• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨烯還原度對(duì)P25/石墨烯復(fù)合材料光催化活性的影響

    2015-06-05 14:36:36熊吉如陸春華
    新型炭材料 2015年4期
    關(guān)鍵詞:春華催化活性光催化

    王 劍, 王 猛, 熊吉如, 陸春華

    石墨烯還原度對(duì)P25/石墨烯復(fù)合材料光催化活性的影響

    王 劍1,2, 王 猛2, 熊吉如2, 陸春華1

    (1.南京工業(yè)大學(xué)材料化學(xué)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,材料科學(xué)與工程學(xué)院,江蘇南京210009;
    2.南京倍立達(dá)新材料系統(tǒng)工程股份有限公司,江蘇南京211100)

    采用高溫?zé)釀冸x和溶劑熱過(guò)程分別還原氧化石墨和氧化石墨制備出石墨烯,進(jìn)一步使用所合成的石墨烯與P25通過(guò)一步水熱過(guò)程合成出石墨烯/P25復(fù)合材料。樣品的光催化活性通過(guò)可見(jiàn)光下降解羅丹明B進(jìn)行評(píng)測(cè),其中P25和熱剝離還原得到的石墨烯復(fù)合比P25和溶劑熱還原的石墨烯復(fù)合顯示出更優(yōu)異的光催化活性,這是由于熱剝離還原的石墨烯具有更高的還原度和更強(qiáng)的電子—空穴分離效率所致。進(jìn)一步在不同溫度下通過(guò)熱剝離法制備了還原石墨烯,探討的石墨烯/ P25復(fù)合材料的光催化活性。較高的剝離溫度有利于石墨烯還原程度的改善,導(dǎo)致光催化活性的提高。

    光催化;降解;P25;熱剝離;石墨烯還原度

    1 Introduction

    Visible-light-driven photocatalytic degradation of organic pollutants have attracted more attention in recent years to solve the environmental contamination problems[1,2].The TiO2-based materials,as a kind of stable,nontoxic and inexpensive semiconductor, are the most promising candidates for photocatalytic decontamination[3,4].At present,different TiO2compounds were prepared and modified by many methods,and showed good photocatalytic activities[5].In particular,a combination of TiO2and carbon materials is being considered as one of the most effective materials for the purification of air/water.Various carbon materials,such as activated carbons[6]and carbon nanotubes[7,8],have been widely investigated asthe supportof TiO2 owing to their stable light-absorption properties and good electronic conductivity.

    Graphene,one-atom-thick two-dimensional sheet with high surface area,high electrical conductivity and superior mechanical properties[9,10],has also been widely applied to form composites with TiO2[11,12]. The photogenerated electrons would be expected to transfer from the conduction band of TiO2into the graphene surface fast in the composites of graphene and TiO2,leading to an improvementof photocatalytic efficiency.The TiO2/graphene composites can be formed by an in-situ growth of the semiconductor material on graphene[13],or by reduction of graphene oxide(GO)previously deposited on the semiconductor[14,15].In the latter case,the graphene was usually prepared by reduction of graphene oxide under hydrothermal[11,15,16]or light-irradiation conditions[17].The photocatalytic activity of the composite photocatalysts strongly depends on the preparation method.However,there are few studies about the influence of the graphene which was prepared by different reduction methods on the photocatalytic activity of the TiO2/ graphene composites.

    At present,solvothermal and high-temperature thermal exfoliation are two of the most common methods for preparing reduced graphenes.Meanwhile,it has been reported that the graphene prepared by a thermal exfoliation method showed a much better conductivity and higher reduction degree than the direct solvothermal reduction[18].In the present work,the graphene oxide was reduced by the thermalexfoliation and solvothermal methods for synthesis of the graphene,and the commercial TiO2(P25)was further supported on the graphene as photocatalyst via a onestep hydrothermal method.The P25/graphene photocatalysts from hydrothermal method exhibited different photocatalytic activity for photodegradation of Rhodamine B,which may be caused by the difference of the graphene reduction degree.The graphene was further synthesized by thermal exfoliation method at different temperatures,and the corresponding photocatalytic activity of the P25/graphene composites was also investigated.

    2 Experimental

    2.1Synthesis of the P25/graphene composites

    Graphite oxide was purchased from Nanjing XFNANO Materials Tech Co.,Ltd.All the chemicals were of analyticalgrade and were used withoutfurther purification.The thermal exfoliated graphite was prepared according to the following method[19].200 mg of graphite oxide powder was transferred into a crucible and subjected to thermal exfoliation at 600, 800,and 1 000℃for 30 s in a tube furnace,and subsequently pulled out fast and cooled to room temperature,which were named as TG600,TG800 and TG1000 respectively.The solvothermal reduced graphene(SG)was as follows.A total of 35 mL of 0.5 mg/mL graphene oxides aqueous solution was transferred to a Teflon-lined autoclave and heated at 180℃for 6 h.

    The P25/graphene composites were prepared via a hydrothermal method.Briefly,2 mg of graphene and 0.2 g of P25 was dissolved in a solution of distilled H2O(20 mL)and ethanol(10 mL)by ultrasonic treatment for 2 h to get a homogeneous suspension.The suspension was then placed in a 40 mL Teflon-sealed autoclave and maintained at 120℃for 3 h. Finally,the resulting composite was washed by deionized water,and dried at 40℃.The composites prepared from graphenes via the thermal exfoliation and solvothermal reduction were named as P25/TG and P25/SG,respectively.

    2.2Characterizations

    X-ray diffraction(XRD)was performed on a ARL X’TRA X-ray diffractometer at room temperature,using Cu Kαradiation(λ=0.154 06 nm). The morphology of the products was characterized by transmission electron microscopy(TEM,JEM-2010, 200 kV)and field emission scanning electron microscopy(FESEM,S-4800,15 kV).The FT-IR spectra were recorded on a Vector-22 FT-IR spectrometer in the range of 4 000-400 cm-1.UV-vis diffuse reflectance spectra were recorded with a 3101 spectrometer. Photoluminescence(PL)emission spectrum was recorded on a FL3-221 fluorescence spectrophotometer equipped with a 450 W xenon lamp as the excitation source at room temperature(excitation wavelength λex=290 nm).The Brunauer-Emmett-Teller(BET) surface area were measured by a nitrogen adsorption technique at 77 K using an ASAP2020 M automated gas-sorption system(America).The electrical conductivity of the SG and TG which was prepared to be a film in advance was measured by a four point probe method(SB100 A/2,Qianfeng).The SG and TG films were prepared by the vacuum filtration method, using a cellulose ester membrane(50 mm in diameter,220 nm pore size,Shenghemo)as a filter.After being dried at60℃in a vacuum desiccator for 3 d, paper-like SG and TG films were obtained.

    2.3Photocatalytic degradation of Rhodamine B

    The photocatalytic activities of the composites were evaluated by photodegradation of Rhodamine B. Before irradiation,0.1 g photocatalysts were added into 50 mL Rhodamine B aqueous solution with aconcentration of 10 mg/L and stirred in the dark for 30 min.During the photoreaction,the suspension was irradiated by a 300 W mercury lamp with a 420 nm filter under magnetic stirring.Approximately 4 mL of aqueous solution was collected at regular intervals and centrifuged.The concentration of Rhodamine B in the centrifuged aqueous solution was determined by measuring the absorption of Rhodamine B at550 nm on a UV-Vis spectrophotometer,from which the photocatalytic activity was evaluated.

    3 Results and discussion

    3.1Structure and morphology of the thermal exfoliated graphene and the P25/graphene composites

    Fig.1(a)shows the XRD patterns of the graphite oxide and the thermal exfoliated graphene prepared under different temperatures.The XRD pattern of graphite oxide shows a typical(002)peak located at 12.3°,corresponding to an interlayer spacing of 0.776 nm.After the high-temperature treatment,the sharp peak around 12°disappears,indicating that the graphite oxide transfer into the graphene by the thermal reduction.The XRD patterns of the P25-SG,P25-TG600,P25-TG800 and P25-TG1000 are shown in Fig.1(b).Allof the P25/graphene composites have a similar XRD pattern to the pure P25,and no diffraction peaks for carbon species are observed,which might be due to the low amount of graphene in the composites.

    Fig.1 XRD patterns of(a)the graphite oxide and thermal exfoliated graphene and(b)the P25/graphene composites.

    The morphologies of the obtained TG and the P25/TG samples were observed by the SEM and TEM(Fig.2).Fig.2(a)exhibits the SEM image of the graphene synthesized by the thermal exfoliation at 1 000℃,which shows a presence of agglomerates of graphene nanosheets.Fig.2(b)is the SEM magnification image of P25/TG1000.Lots of TiO2nanoparticles and some graphenes can be observed.In order to investigate the morphology ata high magnification, the TEM images of the TG1000 and P25/TG1000 are shown in Fig.2(c)and 2(d),respectively.A twodimensional sheet structure with micrometers-long wrinkles can be found in Fig.2(c),which is an obvious feature of the graphene.Some P25 nanoparticles were well dispersed on the graphene in Fig.2(d). However,due to the little content of graphene,there is also a lot of TiO2nanoparticles that are not loaded on the surface of graphene.

    Fig.2 (a),(b)SEM and(c),(d)TEM images of the TG1000 and P25/TG1000 samples.

    3.2Photocatalytic activity of the P25/graphene composites

    To investigate the optical properties of the P25/ graphene composites,the UV-vis absorption spectra of the samples were further performed.As shown in Fig.3,there is not any absorption above 400 nm for the pure P25,however,the band edges of the P25/ SG and P25/TG1000 have an obvious red shift,which means thata more efficientutilization of the solar spectrum could be achieved.The possible reason may be due to the formation of Ti-O-C bond between P25 and graphene,similar to the case of carbon-doped TiO2composites[20,21].In order to prove this,the FT-IR spectra of the pure P25 and the P25/ TG1000 composite were characterized.Fig.4 shows the FT-IR spectra of the pure P25 and the P25/ TG1000 composite in the range of 3 000~450 cm-1with different magnifications.After the introduction of graphene,the absorption peak corresponding to Ti -O-Ti of P25 is blue-shifted to a high wavenumber. The blue shift was attributed to a combination of the vibration of Ti-O-Ti and Ti-O-C bonds[20].The FTIR results confirmed the formation of Ti-O-C bonds between P25 and graphene.

    Fig.3 UV-vis absorption spectra of the P25,P25/SG and P25/TG1000.

    Fig.4 FTIR spectra of P25 and P25/TG 1000 composite with different magnifications in the range of 3 000-450 cm-1.

    The photocatalytic activities of the P25/graphene composites were further measured by the photodegradation of Rhodamine B as model reaction under visible light irradiation.As shown in Fig.5,there is little decrease in concentration of Rhodamine B for blank test without photocatalysts.The P25/SG composite shows a better activity than the pure P25.More than 60%of the initial dye was decomposed by the P25/ SG composites,butnearly 90%of the initial dye still remained in the solution after the same time period for the bare P25 due to its limited photoresponding range. Moreover,it also can be found that all of the P25/TG composite show a larger improvement in the photodegradation rate of the dye than the P25/SG composite.The photocatlytic degradation rate of P25/TG composites increase with the thermal exfoliation temperature.

    Fig.5 Photocatalytic degradation of RhodamineB under visible-light irradiation for different photocatalysts.

    3.3Influence of reduction degree of graphene on the photocatalytic activity

    It has been reported that three factors,including the adsorption of contaminantmolecules,the lightabsorption,and the charge transportation and separation,are crucial in photodegradation reactions.The absorption ability of two different P25/graphene composites was first studied.Fig.6(a)shows the nitrogen absorption-desorption isotherms of the P25/graphene composites.The BET surface areas of the P25/ TG1000 and the P25/SG composites are 42.7 and 39.7 m2/g,respectively.The little difference in BET surface area suggests that the adsorption of the dye molecule for these two composites is almost the same during the photocatalytic degradation.From the light absorption spectra in Fig.3,it can be found that the distinction of light-absorption ability is also small for the two P25/graphene composites.

    For the P25/graphene composites,the graphene was mainly used as a good electron acceptor to promote the migration of photogenerated electron from the semiconductor to graphene.For that,the PL excitation of the P25/TG1000 and P25/SG composites was further researched.As shown in Fig.6(b),all of the P25,P25/TG1000 and P25/SG composites at 370 nm show a strong fluorescence emission peak. However,the fluorescence intensities of the P 25/TG1000 and P25/SG significantly decreased compared with the pure P25 nanoparticles,and the P25/TG1000 composite shows a lower emission intensity than the P25/SG composite,which suggessa much better photogenrated electron transfer ability from the conduction band of P25 into the graphene for the P25/TG1000 composite than P25/SG composite.

    Fig.6 (a)Nitrogen adsorption-desorption isotherms of P25/SG and P25/TG1000,(b)PL emission of P25,P25-SG and P25-TG1000.

    Based on the fact that the graphene was prepared by different reductive methods,it is easy to understand that the reduction degree of graphehe is responsible for the different separation ability of photogenerated electron and hole pairs.The XPS was employed to analyze the reduction degree of the graphene.The C 1s XPS spectra of the different kinds of graphene are shown in Fig.7.

    Fig.7 C 1s XPS spectra of the graphene reduced by the thermalexfoliation:(a)TG600,(b)TG800,(c)TG1000 and(d)SG via solvothermal method.

    The binding energies of 284.6,286.5 and 288.5 eV are attributed to the C—C bonds,the C—O and C= O functional groups,respectively. The changes of the C/O ratio of graphene indicate the different reduction degrees and are summarized in Table 1.It can be seen that the TG1000 has a larger C/O ratio than the SG,indicating that the high-temperature is helpful for improving the reduction degree of graphene.For the graphene prepared by the thermal exfoliation method under different temperatures, the morphology was further characterized by SEM (Fig.8).It can be seen that the TG600 and TG800 exhibite a similar graphene layer structure to the TG1000(Fig.2(a)),which suggests that the morphology of thermalexfoliated graphene under different conditions has no obvious changes.However,therelative ratios of C/O increased with the thermalexfoliation temperature,so the reductive degrees of thermal exfoliated graphene also increase.

    Table 1 Relative ratios of C/O and electrical conductivities of the SG and TG.

    Fig.8 SEM images of TG600 and TG800.

    Moreover,it is easy to understand that the graphene which has a high reduction degree would have little defects and a high electrical conductivity.So the electrical conductivity of the graphene was further measured for graphene films and the average values of the electrical conductivity are shown in Table 1.The electrical conductivities of the SG,TG600,TG800 and TG1000 were about5.3,169.8,182.4 and 198. 6 S·m-1,respectively.Therefore,the photogenrated electron on the TG surface transfers faster than that on the SG,leading to the improvement in photocatalytic activity.It can also be speculated from the electrical conductivity of TG that high thermal exfoliation temperature is beneficialfor improving the electrical conductivity and reduction degree,and therefore the photocatalytic activity.Based on the above analysis,it can be concluded that when the graphene as a supporter of the P25 nanoparticle,itcan suppress the recombination of photogenerated electron-hole pairs to improve its photocatalytic quantum efficiency.Further, the graphene prepared by the high-temperature treatment has a high reduction degree and electrical conductivity,which is helpfulfor the photogenrated electron transfer on its surface,leading to the enhancement of photoinduced carriers’separation and photocatalytic activity.

    4 Conclusions

    Graphene sample has been prepared by the thermal exfoliation and solvothermal method.The P25/TG and P25/SG composites exhibit similar absorption for dye and visible-light responding ability. The P25/TG composites exhibit the better photocatalytic activity than that of the P25/SG composite,which may be caused by a high reduction degree of the as-prepared graphene by the thermal exfoliation method.This work is anticipated to open a new possibility for enhancing the photocatalytic activity of graphene-based materials by improving the reduction degree of the graphene.

    [1] Di Paola A,García-Lópeza E,Marcìa G,et al.A survey of photocatalytic materials for environmental remediation[J].J Hazard Mater,2012,211:3-29.

    [2] Kudo A,Miseki Y.Heterogeneous photocatalyst materials for water splitting[J].Chem Soc Rev,2009,38(1):253-278.

    [3] Linsebigler A L,Lu G,Yates Jr J T.Photocatalysis on TiO2surfaces:principles,mechanisms,and selected results[J]. Chem Rev,1995,95(3):735-758.

    [4] Mor G K,Varghese O K,Paulose M,etal.A review on highly ordered,vertically oriented TiO2nanotube arrays:Fabrication, material properties,and solar energy applications[J].Sol Energ Mater&Sol C,2006,90(14):2011-2075.

    [5] Bavykin D V,Friedrich J M,Walsh F C.Protonated titanates and TiO2nanostructured materials:synthesis,properties,and applications[J].Adv Mater,2006,18(21):2807-2824.

    [6] Huang B,Saka S.Photocatalytic activity of TiO2crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde[J].J Wood Sci,2003,49 (1):79-85.

    [7] Yu Y,Yu J C,Yu J G,et al.Enhancement of photocatalytic activity of mesoporous TiO2by using carbon nanotubes[J].Appl Catal A:Gen,2005,289(2):186-196.

    [8] Woan K,Pyrgiotakis G,Sigmund W.Photocatalytic carbonnano-tube-TiO2composites[J].Adv Mater,2009,21(21):2233-2239.

    [9] Neto A C,Guinea F,Peres N,etal.The electronic properties of graphene[J].Rev Mod Phys,2009,81(1):109.

    [10] Geim A K,Novoselov K S.The rise of graphene[J].Nature Mater,2007,6(3):183-191.

    [11] Liang Y,Wang H,Casalongue H S,et al.TiO2nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J].Nano Res,2010,3(10):701-705.

    [12] Kim H I,Moon G H,Monllor-Satoca D,et al.Solar photoconversion using graphene/TiO2composites:Nanographene shell on TiO2core versus TiO2nanoparticles on graphene sheet [J].J Phys Chem C,2012,116(1):1535-1543.

    [13] Zhang H,Xu P,Du G,et al.A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange[J].Nano Research,2011,4(3):274-283.

    [14] Dreyer D R,Park S,Bielawski C W,et al.The chemistry of graphene oxide[J].Chem Soc Rev,2010,39(1):228-240.

    [15] Shen J,Yan B,Shi M,et al.One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets[J].J Mater Chem, 2011,21(10):3415-3421.

    [16] Perera S D,Mariano R G,Vu K,et al.Hydrothermalsynthesis of graphene-TiO2nanotube composites with enhanced photocatalytic activity[J].ACS Catal,2012,2(6):949-956.

    [17] Williams G,Seger B,Kamat P V.TiO2-graphene nanocomposites.UV-assisted photocatalytic reduction of graphene oxide [J].ACS Nano,2008,2(7):1487-1491.

    [18] Luo D,Zhang G,Liu J,et al.Evaluation criteria for reduced graphene oxide[J].J Phys Chem C,2011,115(23):11327-11335.

    [19] Mcallister M J,Li J L,Adamson D H,etal.Single sheetfunctionalized graphene by oxidation and thermal expansion of graphite[J].Chem Mater,2007,19(18):4396-4404.

    [20] Sakthivel S,Kisch H.Daylight photocatalysis by carbon-modified titanium dioxide[J].Angewandte Chemie International E-dition,2003,42(40):4908-4911.

    [21] Ren W,Ai Z,Jia F,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J].Appl Catal B-Environ,2007,69(3): 138-144.

    Enhanced photocatalytic activity of a TiO2/graphene composite by improving the reduction degree of graphene

    WANG Jian1,2, WANG Meng2, XIONG Ji-ru2, LU Chun-hua1
    (1.StateKeyLaboratoryofMaterials-OrientedChemicalEngineering, CollegeofMaterialsScienceandEngineering,NanjingTechUniversity,Nanjing210009,China;2.NanjingBeilidaNewMaterialsSystemEngineeringCO.Ltd.,Nanjing211100,China)

    Two kinds of graphene prepared by a high-temperature exfoliation and a solvothermal method were used as supports of a TiO2catalyst(P25)from Degussa,Inc to prepare TiO2/graphene composites.The photocatalytic activities of the composites were evaluated by their degradation of Rhodamine B in aqueous solutions under visible light.Results indicate that the composites prepared by high-temperature exfoliation have much higher photocatalytic activities than those produced by the solvothermal method or the unsupported P25.Both the adsorption capacity of Rhodamine B on the composites and their light absorption characteristics are independent of the kind of graphene used.The activity increases with exfoliation temperature and reduction degree of the graphene regardless of the methods and conditions used,indicating that a high degree of reduction of graphene can inhibit the recombination of electron-hole pairs generated by light irradiation by increasing electron transfer from TiO2to the graphene layer.

    Photocatalytic;Degradation;P25;Thermal exfoliation;Graphene reductive degree

    LU Chun-hua,E-mail:chhlu@njtech.edu.cn

    TB332

    A

    中國(guó)博士后基金(2014M551577).

    陸春華.E-mail:chhlu@njtech.edu.cn

    王 劍,博士.E-mail:wangjian@sxicc.ac.cn

    1007-8827(2015)04-0357-07

    Received date:2015-03-16;Revised date:2015-08-10

    Foundation item:China Postdoctoral Science Foundation(2014M551577).

    Author introduction:WANG Jian,Ph.D.E-mail:wangjian@sxicc.ac.cn

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    10.1016/S1872-5805(15)60195-0

    猜你喜歡
    春華催化活性光催化
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    我們?cè)撊绾伪磉_(dá)苦難?——讀黃春華《扁腦殼》
    單分散TiO2/SrTiO3亞微米球的制備及其光催化性能
    BiOBr1-xIx的制備及光催化降解孔雀石綠
    可見(jiàn)光光催化降解在有機(jī)污染防治中的應(yīng)用
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見(jiàn)光催化活性
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    Nd/ZnO制備及其光催化性能研究
    Fe3+摻雜三維分級(jí)納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
    少妇的逼好多水| 国产精品久久电影中文字幕| 岛国毛片在线播放| 亚洲精品日韩在线中文字幕 | 午夜久久久久精精品| 精品少妇黑人巨大在线播放 | 成年女人永久免费观看视频| 午夜精品在线福利| 一本精品99久久精品77| 在线观看66精品国产| 欧美日韩精品成人综合77777| 精品久久国产蜜桃| 三级毛片av免费| 天堂网av新在线| 欧美日韩综合久久久久久| 国产一区二区在线观看日韩| 欧美在线一区亚洲| 99久久人妻综合| 看免费成人av毛片| 久久精品国产自在天天线| 国产一区二区三区在线臀色熟女| 日本黄色片子视频| 亚洲最大成人中文| 黄片无遮挡物在线观看| 亚洲七黄色美女视频| 桃色一区二区三区在线观看| 国产精品99久久久久久久久| 婷婷色综合大香蕉| 夜夜爽天天搞| 国产大屁股一区二区在线视频| 成年版毛片免费区| 草草在线视频免费看| 国产高清有码在线观看视频| 女人被狂操c到高潮| 97超碰精品成人国产| 22中文网久久字幕| 乱人视频在线观看| 又爽又黄无遮挡网站| 日韩在线高清观看一区二区三区| 村上凉子中文字幕在线| 亚洲av熟女| 国产亚洲欧美98| 日韩成人伦理影院| 亚洲成人中文字幕在线播放| 一区二区三区四区激情视频 | 丰满人妻一区二区三区视频av| 嫩草影院入口| 中文字幕人妻熟人妻熟丝袜美| 在线观看66精品国产| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人综合色| 极品教师在线视频| 免费看光身美女| 国产一区二区三区av在线 | 国产老妇女一区| 久久久成人免费电影| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 夫妻性生交免费视频一级片| 我的女老师完整版在线观看| 18禁裸乳无遮挡免费网站照片| 国产av一区在线观看免费| 夫妻性生交免费视频一级片| 免费电影在线观看免费观看| 亚洲欧美清纯卡通| a级一级毛片免费在线观看| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久av| 桃色一区二区三区在线观看| 久久久久久久久久久免费av| 日韩欧美三级三区| 国产黄色视频一区二区在线观看 | 91午夜精品亚洲一区二区三区| 亚洲欧洲日产国产| a级毛色黄片| 国产伦理片在线播放av一区 | 国产美女午夜福利| 内射极品少妇av片p| 欧美日韩在线观看h| 69人妻影院| 欧美成人免费av一区二区三区| 久久久久国产网址| 丰满人妻一区二区三区视频av| 久久九九热精品免费| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件| 国产久久久一区二区三区| 三级经典国产精品| 国产成人精品婷婷| 成年免费大片在线观看| 看十八女毛片水多多多| 国产精品一区二区三区四区久久| 99热全是精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久精品电影| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 亚洲真实伦在线观看| 美女xxoo啪啪120秒动态图| 亚洲一区高清亚洲精品| 变态另类成人亚洲欧美熟女| 一级毛片电影观看 | 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| av免费在线看不卡| 少妇熟女欧美另类| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 一本久久精品| 日韩在线高清观看一区二区三区| 婷婷六月久久综合丁香| 简卡轻食公司| 久久精品国产亚洲av涩爱 | 国产探花在线观看一区二区| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频 | 久久精品综合一区二区三区| 九九爱精品视频在线观看| 黄色一级大片看看| 久久人人爽人人爽人人片va| 国产精品伦人一区二区| 亚洲色图av天堂| 国产精品久久久久久精品电影| 日本欧美国产在线视频| 中文资源天堂在线| 成人国产麻豆网| 看片在线看免费视频| 国产一区二区在线观看日韩| 99热网站在线观看| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区免费观看| 免费av不卡在线播放| 男女做爰动态图高潮gif福利片| 99riav亚洲国产免费| 老女人水多毛片| 三级国产精品欧美在线观看| 久久久精品欧美日韩精品| 99久国产av精品| 欧美最新免费一区二区三区| 色综合站精品国产| 内地一区二区视频在线| 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| 国产在线精品亚洲第一网站| 日本免费一区二区三区高清不卡| 久久6这里有精品| 精品人妻一区二区三区麻豆| 欧美又色又爽又黄视频| 狠狠狠狠99中文字幕| 精品人妻一区二区三区麻豆| 久久99精品国语久久久| 99riav亚洲国产免费| 日韩一区二区视频免费看| 免费看a级黄色片| 丝袜美腿在线中文| 99久久精品一区二区三区| 村上凉子中文字幕在线| 久久午夜亚洲精品久久| 亚洲欧美日韩东京热| www.色视频.com| 麻豆国产av国片精品| 尾随美女入室| 久久久成人免费电影| 国产精品一区www在线观看| 欧美人与善性xxx| 久久这里只有精品中国| 桃色一区二区三区在线观看| 日本成人三级电影网站| 18禁在线播放成人免费| 真实男女啪啪啪动态图| 久久精品国产自在天天线| 亚洲最大成人手机在线| 色综合色国产| 噜噜噜噜噜久久久久久91| 九九爱精品视频在线观看| 三级国产精品欧美在线观看| 国产成人a∨麻豆精品| 国内精品久久久久精免费| 国产午夜精品久久久久久一区二区三区| 国产成人a∨麻豆精品| 大又大粗又爽又黄少妇毛片口| 日韩欧美精品v在线| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 国产精品,欧美在线| 热99re8久久精品国产| 国产白丝娇喘喷水9色精品| 亚洲内射少妇av| 老司机福利观看| 永久网站在线| 久久6这里有精品| 啦啦啦韩国在线观看视频| 国产 一区精品| 中国美女看黄片| 亚洲人成网站在线观看播放| 久久精品夜夜夜夜夜久久蜜豆| 好男人在线观看高清免费视频| 亚洲性久久影院| 国产精品,欧美在线| 欧美色欧美亚洲另类二区| 美女脱内裤让男人舔精品视频 | 国产成人精品一,二区 | 日本一本二区三区精品| 亚洲欧美精品专区久久| 久99久视频精品免费| 亚洲国产精品合色在线| 变态另类丝袜制服| 久久久久久久久久久丰满| 日韩人妻高清精品专区| 国内精品宾馆在线| 亚洲经典国产精华液单| 日本免费a在线| 亚洲人成网站高清观看| 亚洲美女视频黄频| 干丝袜人妻中文字幕| 国产高清不卡午夜福利| 乱人视频在线观看| 免费人成在线观看视频色| 男人舔女人下体高潮全视频| 久久99热6这里只有精品| 亚洲成人av在线免费| 听说在线观看完整版免费高清| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 免费av不卡在线播放| 嫩草影院精品99| 尤物成人国产欧美一区二区三区| 亚洲成人中文字幕在线播放| 精品一区二区三区视频在线| 高清午夜精品一区二区三区 | 99久久九九国产精品国产免费| 国产国拍精品亚洲av在线观看| 极品教师在线视频| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 两性午夜刺激爽爽歪歪视频在线观看| 激情 狠狠 欧美| 又黄又爽又刺激的免费视频.| 中文欧美无线码| 久久久久网色| 亚洲人成网站在线播放欧美日韩| 欧美zozozo另类| 在线国产一区二区在线| 变态另类丝袜制服| 国产日韩欧美在线精品| 五月伊人婷婷丁香| 麻豆精品久久久久久蜜桃| 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 人人妻人人看人人澡| 97超视频在线观看视频| 色尼玛亚洲综合影院| 亚洲真实伦在线观看| 精品欧美国产一区二区三| 国产白丝娇喘喷水9色精品| 91av网一区二区| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜 | 亚洲自拍偷在线| 1024手机看黄色片| 你懂的网址亚洲精品在线观看 | 国产91av在线免费观看| 日本色播在线视频| 国产美女午夜福利| av.在线天堂| 免费搜索国产男女视频| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 国产在视频线在精品| 国产午夜精品久久久久久一区二区三区| 精品一区二区三区视频在线| 国产极品精品免费视频能看的| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 丰满人妻一区二区三区视频av| 校园春色视频在线观看| 日韩中字成人| 成人二区视频| 只有这里有精品99| 三级毛片av免费| 日本黄大片高清| 久久韩国三级中文字幕| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 亚洲成av人片在线播放无| 精品午夜福利在线看| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 日韩一区二区三区影片| 欧美+亚洲+日韩+国产| 精品欧美国产一区二区三| 成人亚洲欧美一区二区av| а√天堂www在线а√下载| 赤兔流量卡办理| 欧美精品国产亚洲| 日本一本二区三区精品| 免费不卡的大黄色大毛片视频在线观看 | 我要搜黄色片| 成人永久免费在线观看视频| 最近视频中文字幕2019在线8| 99热精品在线国产| 国产精品一区二区三区四区久久| 成人美女网站在线观看视频| 日韩欧美三级三区| 久久久久久久亚洲中文字幕| 深夜精品福利| 男女那种视频在线观看| 国产精品免费一区二区三区在线| 精品久久久久久久久久久久久| 黄片wwwwww| 国产精品一二三区在线看| 国产高潮美女av| 日韩高清综合在线| 国产熟女欧美一区二区| 春色校园在线视频观看| 在线天堂最新版资源| 精品久久久久久久末码| 亚洲av二区三区四区| 久久6这里有精品| 精品少妇黑人巨大在线播放 | 欧美丝袜亚洲另类| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| 身体一侧抽搐| 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 日韩成人av中文字幕在线观看| 国产精品永久免费网站| 国产高清激情床上av| 秋霞在线观看毛片| 美女脱内裤让男人舔精品视频 | 欧美日本视频| 最近视频中文字幕2019在线8| a级一级毛片免费在线观看| 变态另类丝袜制服| 亚洲av中文字字幕乱码综合| 淫秽高清视频在线观看| 国产伦理片在线播放av一区 | 青春草视频在线免费观看| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲av天美| 精华霜和精华液先用哪个| 成人二区视频| 亚洲自拍偷在线| 久久精品久久久久久久性| 男人舔奶头视频| 国产精品一区www在线观看| 悠悠久久av| 1024手机看黄色片| 久久热精品热| 久久精品夜色国产| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品在线观看| 神马国产精品三级电影在线观看| 久久人人爽人人片av| 中文字幕av成人在线电影| 人妻少妇偷人精品九色| 亚洲av中文av极速乱| 美女 人体艺术 gogo| 亚洲精品乱码久久久久久按摩| 日韩 亚洲 欧美在线| 久久热精品热| 日本撒尿小便嘘嘘汇集6| av天堂在线播放| 韩国av在线不卡| 国产亚洲5aaaaa淫片| 99热全是精品| 国产一区二区三区av在线 | 99热只有精品国产| 亚洲在线观看片| 日韩三级伦理在线观看| 成人欧美大片| 青春草亚洲视频在线观看| 尾随美女入室| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 看十八女毛片水多多多| 亚洲va在线va天堂va国产| 欧美区成人在线视频| 亚洲欧美清纯卡通| 日韩欧美 国产精品| 久99久视频精品免费| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| av天堂在线播放| 成年免费大片在线观看| 看非洲黑人一级黄片| 特大巨黑吊av在线直播| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 国产成人精品婷婷| 日韩欧美在线乱码| 天美传媒精品一区二区| 国产精品一区二区在线观看99 | 国产精品人妻久久久影院| 国产成人a区在线观看| 天堂√8在线中文| 国产激情偷乱视频一区二区| 乱人视频在线观看| 九草在线视频观看| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 12—13女人毛片做爰片一| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 国产精品久久电影中文字幕| 久久久久久久久久黄片| 国产激情偷乱视频一区二区| 亚洲av一区综合| 九草在线视频观看| 久久久久九九精品影院| 亚洲成人久久性| 久久久色成人| 此物有八面人人有两片| 国产精品蜜桃在线观看 | 91精品国产九色| 一区福利在线观看| 精品久久久久久久久久免费视频| 色综合站精品国产| 国产探花极品一区二区| 亚洲五月天丁香| 精品熟女少妇av免费看| 在线免费观看不下载黄p国产| 日本与韩国留学比较| 国产一级毛片在线| 99久久精品热视频| 青春草视频在线免费观看| 九九热线精品视视频播放| 欧美人与善性xxx| 色播亚洲综合网| 欧美日韩综合久久久久久| 久久午夜亚洲精品久久| 国产亚洲5aaaaa淫片| 精品日产1卡2卡| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品50| 男人舔女人下体高潮全视频| 国内久久婷婷六月综合欲色啪| 黑人高潮一二区| 精品久久久久久久人妻蜜臀av| 超碰av人人做人人爽久久| 婷婷亚洲欧美| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 一级黄片播放器| 日韩中字成人| 日本一本二区三区精品| 久久久精品欧美日韩精品| 九草在线视频观看| 给我免费播放毛片高清在线观看| 色综合站精品国产| 亚洲18禁久久av| 精品久久久久久久末码| 国产精品野战在线观看| a级毛片免费高清观看在线播放| 国产亚洲av片在线观看秒播厂 | 精品国内亚洲2022精品成人| 我要看日韩黄色一级片| 三级经典国产精品| 国产片特级美女逼逼视频| 波多野结衣高清无吗| 久久99热6这里只有精品| 少妇被粗大猛烈的视频| 久久久a久久爽久久v久久| 国产国拍精品亚洲av在线观看| 午夜免费男女啪啪视频观看| а√天堂www在线а√下载| 人体艺术视频欧美日本| 亚洲人与动物交配视频| 久久国产乱子免费精品| 观看免费一级毛片| 激情 狠狠 欧美| 国产精品.久久久| 日本一二三区视频观看| 日产精品乱码卡一卡2卡三| 成人二区视频| 免费不卡的大黄色大毛片视频在线观看 | 女人十人毛片免费观看3o分钟| 亚洲成人av在线免费| 乱系列少妇在线播放| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 免费看a级黄色片| 亚洲精品乱码久久久v下载方式| 免费不卡的大黄色大毛片视频在线观看 | 一进一出抽搐动态| 欧美日韩精品成人综合77777| 国产色爽女视频免费观看| 久久久久久大精品| 白带黄色成豆腐渣| 老司机影院成人| 黄片无遮挡物在线观看| 国产 一区 欧美 日韩| 亚洲精品国产成人久久av| 国产精品一区二区三区四区免费观看| 老司机影院成人| 亚洲成人精品中文字幕电影| 最近最新中文字幕大全电影3| 亚洲精华国产精华液的使用体验 | 日本黄色视频三级网站网址| 中文字幕精品亚洲无线码一区| 黄片wwwwww| 国产高清三级在线| 青青草视频在线视频观看| 国产老妇女一区| 非洲黑人性xxxx精品又粗又长| 精品国产三级普通话版| 中文字幕久久专区| 日本av手机在线免费观看| 美女脱内裤让男人舔精品视频 | 国产熟女欧美一区二区| 美女 人体艺术 gogo| 成人国产麻豆网| 久久这里有精品视频免费| 国产黄片视频在线免费观看| 麻豆久久精品国产亚洲av| 免费看日本二区| 国产精品免费一区二区三区在线| 欧美高清成人免费视频www| 两个人视频免费观看高清| 国产一级毛片七仙女欲春2| 韩国av在线不卡| www.色视频.com| 18+在线观看网站| 欧美xxxx黑人xx丫x性爽| 天天躁夜夜躁狠狠久久av| 国产91av在线免费观看| 亚洲国产欧美人成| 人人妻人人澡人人爽人人夜夜 | 哪里可以看免费的av片| 伦精品一区二区三区| 国产成人影院久久av| 亚洲精品自拍成人| 欧美另类亚洲清纯唯美| 国产一区二区亚洲精品在线观看| 欧美不卡视频在线免费观看| 成人av在线播放网站| eeuss影院久久| 亚洲三级黄色毛片| 狠狠狠狠99中文字幕| 国产免费一级a男人的天堂| 特大巨黑吊av在线直播| 麻豆国产97在线/欧美| 岛国毛片在线播放| 99在线视频只有这里精品首页| 亚洲精品自拍成人| 一级av片app| 亚洲欧洲国产日韩| 乱码一卡2卡4卡精品| 丰满人妻一区二区三区视频av| 国产乱人偷精品视频| 亚洲av免费在线观看| 国产成人精品一,二区 | 亚洲天堂国产精品一区在线| 免费不卡的大黄色大毛片视频在线观看 | 亚洲欧美日韩高清专用| 国产一区二区在线观看日韩| 免费一级毛片在线播放高清视频| 久久韩国三级中文字幕| 久久久午夜欧美精品| 观看免费一级毛片| 69人妻影院| 99久久久亚洲精品蜜臀av| 欧美极品一区二区三区四区| 亚洲精品粉嫩美女一区| av福利片在线观看| 色视频www国产| 亚洲av免费在线观看| 看免费成人av毛片| 日韩 亚洲 欧美在线| 99热网站在线观看| 特级一级黄色大片| 麻豆国产av国片精品| 久久这里只有精品中国| 亚洲无线观看免费| 久久久久网色| avwww免费| 在线播放无遮挡| 国产精品一区二区三区四区免费观看| 乱系列少妇在线播放| www.色视频.com| 国产免费男女视频| 国产人妻一区二区三区在| 亚洲欧美成人综合另类久久久 | 日韩欧美精品v在线| 欧美最黄视频在线播放免费| 国产精品久久视频播放| 自拍偷自拍亚洲精品老妇| 国产色婷婷99| 久久韩国三级中文字幕| 久久99精品国语久久久| 成人综合一区亚洲| 久久韩国三级中文字幕| 最好的美女福利视频网| 欧美最黄视频在线播放免费| videossex国产| 亚洲国产精品sss在线观看| 久久这里有精品视频免费| 性色avwww在线观看| 免费观看a级毛片全部| 赤兔流量卡办理| 国产亚洲精品久久久com| avwww免费| 91狼人影院| 人妻少妇偷人精品九色| 色吧在线观看| 欧美人与善性xxx| 最近2019中文字幕mv第一页|