaceV,which is a left(right)A-module in the algebraic sense,and for which

    wherekis a constant independent ofa,v.

    IfVandWare left(right)BanachA-modules,then HomA(V,W)will denote the Banach space of all continuousA-module homomorphisms fromVtoWwith the operator norm.HomA(V,W),as a rule,is called the space of multipliers fromVtoW.

    The definition of the tensor product of Banach modules can be found in[8–9].LetAbe a Banach algebra,andVandWbe left and right BanachA-modules respectively.Suppose thatV?γWdenotes the projective tensor product(see[10])ofVandWas Banach spaces(γis the greatest crossnorm in[11],[12,p.36]).LetKbe the closed linear subspace ofV?γWwhich is spanned by all the elements of the form

    Now the quotient Banach spaceVW/Kis called theA-module tensor productVW.

    The following isomorphism

    was proved by Rieffel[8],where the notationW?is the dual ofW.The linear functional on HomA(V,W?),which corresponds tot=W,has value

    atT∈HomA(V,W?).The topology on HomA(V,W?)defined by the linear functional of this form corresponds to the weak?-topology(VW)?,which is called ultraweak?-operators topology(see[9,13]).

    In this paper,we get the concrete representation of the tensor products of the Orlicz-Lorentz spacesand obtain the multipliers of the Orlicz-Lorentz spaces by(1.1).For more details about tensor products and multipliers,one can also refer to[14–18]and so on.

    2 Preliminaries for Orlicz-Lorentz Spaces

    LetM(G,μ)be the class of all measurable and almost everywhere finite functions on(G,μ).Forf∈M(G,μ),a non-increasing rearrangement off,is a non-increasing functionf?on R+≡(0,+∞)which is equimeasurable with|f|.The rearrangementf?is defined by the equality(see[19])

    where

    We sayφ:[0,∞)→[0,∞)is a Young function ifφis non-decreasing and convex withφ(0)=0,andφ(x)=∞.The Young conjugateφ?of the Young functionφis defined by

    The Orlicz-Lorentz spaces(G)(see[20–21])associated to the Young functionφand a weightwon R+(nonnegative locally integrable functions in R+),are the set off∈M(G,μ)such that for someλ>0,we have(λf)<∞,where

    (we assume that the weightwvanishes in[μ(G),∞)).Let

    If there is no ambiguity,we indicate=Ifw(t)=1,then=is an Orlicz space(see[22–23]);ifφ(t)=(1≤p<∞),then=(w)is a Lorentz space(see[24–25]).Additionally,let

    called the subspace of finite elements ofIf groupGis discrete,the notationsandare used instead ofand

    Given an arbitrary functionD:[0,∞)→[0,∞),we say thatDsatisfies condition?2in symbolG∈?2when

    A Young functionFis said to satisfy?′condition in symbolF∈?′if there existsC>0 such that

    Clearly ifF∈?′,thenF∈?2.By[26,Thm.3.1],we know that ifμ(G)=∞,W∈?2,W(∞)=∞orμ(G)<∞,then

    There are many papers devoted to researching Hardy-type inequalities on monotone functions.Letfbe a nonnegative function on R+,the Hardy operator be

    andf↓indicate thatfis a nonnegative nonincreasing function in R+.In[27,Thm.2.3],the author got that ifφ∈?′,then

    if and only if there is a constantH>0 such that

    Obviously,(2.2)implies thatcan be normable ifφ∈?′.Ifφ=,then(2.3)implies thatw∈(see[28–29]).Ifw,φsatisfy the inequality(2.2),we sayw∈,and let

    As usual,f≈gindicates the existence of a universal constantB>0(independent of all parameters involved)so thatf≤g≤Bf.In the sequel,Cdenotes a positive constant which need not be the same at different occurrences.Ifwis a weight on R+,we denoteW(t)=w(s)ds.

    3 Convolutions of Orlicz-Lorentz Spaces

    In the rest of this paper,Gwill be a unimodular locally compact abelian group,with Haar measureμ.Letφbe a Young function.A generalized inverse function:[0,∞]→[0,∞]is defined as

    It is said in[3]that(i=1,2,3)satisfy condition(+)for l.a.(s.a.)[a.a]if there existk>0,δ>0,such that

    whenφ1(u)≥δ,φ2(v)≥δ(φ1(u)≤δandφ2(v)≤δ)[u,v≥0].It is said that(i=1,2,3)satisfy condition(++)for l.a.(s.a.)[a.a],if for everyα>0,there existk>0,δ>0,such that

    whenφ1(u)≥δ,φ2(v)≥δ(φ1(u)≤δandφ2(v)≤δ)[u,v≥0].[3,Prop.2]showed that condition(+)for l.a.(s.a.)[a.a]is equivalent to the following one:There existl,δ>0,such that

    ifu≥δ(u≤δ)[u≥0].

    SinceGis a unimodular locally compact group,by virtue of the definition of convolution(see[1]),Hewitt and Ross[4,Ch.5,Sec.20]indicated that the operator

    satisfies that

    So suchTis a convolution operator.Thus by[1],

    Lemma 3.1Let w∈(i=1,2)andw≥1.Suppose that φi(i=1,2,3)satisfy condition(+)for a.a.and≤where k is the constant from(+),so then(λf?g)≤1.

    ProofBy(3.1)we have

    Since(i=1,2,3)satisfy condition(+)for a.a.andw(s)≥1,s>0,the right hand of the last inequality

    Since

    by Jensen’s inequality and≤t,t>0,we get that the right part of(3.2)

    Remark 3.1Ifw≥1 is replaced byw≥c(c>0 is a nonnegative constant)in the preceding lemma,then the result also holds.

    The next theorems give sufficient conditions for embedding of the spaces

    Theorem 3.1(I)Let G be nondiscrete,w∈(i=1,2),w≥c(c>0be a nonnegative constant)and(i=1,2,3)satisfy condition(+)for l.a.if G is compact and(+)for a.a.if G is noncompact.ThenIf additionallyis finite,then

    (II)Let G be discrete,w∈(i=1,2),and satisfy(+)for s.a.Then

    Proof(I)By[3]it is sufficient to prove only inclusion.Let firstGbe noncompact and(+)for a.a.Takef∈andg∈satisfying max((f),(g))Then applying Lemma 3.1 withλ=,we obtain≤1,which means by[3,Thm.1.2]thatf?g∈andIfGis compact and(i=1,2,3)satisfy condition(+)for l.a.,then by[3,Lem.5]there exist functions(i=1,2,3)satisfying(+)for a.a.and equivalent tofor l.a.,which implies thatThus,the embedding follows in the same way as the above.

    To prove the inclusiontakef∈Let max((f),(g))≤minFor anyβ>0,supposeλ=2β.Then by(3.1)it follows

    that

    Sincew∈andf∈

    Thus we can choose>0 such thatw(t)dt≤1.Then the right side of(3.3)

    Sincef∈there exists a constant>0,such that

    Thus

    Now we get

    But since each function in Λφ(w)is locally integrable,we get<∞,and thus

    On the other hand,in view of the condition(+),(3.5),and Jensen’s inequality,we also know

    Now,we see that the right hand of(3.4)is less than in fi nity,which completes the proof.

    (II)For this case,using[3,Lem.5],we can assume condition(+)for a.a.,and get the corresponding embedding by the same arguments as in(I).

    Theorem 3.2Let G be nondiscrete andsatisfy condition(++)for l.a.if G is compact and(++)for a.a.if G is noncompact.Let w∈,i=1,2and W(t)≥C1t,?0

    ProofSuppose thatGis compact.Takef∈such thatLetG1=whereδis from the condition(++)anda=min(μ(G1),μ(G2)).Letλ>0.Then

    First check I2and I3.

    Analogously,I3<∞.On the other hand,ifa=0,then I1=0;ifa0,then

    But≤so

    Thus J2<∞,likewise J3<∞.

    On the other hand,due to

    by the condition(++)we obtain

    whereKis from the condition(++)forα=12λ.SinceW(t)≥C1t,t∈[0,μ(G)],by Hardy lemma(see[19])we get

    which ends the proof.

    Lemma 3.2Let W∈?2.Then

    (i)if w∈L1(G),S is dense inwhere S is the set of the simple functions in G;

    (ii)if wL1(G),is dense inwhere S0is the subset of S with support in a set of fi nite measures.

    ProofSimilar to Theorem 2.3.11 and Theorem 2.3.12 of[30].

    From now on,let the weightwinsatisfyW∈

    Let(x)=f(x?s).Then we have the following result.

    Proposition 3.1If φ is finite,then for every f∈the mapping s→fsof G intois continuous.

    ProofBy Lemma 3.2,it is sufficient to show that for any simple functionf,s→fsis continuous.Letf=and thenNow

    where△denotes the symmetric difference of sets.Then the following relation

    derives the result.

    Proposition 3.2Let φ,be two Young functions and>0.Let w be a weight onR+which satisfies W(t)≥Ct,C>0,w∈Bφ,w∈Then there is an approximate identity{}insuch that=1and f?→f for every f∈

    ProofLet{}be a decreasing neighborhood system at the origin inG.For eachα,there exists a non-negative continuous functionaαwith support insuch that=1.Thus by the Hardy lemma(see[19]),the conditionsW(t)≥Ctand>0,we get∈L1(G)and≤C.Letf∈Then by the condition>0 again and Theorem 3.1,we getand

    This shows by Proposition 3.1 that

    where the limit is taken over the net ofα.

    4 Tensor Products and Multipliers on Orlicz-Lorentz Spaces

    In this section,we letGbe a locally compact unimodular group(unless otherwise indicated).Set(x)=f().If for two Young functions(i=1,2)and a weightwon R+there exists a Young functionwhich makes(i=1,2,3)satisfy condition(+)for l.a.,ifGis compact and(+)for a.a.,ifGis noncompact,w∈(i=1,2),andw≥c(c>0 is a nonnegative constant),then in view of Theorem 3.1 we may define the bounded bilinear mapdas

    which lifts to a linear map naturally,D,fromIn addition,lettingw∈and>0,by Theorem 3.1 again,we can get thatcan be looked as right-modules.

    Definition 4.1The range of D,with the quotient norm,will be denoted by(w).

    According to the definition ofV?γW,consists of exactly those functionsh,onGat least one expansion of the formh=wheref∈g∈and

    and for anyh∈(w),the norm ofhis

    It can be seen that(w)is a Banach space of functions.

    LetKbe the closed linear subspace ofspanned by all elements of the form(h?f)?g?f?(?g),wheref∈andh∈Then the-module tensor productis the quotient space/K.

    In the next,we need the following conditions for weightwon R+and Young functionsφ1,φ2,

    (i)w≥c(c>0 is a nonnegative constant).

    (ii)w∈(i=1,2).

    (iii)w∈and>0.

    (iv)There exists a Young functionφ3which makesφi(i=1,2,3)satisfy condition(+)for l.a.,ifGis compact and(+)for a.a.,ifGis noncompact.

    (v)w∈and

    Remark 4.1By[6],if

    and=convex closure ofE2,thenfirst quadrant can deduce(iv).

    Theorem 4.1Let G be compact,weight w be nonincreasing and Young functions,,satisfy(i)–(iv).Thenis isomorphic to the space

    ProofIt suffices to show that the kernel ofDis exactlyK.Since

    (dis-balanced),the kernel ofDcontainsK.

    On the contrary,suppose thattis an element of the kernel ofD.Then

    and

    where the summation converges inbe an approximate identity ofsatisfying the condition in Proposition 3.2.For eachn,definetn∈by

    Then,from Proposition 3.2,?converges tofor eachi,and by this one can prove thattnconverges totinNow givenn,s,and?>0,choosem0such that

    Choosem1>m0so that

    We observe that the second term on the right side of the following equality

    is inKand can be written

    by the definition of the cross norm.Letφ(y)=?x)].Sinceμ(G)<∞,1∈similar to proving the theorem of And[31,Thm.4,6,Thm.2.3],we easily get

    Thus

    Then the distance fromtntoKis less thanfor every?>0,and sotn∈K.ForKis closed,t∈K.

    Lemma 4.1Suppose that weight w is onR+and Young functionsatisfy(i)–(iii)and(v).Let φ∈Cc(G)and define Tφf=f?φ for f∈Then

    ProofIt is obvious thatφ∈withψa Young function.By[26],sincew≥c(c>0 is a nonnegative constant),there holds

    whereS(f)=In view of>0 and a simple fact that the functionis increasing,there exists a Young functionφsuch that

    i.e.,φ1,φ,satisfy(+)a.a.So by Theorem 3.1 and(4.1),it follows that iff∈then

    andTφis a bounded linear operator fromOn the other hand,

    for allf∈which ends the proof.

    The above lemma induces the following concept.

    Definition 4.2A locally compact unimodular group G is said to satisfy the propertyif every element ofcan be approximated in the ultraweak?-operator topology by operators

    Theorem 4.2Let G be a locally compact unimodular group,w be a weight onR+and Young functionssatisfy(i)–(v).Then the following statements are equivalent:

    (A)G satisfies the property

    (B)The kernel of D is K such that

    ProofSuppose thatGsatisfies the propertySinceK?KerD,to show that KerD=K,it is enough to show that KerD?K.In other words,it suffices to show that by the Banach theorem,any bounded linear functional onwhich annihilatesKalso annihilates KerD.By(1.1),we know

    It can be seen from this that ifFis a linear functional that annihilatesK,there is an operatorT∈corresponding toF,such that

    for allt∈with expansion

    Suppose thatt∈KerDand has the form(4.4).Then

    the summation converging in the norm ofWe will show that?t,F?=0,or equivalently,by(4.3),

    SinceGis assumed to satisfy the property(w),there is a net{:j∈I}of(G)such that the operatorsconverge toTin the ultraweak?-operator topology.Thus

    So,to check(4.5),it is enough to show that

    Sincewe deduce that

    This implies that

    Suppose conversely that KerD=K.To show that the operators of the formare dense in

    in the ultraweak?-operator topology,we only need to show that the corresponding functionals are dense inin the weak?-topology.Furthermore,it is sufficient to show that if these functionals,sayN,are viewed as functionals onthen their annihilatorsN⊥=K.Since

    and

    (see[32]),we haveN?.SoK?.Due to the assumption that KerD=K,we only need to prove that?KerD.

    Now,lett∈.Then=0 for allF∈Nand there existso that

    For anyF∈N,there is an operator∈corresponding toFsuch that

    It follows that

    that is,N⊥?KerD.This proves the theorem.

    Then by(4.1)–(4.2),we have the following result.

    Corollary 4.1Let G be a locally compact unimodular group,w be a weight onR+,Young functions φ1,φ2,satisfy(i)–(v),and G satisfy the property

    In the following,we illustrate the convolutions,tensor products,multipliers of Orlicz-Lorentz spacesLet 0

    and the modular space as

    which induces

    Additionally,let=whereφ0=φq,w0=

    The next theorem needs a certain generalized Hardy-type inequality(see[33]).In[33,Thm.1.7],Bloom and Kerman give the sufficient and necessary condition of establishing the weighted integral inequality:

    whereφ1,φ2areN-functions(anN-functionφis a continuous Young function such thatφ(x)=0 if and only ifx=0 and=+∞)andTis a generalized Hardy operator.We need the special form of the above inequality:

    which holds if and only if there exists a positive constantDsuch that

    Whenφ(t)=t,(4.7)is a classical Hardy inequality(see[19])and it is obvious that(4.8)always holds.

    Now we have the following theorem.

    Theorem 4.3Let G be a unimodular locally compact group,T be a convolution operator k=T(f,g)=f?g.Suppose that the following conditions hold:(a1)>1;(w≥c1>0,where c1is a constant;()φ(t)≤,whereis a constant,φ∈()are N-functions.Then there exists a constant C such that

    where=m and s≥1is a number such thatand the inequality(4.8)holds.In particular,if f∈then k∈

    ProofSince(see[1–2])

    we get

    For convenience,let=h.Then

    And by(4.8)it follows that the right part of the last inequality

    Now lettingy=and noticingw(t)≥c>0,φ∈?′andφ(t)≤Ct,we have

    By Hlder inequality,it is easy to get that

    On the other hand,we can get that(one can take the same method which is used for the proof of(see[30])).Now the lemma is proved.

    Remark 4.2In view of the above theorem,we obtain

    ifφ,w,p1,p2,q1,q2,r,ssatisfy the conditions in the above theorem.At the same time,if there exists a constantC0>0 such that

    for any 0

    and-module.Especially,ifφ(t)=t,w(t)=1,1≤<∞,1<<∞(obviously they satisfy the preceding conditions),then(4.9)is

    Additionally,using(4.9)and the same method in Theorem 4.1,Theorem 4.3 and Corollary 4.1,we can get the representations of the tensor products and multipliers onwhich contain the result of[13].

    [1]O’Neil,R.,Convolution operators andL(p,q)spaces,Duke Math.J.,30,1963,129–142.

    [2]Yap,L.Y.H.,Some remarks on convolution operators andL(p,q)spaces,Duke Math.J.,36,1969,647–658.

    [3]Kamiska,A.and Musielak,J.,On convolution operator in Orlicz spaces.Congress on Functional Analysis,Madrid,1988,Rev.Mat.Univ.Complut.Madrid,2,1989,157–178.

    [4]Hewitt,E.and Ross,K.A.,Abstract Harmonic Analysis,Vol.I,Springer-Verlag,Berlin,1963.

    [5]Hudzik,H.,Kamiska,A.and Musielak,J.,On Some Banach Algebras Given by a Modular,A.Haar memorial conference,Vol.I,II,Budapest,1985,445–463,Colloq.Math.Soc.Jnos Bolyai,49,North-Holland,Amsterdam,1987.

    [6]O’Neil,R.,Fractional integration in Orlicz spaces,I.,Trans.Amer.Math.Soc.,115,1965,300–328.

    [7]Zelazko,W.,On the algebrasLpof locally compact groups,Colloq.Math.,8,1961,115–120.

    [8]Rieffel,M.A.,Induced Banach representations of Banach algebras and locally compact groups,J.Functional Analysis,1,1967,443–491.

    [9]Rieffel,M.A.,Multipliers and tensor products ofLp-spaces of locally compact groups,Studia Math.,33,1969,71–82.

    [10]Grothendieck,A.,Produits tensoriels topologiques et espaces nuclaires,Mem.Amer.Math.Soc.,16(16),1955,140 pp.

    [11]Bonsall,F.F.and Duncan,J.,Complete Normed Algebras,Ergebnisse der Mathematik und ihrer Grenzgebiete,Band 80,Springer-Verlag,New York-Heidelberg,1973.

    [12]Schatten,R.,A Theory of Cross-Spaces,Annals of Mathematics Studies,26,Princeton University Press,Princeton,N.J.,1950.

    [13]Avci,H.and Grkanli,A.T.,Multipliers and tensor products ofL(p,q)Lorentz spaces,Acta Math.Sci.Ser.B Engl.Ed.,27,2007,107–116.

    [14]Kerlin,J.E.,Representations of generalized multipliers ofLp-spaces of locally compact groups,Bull.Amer.Math.Soc.,79,1973,1223–1228.

    [15]Candeal Haro,J.C.and Lai,H.C.,Multipliers in vector-valued function spaces under convolution,Acta Math.Hungar.,67(3),1995,175–192.

    [16]ztop,S.,Multipliers of Banach valued weighted function spaces,Int.J.Math.Math.Sci.,24(8),2000,511–517.

    [17]zto,S.and Grkanli,A.T.,Multipliers and tensor products of weightedLp-spaces,Acta Math.Sci.Ser.B Engl.Ed.,21(1),2001,41–49.

    [18]Sair,B.,Multipliers and tensor products of vector valuedLp(G,A)spaces,Taiwanese J.Math.,7(3),2003,493–501.

    [19]Bennett,C.and Sharpley,R.,Interpolation of operators,Pure and Applied Mathematics,129,Academic Press,Inc.,Boston,MA,1988,xiv+469 pp.

    [20]Masty lo,M.,Interpolation of linear operators in Caldern-Lozanovskspaces,Comment.Math.Prace Mat.,26(2),1986,247–256.

    [21]Maligranda,L.,Indices and interpolation,Dissert.Math.,234,1984,1–49.

    [22]Orlicz,W.,ber eine gewisse Klasse von R?umen vom Typus B,Bull,Intern.Acad.Pol.,8,1932,207–220.

    [23]Luxemburg,W.A.J.,Banach function spaces,Thesis,Delft Technical Univ.,Delft,1955.

    [24]Lorentz,G.G.,Some new functional spaces,Ann.of Math.,51,1950,37–55.

    [25]Lorentz,G.G.,On the theory of spaces Λ,Pacific J.Math.,1,1951,411–429.

    [26]Kamiska,A.and Masty lo,M.,Abstract duality Sawyer formula and its applications,Monatsh.Math.,151(3),2007,223–245.

    [27]Li,H.L.,Hardy-type inequalities on strong and weak Orlicz-Lorentz spaces,Sci.China Math.,55(12),2012,2493–2505.

    [28]Aro,M.A.and Muckenhoupt,B.,Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions,Trans.Amer.Math.Soc.,320,1990,727–735.

    [29]Sawyer,E.,Boundedness of classical operators on classical Lorentz spaces,Studia Math.,96,1990,145–158.

    [30]Carro,M.J.,Raposo,J.A.and Soria,J.,Recent developements in the theory of Lorentz spaces and weighted inequalities,Mem.Amer.Math.Soc.,187,Amer.Math.Soc.,Providence,RI,2007.

    [31]An,T.,On products of Orlicz spaces,Math.Ann.,140,1960,174–186.

    [32]Conway,J.B.,A Course in Functional Analysis,Springer-Verlag,New York,1985.

    [33]Bloom,S.and Kerman,R.,WeightedLφintegral inequalities for operators of Hardy type,Studia Math.,110(1),1994,35–52.

    美女高潮的动态| 日日夜夜操网爽| 欧美日韩国产亚洲二区| 免费看a级黄色片| 欧美黄色片欧美黄色片| 欧美zozozo另类| aaaaa片日本免费| 亚洲在线观看片| 欧美日韩瑟瑟在线播放| 日韩成人在线观看一区二区三区| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 亚洲第一电影网av| 精品无人区乱码1区二区| 悠悠久久av| ponron亚洲| 2021天堂中文幕一二区在线观| 精品人妻视频免费看| 久久久久久久久久黄片| 欧美性猛交黑人性爽| 乱人视频在线观看| 国产精品久久久久久人妻精品电影| a级毛片a级免费在线| 久久99热这里只有精品18| 一级黄色大片毛片| 精品不卡国产一区二区三区| 婷婷亚洲欧美| 波野结衣二区三区在线| 日本免费一区二区三区高清不卡| 97碰自拍视频| 男女下面进入的视频免费午夜| 亚洲精品色激情综合| 日韩欧美精品v在线| 我的老师免费观看完整版| 精品久久久久久久久久免费视频| 乱码一卡2卡4卡精品| 亚洲三级黄色毛片| 91在线观看av| 美女大奶头视频| 免费看美女性在线毛片视频| 在线看三级毛片| 麻豆一二三区av精品| 国产爱豆传媒在线观看| 一个人免费在线观看的高清视频| aaaaa片日本免费| 欧美高清成人免费视频www| 免费在线观看影片大全网站| 国产精品日韩av在线免费观看| 久久久国产成人免费| 老女人水多毛片| 婷婷精品国产亚洲av| 国产一区二区在线观看日韩| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 午夜两性在线视频| 在线免费观看的www视频| 高清毛片免费观看视频网站| 免费人成在线观看视频色| 麻豆久久精品国产亚洲av| 深夜精品福利| 日韩 亚洲 欧美在线| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 少妇的逼好多水| 婷婷六月久久综合丁香| 久久久久久久午夜电影| 日日摸夜夜添夜夜添小说| 欧美潮喷喷水| 黄色丝袜av网址大全| 亚洲最大成人av| 亚洲内射少妇av| 国产精华一区二区三区| 男插女下体视频免费在线播放| 日韩精品青青久久久久久| 一a级毛片在线观看| 亚洲精品色激情综合| 久久久久久久精品吃奶| 国产麻豆成人av免费视频| 99热这里只有精品一区| 亚洲欧美日韩高清在线视频| 特级一级黄色大片| 在线a可以看的网站| 999久久久精品免费观看国产| 久久久久亚洲av毛片大全| 久久精品久久久久久噜噜老黄 | 蜜桃久久精品国产亚洲av| 国产成人a区在线观看| 黄色配什么色好看| 国产免费一级a男人的天堂| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 观看免费一级毛片| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 中文字幕免费在线视频6| 成人国产综合亚洲| 精品一区二区免费观看| 简卡轻食公司| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 国产精品av视频在线免费观看| 999久久久精品免费观看国产| 色5月婷婷丁香| 亚洲av二区三区四区| 美女免费视频网站| 床上黄色一级片| 免费观看人在逋| 久99久视频精品免费| 99精品在免费线老司机午夜| 国产精品99久久久久久久久| 一进一出抽搐gif免费好疼| 国产一区二区在线观看日韩| 亚洲av电影在线进入| 午夜福利视频1000在线观看| 老司机福利观看| 在线播放无遮挡| 国语自产精品视频在线第100页| 欧美+亚洲+日韩+国产| 我的女老师完整版在线观看| 免费观看人在逋| 亚洲成人久久爱视频| 亚洲天堂国产精品一区在线| 欧美精品啪啪一区二区三区| 国产精品久久久久久亚洲av鲁大| 88av欧美| 国产精品久久视频播放| 欧美丝袜亚洲另类 | 亚洲av电影不卡..在线观看| 中文资源天堂在线| 久久热精品热| 久久中文看片网| 天美传媒精品一区二区| 日韩高清综合在线| 国产成人av教育| 欧美日韩亚洲国产一区二区在线观看| 欧美成人免费av一区二区三区| 淫妇啪啪啪对白视频| 老司机深夜福利视频在线观看| 久久热精品热| 久久久久久久久久黄片| 嫩草影院入口| 久久99热6这里只有精品| 亚洲,欧美,日韩| 日韩欧美精品v在线| 99国产综合亚洲精品| 亚洲精品久久国产高清桃花| 亚洲精品456在线播放app | 免费观看精品视频网站| 国产探花极品一区二区| 亚洲av五月六月丁香网| 12—13女人毛片做爰片一| 草草在线视频免费看| 99热只有精品国产| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕 | 男人狂女人下面高潮的视频| 国产一级毛片七仙女欲春2| 久久精品综合一区二区三区| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆 | 日日夜夜操网爽| 精品久久久久久,| 欧美成人a在线观看| 亚洲在线自拍视频| 美女免费视频网站| 国产亚洲精品久久久com| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 18禁裸乳无遮挡免费网站照片| 丁香六月欧美| www日本黄色视频网| 午夜老司机福利剧场| 啦啦啦韩国在线观看视频| 久久国产乱子伦精品免费另类| 最后的刺客免费高清国语| 国产在线男女| 婷婷色综合大香蕉| 别揉我奶头~嗯~啊~动态视频| 国产伦一二天堂av在线观看| 国产av不卡久久| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 免费大片18禁| 美女被艹到高潮喷水动态| 桃色一区二区三区在线观看| 国内精品一区二区在线观看| 亚洲国产欧美人成| av黄色大香蕉| 日韩成人在线观看一区二区三区| 简卡轻食公司| 国产视频一区二区在线看| 变态另类丝袜制服| 亚洲第一电影网av| 国产午夜精品久久久久久一区二区三区 | 给我免费播放毛片高清在线观看| 日韩精品中文字幕看吧| 琪琪午夜伦伦电影理论片6080| 亚洲avbb在线观看| 女同久久另类99精品国产91| 黄色女人牲交| a在线观看视频网站| 精品99又大又爽又粗少妇毛片 | 亚洲中文日韩欧美视频| 悠悠久久av| 天堂√8在线中文| 国产亚洲精品久久久com| www.熟女人妻精品国产| 国产精品国产高清国产av| 少妇丰满av| 69人妻影院| 天堂影院成人在线观看| 嫩草影视91久久| 久久久久久久午夜电影| 观看免费一级毛片| 国产三级在线视频| bbb黄色大片| 亚洲在线自拍视频| 十八禁人妻一区二区| 亚洲精品乱码久久久v下载方式| 久久精品国产亚洲av涩爱 | 欧美+亚洲+日韩+国产| 长腿黑丝高跟| 亚洲国产色片| 波多野结衣巨乳人妻| 国产蜜桃级精品一区二区三区| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区 | 欧美一级a爱片免费观看看| 91av网一区二区| 久久久国产成人免费| 伦理电影大哥的女人| 国产精品三级大全| 真实男女啪啪啪动态图| 久久婷婷人人爽人人干人人爱| 精品无人区乱码1区二区| 久久香蕉精品热| 美女xxoo啪啪120秒动态图 | 99国产精品一区二区蜜桃av| 一本综合久久免费| 午夜福利免费观看在线| 亚洲三级黄色毛片| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 亚洲真实伦在线观看| 毛片女人毛片| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 天堂网av新在线| 日韩中字成人| 桃色一区二区三区在线观看| 亚洲一区二区三区色噜噜| 欧美zozozo另类| 日韩欧美在线乱码| 日韩欧美三级三区| 级片在线观看| 国产伦精品一区二区三区视频9| 中文字幕精品亚洲无线码一区| 在线观看免费视频日本深夜| 天天躁日日操中文字幕| 757午夜福利合集在线观看| 九九热线精品视视频播放| 国产aⅴ精品一区二区三区波| 深夜a级毛片| 精品熟女少妇八av免费久了| 欧美三级亚洲精品| 国产成人影院久久av| 天天一区二区日本电影三级| 超碰av人人做人人爽久久| 看免费av毛片| 日本精品一区二区三区蜜桃| 精品久久久久久久久久久久久| 亚洲精品日韩av片在线观看| 国产视频内射| 亚洲成人久久性| 中亚洲国语对白在线视频| 欧美乱色亚洲激情| 国产亚洲欧美在线一区二区| 免费观看精品视频网站| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 久久久成人免费电影| 99久国产av精品| 日韩精品青青久久久久久| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 亚洲av第一区精品v没综合| 少妇的逼水好多| 亚洲精品色激情综合| 久久精品国产亚洲av天美| 精品人妻视频免费看| 51国产日韩欧美| 夜夜看夜夜爽夜夜摸| 久久6这里有精品| 欧美日韩国产亚洲二区| 18禁在线播放成人免费| 国产亚洲精品av在线| 哪里可以看免费的av片| 国内精品久久久久精免费| 精品一区二区免费观看| 国产av一区在线观看免费| 3wmmmm亚洲av在线观看| 免费看日本二区| 99国产极品粉嫩在线观看| 亚洲国产色片| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 99视频精品全部免费 在线| 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 精品免费久久久久久久清纯| 色综合婷婷激情| 十八禁网站免费在线| 国产大屁股一区二区在线视频| 亚洲精品日韩av片在线观看| 久久草成人影院| 婷婷精品国产亚洲av在线| 能在线免费观看的黄片| 亚洲专区中文字幕在线| 国产成人av教育| 成人av一区二区三区在线看| 最近在线观看免费完整版| 熟女电影av网| 男人的好看免费观看在线视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av熟女| 欧美日韩国产亚洲二区| 日本免费a在线| 欧美高清成人免费视频www| 亚洲国产欧美人成| 小蜜桃在线观看免费完整版高清| 午夜福利免费观看在线| 国产亚洲精品综合一区在线观看| 精品久久国产蜜桃| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 成人欧美大片| 90打野战视频偷拍视频| 在线播放无遮挡| 国产精品爽爽va在线观看网站| a级一级毛片免费在线观看| 丰满人妻一区二区三区视频av| 亚洲av电影不卡..在线观看| 色在线成人网| 免费在线观看成人毛片| 国产野战对白在线观看| 久久精品国产99精品国产亚洲性色| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 老熟妇仑乱视频hdxx| 国产淫片久久久久久久久 | 美女xxoo啪啪120秒动态图 | 免费观看的影片在线观看| 日本成人三级电影网站| 美女cb高潮喷水在线观看| 午夜两性在线视频| 在现免费观看毛片| 两个人的视频大全免费| 可以在线观看的亚洲视频| ponron亚洲| 能在线免费观看的黄片| 欧美又色又爽又黄视频| 国产视频内射| 亚洲成人中文字幕在线播放| 人妻久久中文字幕网| 欧美又色又爽又黄视频| 国产成人影院久久av| 久久久久久久亚洲中文字幕 | 三级国产精品欧美在线观看| 美女xxoo啪啪120秒动态图 | 色噜噜av男人的天堂激情| 1024手机看黄色片| 国产伦在线观看视频一区| 丰满的人妻完整版| 日韩 亚洲 欧美在线| 国产精品国产高清国产av| 久久久久久久午夜电影| 亚洲三级黄色毛片| 亚洲无线在线观看| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放| 日韩精品中文字幕看吧| 成人无遮挡网站| 精品不卡国产一区二区三区| a在线观看视频网站| 成人特级黄色片久久久久久久| 俺也久久电影网| 久久香蕉精品热| 免费观看的影片在线观看| 日本黄大片高清| 久久久国产成人免费| 国产爱豆传媒在线观看| 久久99热6这里只有精品| 少妇人妻一区二区三区视频| 国产成人啪精品午夜网站| 精品国产三级普通话版| 亚洲不卡免费看| 久久99热这里只有精品18| 亚洲天堂国产精品一区在线| 久久人人爽人人爽人人片va | 免费av毛片视频| 最近最新中文字幕大全电影3| 亚洲自偷自拍三级| 丁香六月欧美| 日韩欧美免费精品| 国产精品一区二区三区四区免费观看 | 亚洲乱码一区二区免费版| 国产69精品久久久久777片| 国产真实伦视频高清在线观看 | 成年版毛片免费区| 亚洲五月婷婷丁香| 我的老师免费观看完整版| 18禁黄网站禁片午夜丰满| 男人舔奶头视频| 夜夜夜夜夜久久久久| 精品久久久久久,| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 国产成人a区在线观看| 有码 亚洲区| 中文字幕av在线有码专区| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 国产成人影院久久av| av在线蜜桃| 少妇人妻精品综合一区二区 | 熟女人妻精品中文字幕| 色在线成人网| 别揉我奶头 嗯啊视频| 亚洲激情在线av| 久久久久久久亚洲中文字幕 | 亚洲国产精品合色在线| 成人无遮挡网站| 三级国产精品欧美在线观看| 欧美色欧美亚洲另类二区| 亚洲精品成人久久久久久| 日本在线视频免费播放| 天堂√8在线中文| 免费av观看视频| 在线观看美女被高潮喷水网站 | 久久久精品欧美日韩精品| 搞女人的毛片| 97热精品久久久久久| 日本黄大片高清| 99热6这里只有精品| 欧美日本亚洲视频在线播放| 日本三级黄在线观看| 欧美黄色片欧美黄色片| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站 | 制服丝袜大香蕉在线| 国产黄片美女视频| 好男人在线观看高清免费视频| 成人国产一区最新在线观看| 免费看日本二区| 他把我摸到了高潮在线观看| 日日摸夜夜添夜夜添小说| 国产精品女同一区二区软件 | 久久99热这里只有精品18| 午夜精品一区二区三区免费看| 亚洲无线在线观看| 老熟妇乱子伦视频在线观看| 精品欧美国产一区二区三| 神马国产精品三级电影在线观看| xxxwww97欧美| 国产蜜桃级精品一区二区三区| 欧美一级a爱片免费观看看| 亚洲最大成人av| 热99在线观看视频| 又爽又黄a免费视频| 变态另类丝袜制服| 99国产精品一区二区三区| 亚洲精华国产精华精| 亚洲国产高清在线一区二区三| 亚洲人与动物交配视频| av国产免费在线观看| 最近最新中文字幕大全电影3| 久久精品综合一区二区三区| 欧美激情久久久久久爽电影| 免费观看的影片在线观看| 波多野结衣高清无吗| 成人亚洲精品av一区二区| 亚洲av美国av| 国产伦在线观看视频一区| 制服丝袜大香蕉在线| 成人永久免费在线观看视频| 最新中文字幕久久久久| 少妇的逼好多水| 日日摸夜夜添夜夜添小说| 哪里可以看免费的av片| 国产 一区 欧美 日韩| 日本 av在线| 精品久久久久久久久久久久久| 99久久精品热视频| 亚洲avbb在线观看| eeuss影院久久| 两人在一起打扑克的视频| 久久人人精品亚洲av| 一级黄片播放器| 精品人妻1区二区| 精品熟女少妇八av免费久了| 国产高潮美女av| 欧美成狂野欧美在线观看| 亚洲国产高清在线一区二区三| 嫁个100分男人电影在线观看| av天堂中文字幕网| 男女视频在线观看网站免费| 黄色配什么色好看| 亚洲av一区综合| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 国产 一区 欧美 日韩| 国产精品,欧美在线| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 国产精品永久免费网站| 91麻豆av在线| 一区福利在线观看| a级一级毛片免费在线观看| 99国产精品一区二区蜜桃av| 国产高潮美女av| 欧美成人免费av一区二区三区| 亚洲自偷自拍三级| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av嫩草精品影院| 亚洲精品一区av在线观看| 精品人妻一区二区三区麻豆 | av天堂中文字幕网| 很黄的视频免费| 国产精品久久久久久精品电影| 麻豆一二三区av精品| 男女视频在线观看网站免费| 欧美+亚洲+日韩+国产| 亚洲国产精品久久男人天堂| a级毛片免费高清观看在线播放| 免费无遮挡裸体视频| 国产真实乱freesex| 男女下面进入的视频免费午夜| 美女被艹到高潮喷水动态| 91久久精品国产一区二区成人| 国产爱豆传媒在线观看| 亚洲国产精品久久男人天堂| 九九热线精品视视频播放| 久久精品国产亚洲av涩爱 | 悠悠久久av| 日本 欧美在线| 日本成人三级电影网站| 午夜免费激情av| av天堂中文字幕网| 嫁个100分男人电影在线观看| 欧美日韩黄片免| 日韩 亚洲 欧美在线| 欧美日本亚洲视频在线播放| 日本一本二区三区精品| 亚洲av第一区精品v没综合| 免费在线观看影片大全网站| 亚洲久久久久久中文字幕| 国产三级黄色录像| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 亚洲av美国av| 欧美精品啪啪一区二区三区| 熟女人妻精品中文字幕| 日韩欧美一区二区三区在线观看| netflix在线观看网站| 午夜福利视频1000在线观看| av国产免费在线观看| 丁香六月欧美| 97热精品久久久久久| 亚洲乱码一区二区免费版| 夜夜躁狠狠躁天天躁| 亚洲aⅴ乱码一区二区在线播放| 久久精品人妻少妇| 国产av一区在线观看免费| 国产精品女同一区二区软件 | 欧美精品国产亚洲| 成人高潮视频无遮挡免费网站| 精品人妻熟女av久视频| 国产精品久久久久久精品电影| 国产伦一二天堂av在线观看| 麻豆国产av国片精品| 一a级毛片在线观看| 赤兔流量卡办理| 久久久久九九精品影院| 精华霜和精华液先用哪个| 亚洲av中文字字幕乱码综合| 一边摸一边抽搐一进一小说| 2021天堂中文幕一二区在线观| 人妻丰满熟妇av一区二区三区| 女人十人毛片免费观看3o分钟| 国产乱人视频| av黄色大香蕉| 日本a在线网址| 日韩人妻高清精品专区| 国产大屁股一区二区在线视频| 两个人视频免费观看高清| 久久精品人妻少妇| 日本一本二区三区精品| 91久久精品国产一区二区成人| 婷婷精品国产亚洲av在线| 成人美女网站在线观看视频| 夜夜爽天天搞| av在线观看视频网站免费| 免费在线观看日本一区| 色精品久久人妻99蜜桃| 国产真实伦视频高清在线观看 | 此物有八面人人有两片| 亚洲人成网站高清观看| 一个人观看的视频www高清免费观看| 亚洲真实伦在线观看| 啦啦啦韩国在线观看视频| www.www免费av| 中文字幕人成人乱码亚洲影| 成人精品一区二区免费|