• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Relation in the Stable Homotopy Groups of Spheres?

    2015-06-06 08:18:10JianxiaBAIJianguoHONG

    Jianxia BAI Jianguo HONG

    1 Introduction

    Letpbe an odd prime andq=2p?2.It is well-known that the Adams-Novikov spectral sequence(ANSS)based on the Brown-Peterson spectrum is one of the most powerful tools to compute thep-component of stable homotopy groups of spheresS0,and theE2-term of the ANSS is(BP?,BP?)(see[1,7,10–11,15]).Moreover,we have the Adams spectral sequence(ASS)(see[1–2])based on the Eilenberg-MacLane spectrumKZ/p.

    From[10–11],(BP?,BP?)=H1BP?is generated byforn0,ps1,wherehas order.(B,BP?)=BP?is a direct sum of cyclic groups generated byforn0,ps1,j1,i0 and is subject to

    wherea0=1,ak=?1 fork1.has order(see[10,14–15]).There is only partial information for(BP?,BP?)=H3BP?which contains theporder generatorsγs,s1.

    In 1985,D.C.Ravenel[13]first introduced the method of infinite descent and later used it to compute the first thousand stems of the stable homotopy groups of spheres at the prime 5.This method is devoted to computing the Adams-NovikovE2-term for a spheral spectrumS0by the following spectral sequence referred to as the small descent spectral sequence(SDSS)

    anddr:

    The following relation about the Toda bracket is showed by Ravenel in the topological SDSS(see[14,Proposition 7.5.11]or[15,Proposition 7.6.11]).Ifxis an element in stable homotopy groups of spheres and satisfiespx=0,=0 andα1x0,then

    In this paper,we show that the condition?=0 holds for the elementx=withp7 by using the cobar complex ofBP-homology of the Smith-Toda spectrumV(2).Therefore,it follows that the relation

    holds forp7.Applying this relation,we can prove thatis trivial inπ?(S0)for 2sp?2,p7,butare not trivial inπ?(S0)for 3sp?2,p7.

    It is also proved thatis nontrivial inπ?(S0),and we can further conjecture thatis nontrivial inπ?(S0)forp7,2sp?2.

    Letxandybe two elements in(BP?,BP?)and be permanent cycles.It is known that ifxy=0,then the homotopy product could still be nontrivial and represents an element in a higher Ext group.andγ3are two such elements.We know thatandγ3are permanent cycles and=0∈(BP?,BP?),butis nontrivial inπ?and represents the elementfrom the relation(1.1).

    The rest of this paper is organized as follows.In Section 2,the(topological)small descent spectral sequence will be introduced.In Section 3,we prove thatis nontrivial inπ?(S0)by applying the May spectral sequence(MSS)and the small descent spectral sequence(SDSS).In Section 4,we recall the cobar complex and use it to calculate theE2-term of the Adams-Novikov spectral sequence forV(2).We show that the Toda bracket?is well defined.As a result,holds forp7 andbecause

    2 The Small Descent Spectral Sequence

    In this section,we recall the construction of the small descent spectral sequence.Ravenel computed theE1-term of this spectral sequence and used it to determine the stable homotopy groups of spheres in a certain range,see[14–16]for more details.

    LetT(n)be the Ranevel spectrum(see[15])characterized by

    Then we have the following diagram:

    whereS0denotes the sphere spectrum localized at an odd primep.Letdenote theq(p?1)andq(p?2)skeletons ofT(1)respectively.They are denoted byYandfor simplicity.Then

    TheBP-homologies of them are

    From the definition above,we get the following cofibre sequences:

    and the short exact sequences ofBP?homology

    Putting(2.3)and(2.4)together,one has the following long exact sequence:

    Putting(2.1)and(2.2)together,one has the following Adams diagram of cofibres:

    Thus one has the following proposition.

    Proposition 2.1(see[14,Proposition 7.4.2]and[15,Theorems 7.1.13 and 7.1.16])Let Y be as above.

    (a)There is a spectral sequence converging to(BP?,BP?)with the E1-term

    and dr:where E(?)denotes the exterior algebra and P(?)denotes the polynomial algebra on the indicated generators.

    This spectral sequence is referred to as the small descent spectral sequence(SDSS).

    (b)There is a spectral sequence converging to π?(S0)with the E1-term

    and dr:

    This spectral sequence is referred to as the topological small descent spectral sequence(TSDSS).

    The above two spectral sequences produce the(BP?,BP?)and(BP?,BP?)or the corresponding elements in(S0)by(BP?,BP?Y)and(BP?,BP?Y).(B,BP?())(s2)or the corresponding elements inπ?(S0)are produced by(BP?,BP?Y)(s2)as described in the following ABC Theorem.

    Note that in the ranget?s2p,and the Adams-Novikov spectral sequence for the spectrumYcollapses from theE2-term.So theE2-term is actually(Y)for this range.

    ABC Theorem(see[14–15])For p>2and t?s

    where A is theZ/p-vector space spanned by

    where R=0ip?2}},and

    From the generators ofR,we can obtain precise generators ofCas follows.

    Leti=jp+m.Thenso we have

    (1)is represented by

    forp?1m1,from which we have

    whereuk=and

    (2)is represented by

    forp?1km+11,from which we have

    where

    Especiallyis represented by

    which is an element of order.

    (3)is represented by

    forp?2km+11,where

    (4)is represented by

    forp?2km0,where

    Especiallyis represented by

    which is an element of orderp2.

    3 The Non-triviality ofin π?(S0)

    It is known thatare not trivial inπ?()for 3sp?2,p7.Further,we conjecture that so isThe proof includes complicated calculation.Here we only prove that this conjecture is right fors=3.

    Let?:BP→KZ/pbe the Thom map which induces the Thom reduction map between the Adams-Novikov Spectral Sequence and the Adams Spectral Sequence

    Then it is known that

    where(Z/p,Z/p)is constructed by X.Wang and Q.Zheng in[18].

    Next we prove thatis not trivial in(Z/p,Z/p)by the May spectral sequence.

    LetA?denote the dual modpSteenrod algebra which is isomorphic to

    where the inner degree ofand that ofτiis+1.Set the May filtration onA?by=2i?1.Applying the May filtration to the cobar construction(Z/p),we get an increasingly filtered moduleand then there is the May spectral sequence(MSS)which converges to(Z/p,Z/p)with theE1-term

    where

    aiandcorrespond respectively to(see[14,Theorem 3.2.5]and[8–9]).

    One has

    Ifx∈andy∈then

    The known May differentialsdare given by

    From the Thom map,we know thatis represented byup to a nonzero coefficient in theE1-term of MSS.In order to prove that0∈(Z/p,Z/p),it is necessary to guarantee that there is no elementx∈in the MSS such thatdr(x)=That is to say,we need to computeSinceconverges non-trivially toit is easy to show thatshould not be killed by some first May differential from(3.2).

    Lemma 3.1In the May spectral sequence,is generated by the following elements:

    andis generated by the following elements:

    ProofIn our range,we only need to consider

    Note that the degree ofis of the formt=q(+···+p+1)+1.If there is a factoraiin the generatorgthengshould containq a’s,wherea∈It is easy to verify that the generators indo not containa.

    Therefore

    and the generators ofare of the form

    where 0k02p+2,0k14 and 0k26 3.

    The cohomology ofE(:i+j3)was already computed by Toda in[17].We list these elements in the Table 1 below.

    Table 1 H?(E(:i+j 3))

    Table 1 H?(E(:i+j 3))

    Generators (s,t/q)1(0,0)h1,0 (1,1)h1,1 (1,p)h1,2 (1,p2)g0 (2,p+2)k0 (2,2p+1)h1,0h1,2 (2,p2+1)g1 (2,p2+2p)k1=h1,2h2,1 (2,2p2+p)h1,0k0 (3,2p+2)l1=h1,0h2,0h3,0 (3,p2+2p+3)l2=h1,1h2,0h2,1 (3,p2+3p+1)l3=h1,0h1,2h3,0 (3,2p2+p+2)h1,1k1 (3,2p2+2p)γ3=h1,2h2,1h3,0 (3,3p2+2p+1)h1,1l1 (4,p2+3p+3)h1,2l1 (4,2p2+2p+3)m1=h1,1h2,0h2,1h3,0 (4,2p2+4p+2)h1,0γ3 (4,3p2+2p+2)h1,1γ3 (4,3p2+3p+1)h1,0m1 (5,2p2+4p+3)g0γ3 (5,3p2+3p+3)k0γ3 (5,3p2+4p+2)h1,0k0γ3 (6,3p2+4p+3)

    On the one hand,consider the inner degree ofSincet/qis the multiple of the primep,the inner degree ofxis of the formq(np+3)because

    On the other hand,sinceandhave an even dimension,so isx.

    Above all,the inspection of Table 1 shows thatxmust be

    Noting thatg=has the dimension 2p+2 and degreeq(4+2p+3),it is easy to get that

    In the same way,we can determine the generators of

    There are the following higher May differentials in the MSS.

    Lemma 3.2In the May spectral sequence,

    ProofWe only prove(i),and another statement can be verified easily in the similar way.

    To calculate these higher May differentials,we are required to work back in the cobar complex(Z/p)whose tensor product is not commutative,and hence permuting the tensor product will give rise to higher May differentials.

    Sinceis a permanent cycle in the May spectral sequence,it can be represented by some element in the cobar complex(Z/p),and we letdenote this element.From the formula

    we obtain that in the filtered cobar complexC?(Z/p),

    Applying the formula

    we achieve permutation betweenandin the cobar complex.Moreover,we can also achieve permutation amongand(see[6]for more details).

    In conclusion,permutation amongandcan be achieved in the sense modand thus,there is a chain(Z/p)such that mod

    Applying the following relations in theE1-term of MSS by formula(3.2)

    one has a chainu2=such that

    and mod?p+12,

    Above all,there is a chainu∈(Z/p)such that

    Notice thatandare sent toandin theE2-term of the May spectral sequence respectively.From Lemma 3.1,we know that

    Therefore,the following higher May differential follows:

    Theorem 3.1In the Adams spectral sequence,for p>7,

    Therefore,in the Adams-Novikov spectral sequence,for p>7,

    ProofAccording to Lemma 3.1,∈can only be killed byG1=andG2=However,from Lemma 3.2,G1andG2do not killconverges nontrivially to(Z/p,Z/p).

    By the Thom reduction map

    it is obtained that

    Theorem 3.2In the Adams-Novikov spectral sequence,

    converges nontrivially to

    ProofFrom Theorem 3.1,it is known that

    Meanwhile,andconverge nontrivially toπ?(S0).Therefore,we need to prove thatis not killed by any Adams differential.Using the sparseness of the ANSS,it is sufficient to consider elements in(BP?,BP?).

    Let us see the small descent spectral sequence

    and the ABC Theorem which describes the generators of(BP?,BP?Y)(t>2).

    It is easy to show that only the elementcan survive to(BP?,BP?).However,since=0(see[12])in theE2-term of the ANSS,the relation

    holds.Thusis not killed byThe theorem is obtained.

    4 A Toda Bracket and Relative Results

    Letpbe an odd prime number and letBPdenote the Brown-Peterson ring spectrum atp(see[3–4]).We have

    where the homological degrees ofviandtiare given by

    Let(BP?,Γ)be a Hopf algebroid.For anyBP?(BP)-comoduleM,we write

    One method of calculating this Ext group is to use the cobar complex.Given any Γ-comoduleMwith coactionψ:M→M?Γ,one has Ext?(M)=where the cobar complexMis the differential graded-module with

    (sfactors of Γ)and the differentialdof degree+1 given by

    where the coproduct?(xi)=andψ(m)=

    The elementmis sometimes denoted bym[x1|x2|···|xs]for simplicity.

    LetIn=be the ideal ofBP?.Then

    Let Γ =Then(BP?,Γ)is a Hopf algebroid.Thus,there is a natural isomorphism

    Theorem 4.1The q(+2p+2)?2dimension stable homology group of V(2)is trivial,i.e.,

    ProofFor complexV(2),there is the Adams-Novikov spectral sequence converging to the stable homotopy groups ofV(2)at the primep,

    It is known that the inner degreetof theE2-term(BP?,BP?V(2))is the multiple ofq=2p?2.In order to consider all possible elements converging toV(2),it is sufficient to consider only those of the forms=2+nqandt=q(p2+2p+2+n)forn0.

    For computing(BP?,BP?(V(2)))(n0),consider the isomorphism

    Note that we only need to consider elements which have the homotopy degreet?sq(p2+2p+2)?2.Since?2 fori>3,we have the following isomorphism:

    where Γ′==P(3)[v3],andP(3)is the Hopf algebra Z/p[t1,t2,t3].

    Hopf algebroid Γ′=P(3)[v3]has the coproduct and the right unit as follows:

    Since the right unitin the cobar complexC?!?BP?),there is a natural isomorphism

    For computing(Z/p,Z/p),i.e.,the cohomology of the Hopf algebraP(3),we can use the modified form of the May spectral sequence introduced in[8–9,15].LetP?=P(,,···)be the dual of Steenrod’s reduced powers.Then there is the spectral sequencewhich converges towith theE1-term

    We only need to consider the elementswithi+j3 andwithi+j2,so,the modified MayE2-term istensored with the cohomology of the complex

    described by Toda in[17].We list its generators in the Table 1 in Section 3.

    In the ranget?s6q(+2p+2)?2,the-term of the modified May spectral sequence equals

    In our range,the Adams-Novikov-term forV(2)is isomorphic to(Z/p,Z/p)?P(v3)which is a subquotient ofG?P).It is easy to verify that

    forn0 because no element can have both the dimensions 2+nqand the inner degreeq(p2+2p+2+n)inG?P(v3).

    It now follows that the theorem holds from the Adams-Novikov spectral sequence forV(2).

    It is easily showed that the following theorem holds from the above theorem.

    Theorem 4.2For p7,s1,the Toda bracket?=0.

    ProofLetbe the composite of the following maps:

    where the first map is the inclusion of the bottom cell.

    It is well-known thatis aporder element inand then the Toda bracket?is well defined andV(2).

    Let us useejto denote the projection fromV(2)toS0.Thenγs=

    As a result,

    because

    D.C.Ravenel proved the following proposition(see[14,Proposition 7.5.11]and[15,Proposition 7.6.11]).

    Proposition 4.1If x is an element in the stable homotopy groups of spheres and satisfies px=0,=0and α1x0,then the following relation

    holds.

    ProofFrom the relation between Toda brackets and Massey products,we have the following Toda brackets:

    On the other hand,

    Therefore,the proposition holds.

    It is known thatp=0 sincehas orderp.The condition0 holds as a result of R.Kato and K.Shimomura[5]who got that the elements0 forp7 and the positive integertwithpt(t2?1)using the cohomology of the third Morava stabilizer algebra.Thus we get the following result.

    Theorem 4.3For s2,p7and ps(s2?1),the following relation holds:

    Corollary 4.1In the stable homotopy groups of spheresis nontrivial and represents the element

    ProofIn Section 3,we have already got thatis nontrivial inso isThus the corollary holds.

    It is known thatare not trivial infor 3sp?2,p7.However,we can prove thatis trivial infor 2sp?2,p7.

    Corollary 4.2For s2,p7and ps(s2?1),

    ProofThe result can be easily got sinceand=0 inπ?(S0).

    AcknowledgementThe authors would like to express their gratitude to Prof.X.Wang for his suggestions.

    [1]Adams,J.F.,On the strucure and applications of the Steenrod algebra,Comm.Math.Helv.,32,1958,180–214.

    [2]Adams,J.F.,Stable Homotopy and Generalised Homology,University of Chicago Press,Chicago,1974.

    [3]Brown,E.H.and Peterson,F.P.,A spectrum whose Zp-cohomology is the algebra of reducedp-th powers,Topology,5,1966,149–154.

    [4]Cohen,R.L.,Odd Primary Infinite Families in Stable Homotopy Theory,Mem.Amer.Math.Soc.,30/242.D,Amer.Math.Soc.,Providence,1981.

    [5]Kato,R.and Shimomura,K.,Products of greek letter elements dug up from the third morava stabilizer algebra,Algebr.Geom.Topol.,12,2012,951–961.

    [6]Liu,X.and Wang,X.,A four-filtered May spectral sequence and its applications,Acta Math.Sin.,Engl.Ser.,24,2008,1507–1524.

    [7]Liulevicius,A.,The factorization of cyclic reduced powers by secondary cohomology operations,Mem.Amer.Math.Soc.,42,1962,1–112.

    [8]May,J.P.,The cohomology of restricted Lie algebras and of Hopf algebras;Applications to the Steenrod algebra,Theses,Princeton,1964.

    [9]May,J.P.,The cohomology of restricted Lie algebras and of Hopf algebras,J.Algebra,3,1966,123–146.

    [10]Miller,H.,Ravenel,D.C.and Wilson,S.,Periodic phenomena in the Adams-Novikov spectral sequence,Ann.of Math.,106,1977,469–516.

    [11]Novikov,S.P.,The metods of algebraic topology from the viewpoint of cobordism theories(in Russian),Izv.Akad.Nauk.SSSR.Ser.Mat.,31,1967,855–951.

    [12]Oka,S.and Shimomura,K.,On products of theβ-element in the stable homotopy of spheres,Hiroshima Math.J.,12,1982,611–626.

    [13]Ravenel,D.C.,The Adams-NovikovE2-term for a complex withp-cells,Amer.J.Math.,107(4),1985,933–968.

    [14]Ravenel,D.C.,Complex Cobordism and Stable Homotopy Groups of Spheres,Academic Press,New York,1986.

    [15]Ravenel,D.C.,Complex cobordism and stable homotopy groups of spheres,A.M.S.Chelsea Publishing,Providence,RI,2004.

    [16]Ravenel,D.C.,The method of infinite descent in stable homotopy theory,I,Recent Progress in Homotopy Theory(Baltimore,MD,2000),Contemp.Math.,293,Amer.Math.Soc.,Providence,RI,2002,251–284.

    [17]Toda,H.,On spectra realizing exterior parts of Steenord algebra,Topology,10,1971,55–65.

    [18]Wang,X.and Zheng,Q.,The convergence ofSci.China Ser.A,41,1998,622–628.

    最近中文字幕高清免费大全6| 国产亚洲av片在线观看秒播厂 | xxx大片免费视频| 欧美激情国产日韩精品一区| 好男人在线观看高清免费视频| 欧美97在线视频| 亚洲欧洲日产国产| 日本色播在线视频| 亚洲成色77777| 国产欧美日韩精品一区二区| 老司机影院成人| 2018国产大陆天天弄谢| 美女大奶头视频| av国产免费在线观看| 亚洲国产精品sss在线观看| 美女大奶头视频| 国产精品一区二区在线观看99 | 99久久人妻综合| 最近的中文字幕免费完整| 女人十人毛片免费观看3o分钟| 国产精品一区二区三区四区久久| 国产精品99久久久久久久久| 亚洲精品第二区| 国产精品久久久久久av不卡| 少妇的逼好多水| 亚洲av成人精品一二三区| av免费观看日本| 国内精品一区二区在线观看| 亚洲av不卡在线观看| 一夜夜www| 91aial.com中文字幕在线观看| 天堂网av新在线| 一级黄片播放器| 国产视频首页在线观看| 色综合亚洲欧美另类图片| 色吧在线观看| 亚洲va在线va天堂va国产| 国产黄色视频一区二区在线观看| 一夜夜www| 热99在线观看视频| 女人久久www免费人成看片| 免费看av在线观看网站| 久久久精品欧美日韩精品| 亚洲av成人av| 男插女下体视频免费在线播放| 亚洲不卡免费看| 国产在线男女| 99久久精品一区二区三区| 水蜜桃什么品种好| 欧美性感艳星| 欧美日韩精品成人综合77777| 日韩av不卡免费在线播放| 国产精品一区二区在线观看99 | 久久久久久久大尺度免费视频| 在线观看人妻少妇| 国产老妇女一区| 精品人妻偷拍中文字幕| 成人亚洲欧美一区二区av| 中文字幕制服av| 老司机影院成人| 性色avwww在线观看| 午夜精品在线福利| 亚洲综合精品二区| 毛片一级片免费看久久久久| 青青草视频在线视频观看| 啦啦啦韩国在线观看视频| 国产中年淑女户外野战色| 在线 av 中文字幕| 春色校园在线视频观看| 最近视频中文字幕2019在线8| 五月天丁香电影| 一本久久精品| 久久97久久精品| 国产成人福利小说| 草草在线视频免费看| 亚洲怡红院男人天堂| 最近最新中文字幕免费大全7| 日韩一本色道免费dvd| 国产成人精品福利久久| 色5月婷婷丁香| 亚洲精品国产av蜜桃| 国产黄色视频一区二区在线观看| 成年人午夜在线观看视频 | 超碰97精品在线观看| 精品欧美国产一区二区三| 国产综合精华液| 欧美日韩精品成人综合77777| 边亲边吃奶的免费视频| 国产精品久久久久久久电影| 成年版毛片免费区| 久久鲁丝午夜福利片| 天堂影院成人在线观看| 国产亚洲一区二区精品| 色视频www国产| 国产淫片久久久久久久久| 毛片一级片免费看久久久久| 校园人妻丝袜中文字幕| 99久久人妻综合| 国产有黄有色有爽视频| 又粗又硬又长又爽又黄的视频| av卡一久久| 在线观看一区二区三区| 美女黄网站色视频| 在线观看一区二区三区| 最新中文字幕久久久久| 高清日韩中文字幕在线| 亚洲熟妇中文字幕五十中出| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡 | 国产免费福利视频在线观看| 精品久久久久久久人妻蜜臀av| 午夜免费观看性视频| 91狼人影院| 亚洲电影在线观看av| 日韩三级伦理在线观看| 国产精品久久久久久精品电影小说 | 97精品久久久久久久久久精品| 我要看日韩黄色一级片| 免费av毛片视频| 久久久久久久久久黄片| 嫩草影院精品99| av在线播放精品| videossex国产| 毛片女人毛片| av在线播放精品| 国国产精品蜜臀av免费| 国产亚洲91精品色在线| 噜噜噜噜噜久久久久久91| 日韩亚洲欧美综合| 麻豆av噜噜一区二区三区| 日本三级黄在线观看| 一本久久精品| 久久久久精品性色| 国产视频内射| 丝瓜视频免费看黄片| 亚洲久久久久久中文字幕| 人人妻人人看人人澡| 天天躁夜夜躁狠狠久久av| 国产高清国产精品国产三级 | 成人漫画全彩无遮挡| 嘟嘟电影网在线观看| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 精品欧美国产一区二区三| 极品少妇高潮喷水抽搐| 欧美潮喷喷水| 精品酒店卫生间| 亚洲av中文字字幕乱码综合| 国产亚洲精品av在线| 国产精品久久久久久久电影| 深夜a级毛片| 国产精品爽爽va在线观看网站| 丰满少妇做爰视频| 99久久精品一区二区三区| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 亚洲丝袜综合中文字幕| 久久热精品热| 亚洲精品视频女| 男的添女的下面高潮视频| 日韩欧美 国产精品| 国产精品福利在线免费观看| 亚洲18禁久久av| 91在线精品国自产拍蜜月| 精品久久久久久久久久久久久| 午夜福利网站1000一区二区三区| 一二三四中文在线观看免费高清| 亚洲国产成人一精品久久久| 国产 一区 欧美 日韩| 精品久久久久久成人av| 日日啪夜夜爽| 国产午夜精品一二区理论片| 日韩国内少妇激情av| ponron亚洲| 亚洲美女视频黄频| 亚洲国产色片| 久久久久国产网址| 日本猛色少妇xxxxx猛交久久| 三级国产精品片| 国产精品不卡视频一区二区| 精品熟女少妇av免费看| 夫妻性生交免费视频一级片| 国产高清不卡午夜福利| 亚洲精品自拍成人| 一级毛片黄色毛片免费观看视频| 日韩精品有码人妻一区| a级毛片免费高清观看在线播放| 高清日韩中文字幕在线| 听说在线观看完整版免费高清| 亚洲av一区综合| 亚洲婷婷狠狠爱综合网| 噜噜噜噜噜久久久久久91| 亚洲国产最新在线播放| 日日干狠狠操夜夜爽| 91精品伊人久久大香线蕉| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 欧美三级亚洲精品| 久久久成人免费电影| 青春草亚洲视频在线观看| 国产亚洲午夜精品一区二区久久 | 国产一级毛片七仙女欲春2| 免费观看av网站的网址| 日韩精品青青久久久久久| 日韩强制内射视频| 国产亚洲av嫩草精品影院| 免费观看的影片在线观看| 欧美成人a在线观看| 日本一二三区视频观看| 亚洲成人久久爱视频| 乱码一卡2卡4卡精品| 亚洲天堂国产精品一区在线| 亚洲无线观看免费| 大陆偷拍与自拍| 三级经典国产精品| 我的老师免费观看完整版| 亚洲精品视频女| 久久这里只有精品中国| 丰满乱子伦码专区| 成人漫画全彩无遮挡| 久久久久网色| 久久国内精品自在自线图片| 水蜜桃什么品种好| 中文字幕制服av| 观看免费一级毛片| 少妇熟女aⅴ在线视频| 肉色欧美久久久久久久蜜桃 | 麻豆av噜噜一区二区三区| 久热久热在线精品观看| av在线老鸭窝| 免费看光身美女| 久久久亚洲精品成人影院| 精品久久久久久久久亚洲| 69人妻影院| 好男人在线观看高清免费视频| 亚洲四区av| 最近2019中文字幕mv第一页| 久久精品久久久久久久性| 又爽又黄a免费视频| 中文字幕av在线有码专区| 欧美xxⅹ黑人| 亚洲av二区三区四区| 欧美最新免费一区二区三区| 亚洲精品自拍成人| 日韩制服骚丝袜av| 男女边吃奶边做爰视频| 久久99热这里只频精品6学生| 丰满少妇做爰视频| 国产在视频线精品| 简卡轻食公司| 蜜桃久久精品国产亚洲av| 国产黄色视频一区二区在线观看| 国产91av在线免费观看| 欧美高清成人免费视频www| 人体艺术视频欧美日本| 搡女人真爽免费视频火全软件| 国产精品日韩av在线免费观看| 欧美一区二区亚洲| 高清欧美精品videossex| 中文字幕亚洲精品专区| 国产爱豆传媒在线观看| 男人和女人高潮做爰伦理| 看免费成人av毛片| 成人特级av手机在线观看| 成人鲁丝片一二三区免费| 欧美高清成人免费视频www| 中文资源天堂在线| 免费无遮挡裸体视频| 国产精品福利在线免费观看| av免费在线看不卡| 嫩草影院入口| 三级国产精品片| 国产又色又爽无遮挡免| 国产 亚洲一区二区三区 | 午夜福利视频1000在线观看| av福利片在线观看| 男女边吃奶边做爰视频| 色视频www国产| 又黄又爽又刺激的免费视频.| 国产精品99久久久久久久久| 精品熟女少妇av免费看| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 亚洲精品久久久久久婷婷小说| 男女啪啪激烈高潮av片| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 天堂av国产一区二区熟女人妻| 国内精品美女久久久久久| av又黄又爽大尺度在线免费看| 国国产精品蜜臀av免费| 欧美日韩视频高清一区二区三区二| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区四那| 免费无遮挡裸体视频| 午夜日本视频在线| 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 亚洲av中文av极速乱| 免费观看无遮挡的男女| 国产综合懂色| 三级男女做爰猛烈吃奶摸视频| 九草在线视频观看| 久久久午夜欧美精品| 在线免费观看的www视频| 毛片女人毛片| 日韩欧美国产在线观看| 亚洲av日韩在线播放| 综合色丁香网| 99久久人妻综合| .国产精品久久| 国产精品久久久久久久电影| 亚洲成人中文字幕在线播放| 久久久国产一区二区| 99热6这里只有精品| 欧美xxⅹ黑人| 亚洲综合精品二区| 少妇高潮的动态图| 一级a做视频免费观看| 国产成人aa在线观看| 夜夜爽夜夜爽视频| 精品酒店卫生间| 国产亚洲5aaaaa淫片| 亚洲国产欧美在线一区| 亚洲成人久久爱视频| 久久久久久久久中文| 亚洲精品亚洲一区二区| 嫩草影院新地址| 97精品久久久久久久久久精品| 亚洲人成网站在线播| 波多野结衣巨乳人妻| 国产一级毛片七仙女欲春2| 免费看美女性在线毛片视频| 欧美日本视频| 欧美一区二区亚洲| 青春草视频在线免费观看| 国产午夜精品久久久久久一区二区三区| 欧美精品国产亚洲| 国产精品久久视频播放| 国产在线一区二区三区精| 亚洲色图av天堂| 只有这里有精品99| 一级毛片电影观看| 久久99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看| 大陆偷拍与自拍| 青青草视频在线视频观看| 久久精品国产亚洲av天美| 亚洲久久久久久中文字幕| 联通29元200g的流量卡| 国产精品综合久久久久久久免费| 日韩伦理黄色片| 卡戴珊不雅视频在线播放| 中文字幕久久专区| 99久久九九国产精品国产免费| 日日啪夜夜撸| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 国产精品综合久久久久久久免费| 最近的中文字幕免费完整| 国产成人精品久久久久久| 日本av手机在线免费观看| 99热这里只有精品一区| 人妻一区二区av| 亚洲欧美精品专区久久| 卡戴珊不雅视频在线播放| 成人欧美大片| 亚洲av日韩在线播放| 色哟哟·www| 亚洲精品第二区| 成年女人看的毛片在线观看| 成年人午夜在线观看视频 | 国产精品三级大全| 欧美日韩亚洲高清精品| 欧美区成人在线视频| 日韩三级伦理在线观看| 国语对白做爰xxxⅹ性视频网站| 国产高清三级在线| 你懂的网址亚洲精品在线观看| 男女边吃奶边做爰视频| 人妻少妇偷人精品九色| 国产成人freesex在线| 美女国产视频在线观看| 大香蕉97超碰在线| 中国美白少妇内射xxxbb| 精品国产三级普通话版| 精品一区二区免费观看| 国产精品久久视频播放| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 在线观看免费高清a一片| 午夜视频国产福利| 日韩精品有码人妻一区| 婷婷色综合www| 成人美女网站在线观看视频| 久久久亚洲精品成人影院| 天美传媒精品一区二区| 国产黄色视频一区二区在线观看| 欧美97在线视频| 婷婷色麻豆天堂久久| 久久综合国产亚洲精品| 少妇熟女aⅴ在线视频| 国产综合精华液| 最近最新中文字幕大全电影3| 深夜a级毛片| 一二三四中文在线观看免费高清| 久久久久久久大尺度免费视频| 99re6热这里在线精品视频| 少妇被粗大猛烈的视频| 男人和女人高潮做爰伦理| 欧美激情国产日韩精品一区| 国产不卡一卡二| 日韩亚洲欧美综合| 国产精品99久久久久久久久| 身体一侧抽搐| 亚洲国产欧美人成| 国产精品国产三级国产专区5o| 亚洲最大成人手机在线| av网站免费在线观看视频 | 亚洲成人一二三区av| 免费看不卡的av| 纵有疾风起免费观看全集完整版 | 日韩欧美精品免费久久| 国产又色又爽无遮挡免| 亚洲av男天堂| 成人av在线播放网站| 亚洲性久久影院| 精品午夜福利在线看| 在现免费观看毛片| 免费少妇av软件| 日日啪夜夜撸| 欧美成人a在线观看| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| 亚洲乱码一区二区免费版| 美女cb高潮喷水在线观看| 女人久久www免费人成看片| 日日撸夜夜添| 18禁动态无遮挡网站| 2021天堂中文幕一二区在线观| 亚洲国产最新在线播放| 亚洲精品一二三| 在线免费观看的www视频| 欧美3d第一页| 亚洲电影在线观看av| 国产av国产精品国产| 日韩欧美一区视频在线观看 | 欧美 日韩 精品 国产| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 简卡轻食公司| 女人久久www免费人成看片| 综合色丁香网| 可以在线观看毛片的网站| 亚洲精品日韩av片在线观看| 久久国内精品自在自线图片| 国产白丝娇喘喷水9色精品| 少妇裸体淫交视频免费看高清| 91精品一卡2卡3卡4卡| 男女啪啪激烈高潮av片| 国产精品一区二区三区四区久久| 久久6这里有精品| 赤兔流量卡办理| 日韩欧美三级三区| 亚洲国产精品国产精品| 中文欧美无线码| 国产成人aa在线观看| 日本黄大片高清| 一个人观看的视频www高清免费观看| 搞女人的毛片| 听说在线观看完整版免费高清| 国产成人午夜福利电影在线观看| 亚洲伊人久久精品综合| 欧美极品一区二区三区四区| 国产黄色免费在线视频| 国产单亲对白刺激| 最近最新中文字幕免费大全7| 80岁老熟妇乱子伦牲交| 女人十人毛片免费观看3o分钟| 在线天堂最新版资源| 少妇人妻精品综合一区二区| 精品国产三级普通话版| 亚洲丝袜综合中文字幕| 一区二区三区四区激情视频| 精品一区二区三区人妻视频| 女人被狂操c到高潮| 亚洲国产精品专区欧美| 80岁老熟妇乱子伦牲交| 久久韩国三级中文字幕| 午夜福利高清视频| 欧美日韩亚洲高清精品| 又粗又硬又长又爽又黄的视频| 亚洲性久久影院| 国产精品久久视频播放| 亚洲av中文av极速乱| 免费黄网站久久成人精品| 又粗又硬又长又爽又黄的视频| 亚洲,欧美,日韩| 亚洲va在线va天堂va国产| 亚洲av国产av综合av卡| 亚洲av在线观看美女高潮| 亚洲国产欧美人成| 国产精品.久久久| 日韩亚洲欧美综合| 哪个播放器可以免费观看大片| 亚洲天堂国产精品一区在线| 中国国产av一级| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美一区二区三区国产| 少妇丰满av| 中文字幕久久专区| 久久97久久精品| av在线蜜桃| 如何舔出高潮| 一边亲一边摸免费视频| 久久久久国产网址| 成人av在线播放网站| 欧美日韩精品成人综合77777| 国产成人a区在线观看| 青青草视频在线视频观看| 夜夜看夜夜爽夜夜摸| 日本黄色片子视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丝瓜视频免费看黄片| 国国产精品蜜臀av免费| 人人妻人人澡人人爽人人夜夜 | av.在线天堂| 日韩一区二区三区影片| 99久久中文字幕三级久久日本| 国产精品不卡视频一区二区| 插阴视频在线观看视频| 中文欧美无线码| 又黄又爽又刺激的免费视频.| 一级毛片久久久久久久久女| 熟女电影av网| 建设人人有责人人尽责人人享有的 | 又爽又黄a免费视频| 国产亚洲最大av| av天堂中文字幕网| 亚洲四区av| 久久99蜜桃精品久久| 国产色爽女视频免费观看| 国产综合精华液| 国产一级毛片七仙女欲春2| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 女的被弄到高潮叫床怎么办| 日韩伦理黄色片| 中文在线观看免费www的网站| 久久99蜜桃精品久久| 韩国av在线不卡| 男人舔女人下体高潮全视频| 观看免费一级毛片| 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验| 久久精品综合一区二区三区| 亚洲性久久影院| 天天躁日日操中文字幕| 精品一区二区三区人妻视频| 建设人人有责人人尽责人人享有的 | 亚洲欧美日韩卡通动漫| 精品国产一区二区三区久久久樱花 | 干丝袜人妻中文字幕| 亚洲熟女精品中文字幕| 日韩欧美国产在线观看| 视频中文字幕在线观看| 欧美精品一区二区大全| 直男gayav资源| or卡值多少钱| 国产有黄有色有爽视频| 国产美女午夜福利| 欧美bdsm另类| 精品久久久久久久人妻蜜臀av| 丝袜美腿在线中文| 久久精品人妻少妇| 欧美成人午夜免费资源| 亚洲欧洲日产国产| 成年版毛片免费区| 亚洲成人久久爱视频| 男人舔女人下体高潮全视频| 成人一区二区视频在线观看| 亚洲国产精品成人综合色| 日韩欧美 国产精品| 99热这里只有是精品在线观看| 免费av毛片视频| 波多野结衣巨乳人妻| 免费观看无遮挡的男女| 边亲边吃奶的免费视频| 又爽又黄无遮挡网站| 美女黄网站色视频| 亚洲精品第二区| 爱豆传媒免费全集在线观看| 黄色一级大片看看| 简卡轻食公司| 精品国产三级普通话版| 成年女人在线观看亚洲视频 | 久久国内精品自在自线图片| 亚洲自拍偷在线| 国产 一区 欧美 日韩| 激情 狠狠 欧美| 一级毛片黄色毛片免费观看视频| 麻豆精品久久久久久蜜桃| 丰满人妻一区二区三区视频av| 欧美+日韩+精品| 在线 av 中文字幕| 亚洲乱码一区二区免费版| 亚洲人成网站高清观看| 一区二区三区四区激情视频| 亚洲第一区二区三区不卡| 亚洲av不卡在线观看|