• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Blind deconvolution algorithm for gravity anomaly distortion correction

    2015-06-05 14:51:32ZHAOLiyeLIHongsheng
    關(guān)鍵詞:重力儀畸變重力

    ZHAO Li-ye, LI Hong-sheng

    (Key Laboratory of Micro Inertial instrument and Advanced Navigation technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    Blind deconvolution algorithm for gravity anomaly distortion correction

    ZHAO Li-ye, LI Hong-sheng

    (Key Laboratory of Micro Inertial instrument and Advanced Navigation technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    Strong damping and large time constant are the common characteristics of marine gravity meter, which can suppress the interference of vertical acceleration, but can also lead to distortion of the lowfrequent gravity anomaly signals, such as amplitude attenuation and phase lag. In order to suppress serious background noises and get high-precision gravity information from the measured signals of the precise gravimeter, a new method of single-channel Bussgang algorithm is proposed based on the principle of the gravimeter and the distortion of the measured signals, and is applied to the correction of gravity anomaly distortion. In the signal processing procedure, the deconvolution filter is simplified as a FIR model, and then the single-channel Bussgang deconvolution algorithm - which uses the constant modulus algorithm (CMA) in updating equations - is used to estimate the deconvolution filter. Finally, the measured gravity signal is used for comparing the proposed method with Kalman inverse filter. Emulations and experiments indicate that the proposed single-channel Bussgang algorithm has better performance than that of Kalman inverse filter in alleviating the distortion of the gravity anomaly signal. The distortion correction standard deviations of the proposed method and the inverse Kalman filter are 0.328×10-5m/s2and 1.838×10-5m/s, respectively.

    gravimeter, gravity anomaly; Bussgang deconvolution algorithm; Kalman inverse filter; distortion correction

    Gravity is one of the extremely important parameters for numerical calculation and control in gravity/inertial navigation system, so the accuracy of gravity determines the precision of the navigation system. In such system, a referenced ellipsoid model is commonly used to describe the gravity field. For the whole shape of the Earth surface, the referenced ellipsoid model is an excellent approximation, but for some local region, such as marine gravitywith complex geological situation, the model would introduces errors. Along with the development of the inertial instrument performance, the errors of inertial components are no longer the most crucial factors degrading the precision of the gravity/inertial navigation system. Gravity anomaly – the difference between the real gravity and the measured gravity – has been regarded as the greatest error resource in high precision gravity/ inertial navigation system[1-4]. So far, the improvement of system precision relies on high accuracy of gravity information. Thus, real-time measurement and error-correction method of gravity anomaly are essential to extend the system operation time in gravity/inertial navigation system with high precision.

    Only few papers discussed the problem of the gravity anomaly distortion correction. A posterior correction algorithm was proposed in document [5]. Document [6] proposed a Kalman inverse filter scheme to correct the gravity anomaly distortion and testified the feasibility of the algorithm through simulations. However, the ideal situation was supposed in the simulation of the scheme, such as ignoring the measurement noise and not considering the influence of the high frequent disturbance in the original gravity anomaly signal, etc. Thus, the performance under severe environmental noises and disturbances should be discussed through further researches. This paper proposed a single-channel Bussgang algorithm for gravity anomaly distortion correction. Simulations and experiments indicate that the proposed method achieves better performance than that of Kalman inverse filter method.

    1 Distortion principle of gravimeter signals

    The most important part of sea gravimeters is a zerolength spring, and the principle of the sensor is shown in Fig.1.

    Fig.1 Zero-length spring gravimeters

    Variations in the vertical acceleration (gravity plus ship acceleration) cause the mass removed from its original position. The amount of displacement indicates the amplitude of acceleration, and it is recorded as the differential voltage.

    Since the gravity measurement signal is inevitably disturbed by vertical acceleration (sometimes, it is more than 200 gal), so an attenuation in excess of 105is required when the gravity anomaly precision is 1 mGal

    Usually, in order to constrain the spring and mass oscillation and suppress high-frequency disturbances to an acceptable level, the sensor part of the sea gravimeter is placed in the silicone oil with strong damping. The silicone oil damping is equivalent to an unknown lowpass filter with a long time constant. Therefore, the amplitude reduction and phase lag is introduced in the output of the sea gravimeter by the unknown low-pass filter.

    The spring-mass system shown in Fig.1 is a typical second-order model, the motion equation of the system can be actually described by the following second-order equation

    where x(t) is the displacement of the mass from its original position, k is the stiffness of the zero-length spring, a(t) is the input acceleration of the mass in vertical direction, including marine gravity anomaly signal and vertical interference acceleration, and λ is the damping coefficient.

    Because it is over-damped system, the second-order term in Eq. (1) can be neglected and the motion equation could be simply expressed as follow:

    The Laplace transform of the Eq. (2) is

    where G1(s) is the transfer function of the spring-mass system, T1=λ/k, K1=m/k.

    2 Proposed single-channel Bussgang algorithm

    The blind deconvolution is a signal processing method which is widely used in several applications, e.g. blind image deconvolution[7]and mobile communication[8]. Fig.2 shows the general blind deconvolution schematic, where the source signal s(t) is filtered by an unknown transmission channel, which is denoted by ak.

    Fig.2 Blind deconvolution system

    The measured signal x(t) can be expressed as

    The measurement signal x(t) contains mixtures of the source signal elements at multiple lags with additive noise n(t), which can be neglected to simplify the analysis. And the mixing process is deconvolved by a linear filtering operation, which is denoted by deconvolution filter wk.

    For simplicity, the deconvolution filter can be approximately expressed as the FIR model shown in Fig.3.

    Fig.3 Structure of the inverse filter

    The output of the deconvolution filter wi(t) is

    The blind deconvolution is solved when[9]

    In such situations, the original source signal is recovered by the blind deconvolution system. In order to achieve the purpose of blind deconvolution, the method of singlechannel Bussgang is applied to the deconvolution filter wkto achieve the optimal deconvolution, then the source signal s(t) can be the accurately recovered.

    It is well-known that many Bussgang-type adaptive algorithms have good performances in single-channel deconvolution, and the diagram of the algorithm can be shown as the following Fig.4.

    Fig.4 Bussgang algorithm

    The following equations can be used to update the deconvolution filter W=(w-L, w-L+1, …, w0, wL).

    where g(?) is a nonlinear function, and the performance of the deconvolution based on Bussgang algorithm depends on the amplitude distribution of the source sequence and the choice of nonlinear functions and the update of the deconvolution filter W.

    Different nonlinear functions g(?) can obtain different algorithms which include the Sato, the Godard and constant modulus algorithms(CMA)[10-11]. Constant modulus algorithm is consistently widely used in the Bussgang of blind deconvolution algorithms for the signal processing, and the nonlinear function is

    The parameter2γis known as a constant, which is normally defined as the statistics of source signal.

    The cost function of CMA is constructed by the higher order statistical characteristics of the transmission signal and can be expressed as following:

    The CMA can be considered as a stochastic-gradient procedure for minimizing the cost function, and the deconvolution update of the CMA is

    where y(t) is the measurement signal, the parameter μ controls the convergence performance of the algorithm and is normally chosen as a positive number.

    3 Kalman inverse filter state equations and measurement equations of gravimeter for distortion correction

    In order to use Kalman inverse filter to alleviate the distortion of the gravity anomaly signal, the system state equation and measurement equation of the gravimeter must be firstly established.

    Suppose the discrete state equation of gravimeter is

    and the measurement equation is

    According to the analysis in document [6], the gravity anomaly signal could be regarded as the output of linear system stimulated by white noise, so the discrete state equation of anomaly signal is

    Combining with Eq. (12)-(15), the matrix equation can be concluded as following:

    According to Eq. (16) and Eq. (17), the state variable X2(k)can be estimated by using Kalman algorithm[12], then the estimation of gravity anomaly signal S(k)can be obtained by Eq. (17).

    4 Simulations and experiments of gravity anomaly distortion correction

    The sinusoidal signal with high frequency noise is assumed as the output signal of gravimeter, which is shown in Fig.5. The processed result of Kalman inverse filter and the proposed single-channel Bussgang algorithm is shown in Fig.6, Fig.7. In Fig.6, the solid line represents the ideal gravity anomaly and the dot line stands for the estimation result of Kalman inverse filter. In Fig.7, the solid line represents the ideal gravity anomaly and the dot line stands for the estimation result of the proposed singlechannel Bussgang algorithm.

    By the same way, a linear signal with high frequency noise is also assumed as the output signal of gravimeter, which is shown in Fig.8. The processed result of Kalman inverse filter and the proposed single-channel Bussgang algorithm is shown in Fig.9 and Fig.10. In Fig.9, the solid line represents the ideal gravity anomaly, and the dot line stands for the estimation result of Kalman inverse filter. In Fig.10, the solid line represents the ideal gravity anomaly, and the dot line stands for the estimation result of the proposed single-channel Bussgang algorithm.

    The standard deviation of the two types of signals corrected by Kalman inverse filter and the proposed method are shown in Tab.1.

    Based on Fig.6, Fig.7, Fig.9, Fig.10 and Tab.1, we can make the conclusion that the proposed single-channel Bussgang algorithm can achieve better performance of gravity anomaly distortion correction.

    Tab.1 Standard deviation of corrected signal by Kalman inverse filter and the proposed method

    Fig.5 Sinusoidal output signal of the gravimeter

    Fig.6 Estimation result of Kalman inverse filter compared with the real signal

    Fig.7 Estimation result of the proposed single-channel Bussgang algorithm compared with the real signal

    Fig.8 Linear output signal of the gravimeter

    Fig.9 Estimation result of Kalman inverse filter compared with the real signal

    Fig.10 Estimation result of the proposed single-channel Bussgang algorithm compared with the real signal

    In order to confirm the performance of the proposed single-channel Bussgang algorithm, both Kalman inverse filter and the proposed single-channel Bussgang algorithm are used to deal with the measured marine gravitydata which is shown as the solid line in Fig.11 and Fig.12. In Fig.11, the result of Kalman inverse filter is indicated by dot line, compared with the ideal signal represented by solid line. And the result of the proposed single-channel Bussgang algorithm is also indicated by dot line, as shown in Fig.12. And the standard deviation of the estimation result of Kalman inverse filter with the real signal is 1.838×10-5m/s2, while the standard deviation of the estimation result of the proposed single-channel Bussgang algorithm with the real signal is 0.328×10-5m/s2. Therefore, we conclude that the performance of the proposed single-channel Bussgang algorithm is greatly improved compared with that of Kalman inverse filter.

    Fig.11 Estimation result of Kalman inverse filter compared with the real signal

    Fig.12 Estimation result of the proposed single-channel Bussgang algorithm compared with the real signal

    5 Conclusion

    Amplitude attenuation and phase lag are main kinds of distortions in marine gravimeter with strong damping and large time constant. In order to overcome the drawbacks and improve the precision of gravity anomaly measurement, the method of distortion correction should be applied. Based on the Bussgang deconvolution algorithm, a new method of single-channel Bussgang algorithm is proposed and applied to the correction of gravity anomaly distortion. Emulations and experiments indicate that the performance of the proposed algorithm is better than that of Kalman inverse filter method. The result of this research is valuable for gravity/inertial navigation system by improving the precision of gravity anomaly information.

    Rrferences:

    [1] Xu Zun-yi, Yan Lei, Ning Shu-nian, et al. Situation and development of marine gravity aided navigation system[J]. Progress in Geophysics, 2007, 22(1): 104-111.徐遵義, 晏磊, 寧書(shū)年, 等. 海洋重力輔助導(dǎo)航的研究現(xiàn)狀與發(fā)展[J]. 地球物理學(xué)進(jìn)展, 2007, 22(1): 104 -111.

    [2] Huang Mo-tao, Liu Min, Sun Lan, et al. Test and evaluation of the stability for marine gravimeter and its zero drift [J]. Hydrograp, hic Surveying and Charting, 2014, 34(6): 1-7.黃謨濤, 劉 敏 孫嵐,等. 海洋重力儀穩(wěn)定性測(cè)試與零點(diǎn)漂移問(wèn)題[J]. 海洋測(cè)繪, 2014, 34(6): 1-7.

    [3] Luo Cheng, Li Hong-sheng, Zhao Liye. Comparison of adaptive Kalman filter and zero-phase filter in processing gravity signal[J]. Journal of Chinese Inertial Technology, 2011, 19(3): 348-351.羅騁, 李宏生, 趙立業(yè). 自適應(yīng) Kalman 和零相移濾波算法在重力信號(hào)處理中的對(duì)比[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2011, 19(3): 348-351.

    [4] Ning Jin-sheng, Huang Mo-tao, Ouyang Yong-zhong, et al. Development of marine and airborne gravity measurement technologies[J]. Hydrographic Surveying and Charting, 2014, 34(5): 67-76.寧津生, 黃謨濤, 歐陽(yáng)永忠, 等. 海空重力測(cè)量技術(shù)進(jìn)展[J]. 海洋測(cè)繪, 2014, 34(5): 67-76.

    [5] Haworth R T, Loncarevic B D. Inverse filter applied to the output of an Askania Gss-2 sea gravimeter[J]. Geophysics, 1974, 39 (6): 852-861.

    [6] Liu Feng-ming, Wang Jian-min. Eliminating method of abnormal deform for marine gravity measurements[J]. Journal of Chinese Inertial Technology, 2008, 16(2): 204-207.劉鳳鳴, 王建敏. 海洋重力測(cè)量畸變的消除方法[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2008, 16(2): 204-207.

    [7] Kenig, T. Blind image deconvolution using machine learning for three-dimensional microscopy[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2191-2204.

    [8] Yang Xiao-mei. The application of blind signal separation in mobile communication[C]//2011 3rd International Conference on Computer Research and Development. 2011: 274-277.

    [9] Zhao Qian. Several Bussgang blind equalizer algorithm performance analysis[C]//The 2010 intelligent Computation Technology and Automation. 2010: 277-280.

    [10] Abrar S, Nandi A K. An adaptive constant modulus blind equalization algorithm and its stochastic stability analysis [J]. IEEE Signal Processing Society, 2010, 17(1): 55-58.

    [11] Nassar A M, Nahal W E. New blind equalization technique for constant modulus algorithm[C]//2010 IEEE International Workshop Technical Committee on Communications Quality and Reliability. 2010: 1-6.

    [12] Bozic S M. Digital and Kalman filtering[M]. Beijing: Science Press, 1984.

    一種用于重力測(cè)量信號(hào)畸變校正的盲反卷積算法

    趙立業(yè),李宏生

    ( 1. 微慣性?xún)x表與先進(jìn)導(dǎo)航技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,南京 210096 ;2. 東南大學(xué) 儀器科學(xué)與工程學(xué)院,南京210096 )

    強(qiáng)阻尼和大時(shí)間常數(shù)是海洋重力儀的共同特性,它們?cè)谝种拼怪狈较蛏细蓴_加速度的同時(shí)也造成了重力儀測(cè)量信號(hào)的幅值衰減和相位滯后。為了校正重力測(cè)量信號(hào)的畸變,獲得高精度的重力異常信號(hào),在分析重力儀和重力測(cè)量信號(hào)畸變?cè)淼幕A(chǔ)上,提出了一種單通道Bussgang算法,并應(yīng)用于重力測(cè)量信號(hào)的畸變校正。該方法首先將盲反卷積濾波器近似簡(jiǎn)化為FIR模型,然后采用常數(shù)恒模算法對(duì)Bussgang均衡器權(quán)系數(shù)進(jìn)行更新,并在此基礎(chǔ)上對(duì)反卷積濾波器進(jìn)行了估計(jì),最后基于實(shí)測(cè)重力信號(hào)將該方法與Kalman逆濾波進(jìn)行了試驗(yàn)對(duì)比。理論分析和試驗(yàn)結(jié)果表明,該重力信號(hào)畸變校正方法能有效地消除重力測(cè)量信號(hào)的畸變,且校正效果明顯優(yōu)于Kalman逆濾波,其校正后信號(hào)相對(duì)于原始信號(hào)的標(biāo)準(zhǔn)差為0.328×10-5m/s2,而Kalman逆濾波校正標(biāo)準(zhǔn)差為1.838×10-5m/s2。

    重力儀;重力異常;Bussgang 反卷積算法;Kalman逆濾波;畸變校正

    U666.1

    A

    1005-6734(2015)02-0196-05

    2014-11-15;

    2015-03-11

    國(guó)家自然科學(xué)基金資助項(xiàng)目(61101163);江蘇省自然科學(xué)基金資助項(xiàng)目(BK2012739)

    趙立業(yè)(1977—),男,副教授,博士生導(dǎo)師,從事高精度重力信號(hào)處理研究。E-mail:liyezhao@seu.edu.cn

    10.13695/j.cnki.12-1222/o3.2015.02.011

    猜你喜歡
    重力儀畸變重力
    瘋狂過(guò)山車(chē)——重力是什么
    工程化原子重力儀綜述
    gPhone重力儀的面波頻段響應(yīng)實(shí)測(cè)研究
    地震研究(2021年1期)2021-04-13 01:04:56
    基于組合滑??刂频慕^對(duì)重力儀兩級(jí)主動(dòng)減振設(shè)計(jì)
    在Lightroom中校正鏡頭與透視畸變
    仰斜式重力擋土墻穩(wěn)定計(jì)算復(fù)核
    一張紙的承重力有多大?
    輻射誘導(dǎo)染色體畸變的快速FISH方法的建立
    重力異常向上延拓中Poisson積分離散化方法比較
    CG-5重力儀彈簧形變對(duì)測(cè)量的影響
    少妇高潮的动态图| 欧美不卡视频在线免费观看| 国产亚洲精品久久久久久毛片| av中文乱码字幕在线| 九九久久精品国产亚洲av麻豆| or卡值多少钱| 午夜激情福利司机影院| 国内精品久久久久精免费| 亚洲经典国产精华液单| 色综合亚洲欧美另类图片| 日本免费a在线| 真人一进一出gif抽搐免费| 国产亚洲欧美98| 精品久久久久久久人妻蜜臀av| 国产一级毛片七仙女欲春2| 在线观看一区二区三区| 日韩av在线大香蕉| 日本三级黄在线观看| 久久久久久久久久成人| 搡老岳熟女国产| 露出奶头的视频| 成人性生交大片免费视频hd| 精品一区二区三区av网在线观看| 国产极品精品免费视频能看的| 精品一区二区免费观看| 亚洲精品久久国产高清桃花| 级片在线观看| av.在线天堂| 天堂av国产一区二区熟女人妻| .国产精品久久| 精品久久久久久久久亚洲 | 中文字幕人妻熟人妻熟丝袜美| 成人永久免费在线观看视频| 2021天堂中文幕一二区在线观| 国产男人的电影天堂91| 一本一本综合久久| 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 亚州av有码| 欧美xxxx黑人xx丫x性爽| 九九爱精品视频在线观看| 天堂av国产一区二区熟女人妻| 国产精品一区二区三区四区免费观看 | 国产美女午夜福利| 欧美黑人巨大hd| 男女视频在线观看网站免费| 毛片一级片免费看久久久久 | 亚洲欧美日韩高清在线视频| 18+在线观看网站| 国产黄片美女视频| 麻豆久久精品国产亚洲av| 国产男靠女视频免费网站| 男女做爰动态图高潮gif福利片| 深夜精品福利| 欧美性感艳星| 国模一区二区三区四区视频| 午夜爱爱视频在线播放| 久久草成人影院| 亚洲三级黄色毛片| 欧美激情国产日韩精品一区| 亚洲专区国产一区二区| 成人毛片a级毛片在线播放| 无遮挡黄片免费观看| 一进一出好大好爽视频| 久久久久久国产a免费观看| 两个人视频免费观看高清| 国产亚洲av嫩草精品影院| 亚洲精品456在线播放app | 成人av一区二区三区在线看| 波多野结衣高清无吗| ponron亚洲| 欧美日本亚洲视频在线播放| 亚洲乱码一区二区免费版| 成人av一区二区三区在线看| 国产乱人视频| 亚洲成人久久性| 国产女主播在线喷水免费视频网站 | 无人区码免费观看不卡| xxxwww97欧美| 国产精品一区二区三区四区免费观看 | 亚洲综合色惰| 桃红色精品国产亚洲av| 可以在线观看毛片的网站| 亚洲国产日韩欧美精品在线观看| 精品人妻1区二区| 一级a爱片免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲欧美98| 伦精品一区二区三区| 久久久久久九九精品二区国产| 一a级毛片在线观看| 亚洲av.av天堂| 欧美精品国产亚洲| 在线观看美女被高潮喷水网站| 成人鲁丝片一二三区免费| 欧美+日韩+精品| 少妇人妻一区二区三区视频| 色播亚洲综合网| 蜜桃久久精品国产亚洲av| 色综合色国产| 亚洲18禁久久av| 日本欧美国产在线视频| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 欧美性猛交黑人性爽| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 91麻豆精品激情在线观看国产| 久久久久国内视频| 久久精品国产鲁丝片午夜精品 | 可以在线观看的亚洲视频| 啦啦啦韩国在线观看视频| 国产三级中文精品| 欧美一区二区亚洲| 99久国产av精品| 国内精品一区二区在线观看| 美女高潮喷水抽搐中文字幕| 一进一出抽搐动态| 一个人看视频在线观看www免费| 最新中文字幕久久久久| 国模一区二区三区四区视频| 少妇的逼水好多| 精品人妻视频免费看| 变态另类丝袜制服| 91麻豆精品激情在线观看国产| 在线观看一区二区三区| 国产精品人妻久久久影院| 热99在线观看视频| 日本 av在线| 美女黄网站色视频| 国产黄a三级三级三级人| 久久人人爽人人爽人人片va| 哪里可以看免费的av片| 亚洲国产欧美人成| 搡老妇女老女人老熟妇| 啦啦啦啦在线视频资源| 又紧又爽又黄一区二区| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| 我的女老师完整版在线观看| 少妇人妻精品综合一区二区 | 成人性生交大片免费视频hd| 亚洲人成网站在线播| 尤物成人国产欧美一区二区三区| 搡女人真爽免费视频火全软件 | 黄色日韩在线| 日韩中字成人| 一区福利在线观看| 两个人视频免费观看高清| 国产欧美日韩一区二区精品| 99热这里只有是精品在线观看| 成人二区视频| 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 国产成人福利小说| 毛片女人毛片| 男女那种视频在线观看| 亚洲专区国产一区二区| 精品国产三级普通话版| 毛片一级片免费看久久久久 | 永久网站在线| 在线免费观看的www视频| 最近中文字幕高清免费大全6 | 欧美激情久久久久久爽电影| 婷婷色综合大香蕉| 毛片一级片免费看久久久久 | 男女啪啪激烈高潮av片| 天堂动漫精品| 嫁个100分男人电影在线观看| 99热这里只有是精品50| 日本-黄色视频高清免费观看| 一a级毛片在线观看| 日本a在线网址| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 在线观看免费视频日本深夜| 亚洲一级一片aⅴ在线观看| 国产男人的电影天堂91| 日本欧美国产在线视频| 99精品久久久久人妻精品| 日本黄色片子视频| 国产亚洲欧美98| 国产伦一二天堂av在线观看| 99视频精品全部免费 在线| 欧美最新免费一区二区三区| 婷婷色综合大香蕉| 中国美女看黄片| 亚洲第一电影网av| 免费av不卡在线播放| 国产一区二区在线观看日韩| 亚洲自偷自拍三级| 日本一二三区视频观看| 亚洲精品456在线播放app | 岛国在线免费视频观看| 99久国产av精品| 国产毛片a区久久久久| 久久国产乱子免费精品| 天天躁日日操中文字幕| 亚洲不卡免费看| 网址你懂的国产日韩在线| 两个人的视频大全免费| 久久中文看片网| 久9热在线精品视频| 亚洲欧美日韩高清在线视频| 国内少妇人妻偷人精品xxx网站| 少妇的逼好多水| 国产成人影院久久av| 亚洲不卡免费看| 熟妇人妻久久中文字幕3abv| av.在线天堂| 男女下面进入的视频免费午夜| 美女xxoo啪啪120秒动态图| av视频在线观看入口| 久久久国产成人免费| 成人亚洲精品av一区二区| a级一级毛片免费在线观看| 日韩,欧美,国产一区二区三区 | 精品一区二区免费观看| 观看美女的网站| 性色avwww在线观看| 国产高清三级在线| 成人av一区二区三区在线看| 午夜福利在线观看吧| 午夜视频国产福利| 嫩草影视91久久| 色综合亚洲欧美另类图片| 搞女人的毛片| 成人特级黄色片久久久久久久| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 日本一二三区视频观看| 老司机午夜福利在线观看视频| 中文字幕高清在线视频| 女同久久另类99精品国产91| 18禁在线播放成人免费| 又黄又爽又刺激的免费视频.| 自拍偷自拍亚洲精品老妇| 嫁个100分男人电影在线观看| 中国美白少妇内射xxxbb| 香蕉av资源在线| 三级毛片av免费| 看十八女毛片水多多多| 日韩欧美免费精品| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 亚洲av免费高清在线观看| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 欧美激情在线99| 美女被艹到高潮喷水动态| 热99在线观看视频| 久久草成人影院| 亚洲专区中文字幕在线| 久久久久九九精品影院| 人妻制服诱惑在线中文字幕| 天天躁日日操中文字幕| 国产成人一区二区在线| 丰满乱子伦码专区| 一本精品99久久精品77| 日韩精品有码人妻一区| 性欧美人与动物交配| 1000部很黄的大片| 欧美日韩乱码在线| 麻豆一二三区av精品| 久久久成人免费电影| 国产亚洲欧美98| 日本黄大片高清| 两个人视频免费观看高清| 中文字幕高清在线视频| 国产国拍精品亚洲av在线观看| 亚洲久久久久久中文字幕| 久久欧美精品欧美久久欧美| av女优亚洲男人天堂| 免费av不卡在线播放| 99九九线精品视频在线观看视频| 99热精品在线国产| 亚洲av免费在线观看| 亚洲精品456在线播放app | 一本一本综合久久| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 男女下面进入的视频免费午夜| 色精品久久人妻99蜜桃| 少妇丰满av| 男人舔女人下体高潮全视频| 最近视频中文字幕2019在线8| 国产淫片久久久久久久久| 九九爱精品视频在线观看| 欧美+日韩+精品| 久久香蕉精品热| 久久久成人免费电影| 日韩欧美精品免费久久| 直男gayav资源| 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 女人十人毛片免费观看3o分钟| 99热这里只有精品一区| 又紧又爽又黄一区二区| 免费高清视频大片| 中文在线观看免费www的网站| 最新中文字幕久久久久| 99久国产av精品| 神马国产精品三级电影在线观看| 国产美女午夜福利| 老熟妇仑乱视频hdxx| 亚洲va在线va天堂va国产| 亚洲va日本ⅴa欧美va伊人久久| 色哟哟·www| 久久国产精品人妻蜜桃| 麻豆久久精品国产亚洲av| 99在线人妻在线中文字幕| 国产黄色小视频在线观看| 久久中文看片网| 国产黄色小视频在线观看| 老司机福利观看| 全区人妻精品视频| 成年女人永久免费观看视频| 欧美国产日韩亚洲一区| 国产女主播在线喷水免费视频网站 | 中国美白少妇内射xxxbb| 国产主播在线观看一区二区| 99久久精品国产国产毛片| 国产亚洲精品综合一区在线观看| 亚洲乱码一区二区免费版| 一区二区三区免费毛片| 亚洲三级黄色毛片| 亚洲乱码一区二区免费版| 夜夜爽天天搞| 老师上课跳d突然被开到最大视频| 成人毛片a级毛片在线播放| 我要搜黄色片| 99热这里只有精品一区| 日本黄大片高清| 国内揄拍国产精品人妻在线| 精品欧美国产一区二区三| 中文字幕久久专区| 国产午夜精品久久久久久一区二区三区 | 日韩,欧美,国产一区二区三区 | 一级a爱片免费观看的视频| 成年免费大片在线观看| 简卡轻食公司| 美女大奶头视频| 中亚洲国语对白在线视频| 国产亚洲精品av在线| 久久精品国产亚洲av香蕉五月| 久久久国产成人免费| 欧美区成人在线视频| 91久久精品国产一区二区三区| 亚洲avbb在线观看| 深夜a级毛片| 很黄的视频免费| 12—13女人毛片做爰片一| 欧美激情在线99| 啦啦啦观看免费观看视频高清| 深夜a级毛片| 麻豆精品久久久久久蜜桃| 悠悠久久av| 午夜免费激情av| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 大又大粗又爽又黄少妇毛片口| 欧美日韩精品成人综合77777| 免费在线观看成人毛片| 熟妇人妻久久中文字幕3abv| 亚洲电影在线观看av| 亚洲精品亚洲一区二区| 欧美高清成人免费视频www| 国产精品98久久久久久宅男小说| 国产三级中文精品| 男女做爰动态图高潮gif福利片| 99国产精品一区二区蜜桃av| 婷婷丁香在线五月| 亚洲av二区三区四区| 久久精品夜夜夜夜夜久久蜜豆| 制服丝袜大香蕉在线| 99久国产av精品| 国内精品一区二区在线观看| 草草在线视频免费看| videossex国产| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 热99在线观看视频| 免费观看的影片在线观看| 日韩一区二区视频免费看| 成人毛片a级毛片在线播放| 亚洲五月天丁香| 色综合色国产| 免费人成视频x8x8入口观看| 伦理电影大哥的女人| 狠狠狠狠99中文字幕| 不卡视频在线观看欧美| 久久6这里有精品| 日日摸夜夜添夜夜添小说| 男女边吃奶边做爰视频| 波多野结衣高清作品| 亚洲黑人精品在线| 一卡2卡三卡四卡精品乱码亚洲| 如何舔出高潮| 久久精品国产亚洲网站| 午夜视频国产福利| 国产精品国产高清国产av| 亚洲精品成人久久久久久| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 国产亚洲精品综合一区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 女的被弄到高潮叫床怎么办 | 麻豆成人av在线观看| 久久99热这里只有精品18| av在线天堂中文字幕| 亚洲精品成人久久久久久| 欧美黑人巨大hd| 级片在线观看| 国产毛片a区久久久久| 亚洲精品日韩av片在线观看| 男女边吃奶边做爰视频| 1024手机看黄色片| 搡老熟女国产l中国老女人| 黄片wwwwww| 亚洲va在线va天堂va国产| 老师上课跳d突然被开到最大视频| 中文字幕av成人在线电影| 91久久精品国产一区二区成人| 一卡2卡三卡四卡精品乱码亚洲| 日韩中文字幕欧美一区二区| 看十八女毛片水多多多| 欧美日本视频| 国产高潮美女av| 中文亚洲av片在线观看爽| 亚洲av日韩精品久久久久久密| 97超级碰碰碰精品色视频在线观看| 天天一区二区日本电影三级| 国产精品三级大全| 国产美女午夜福利| 国产精品久久久久久久电影| 亚洲国产欧美人成| 欧美xxxx性猛交bbbb| 麻豆成人av在线观看| 国产一区二区在线av高清观看| 九九爱精品视频在线观看| 欧美三级亚洲精品| 成人美女网站在线观看视频| 22中文网久久字幕| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 他把我摸到了高潮在线观看| 成人鲁丝片一二三区免费| 欧美+日韩+精品| 国产国拍精品亚洲av在线观看| 亚洲欧美精品综合久久99| 不卡视频在线观看欧美| 免费不卡的大黄色大毛片视频在线观看 | 女的被弄到高潮叫床怎么办 | 日本黄大片高清| 国产精品福利在线免费观看| 深爱激情五月婷婷| 亚洲最大成人手机在线| 在线播放无遮挡| av天堂在线播放| 天堂√8在线中文| 中出人妻视频一区二区| 午夜福利在线观看免费完整高清在 | 国产午夜精品久久久久久一区二区三区 | 中文在线观看免费www的网站| 自拍偷自拍亚洲精品老妇| а√天堂www在线а√下载| 中文字幕av在线有码专区| 久久人人精品亚洲av| 国内毛片毛片毛片毛片毛片| 国产麻豆成人av免费视频| 国产亚洲精品久久久久久毛片| 岛国在线免费视频观看| av在线老鸭窝| 精品人妻1区二区| 精品久久国产蜜桃| 成人精品一区二区免费| 国产精品三级大全| 干丝袜人妻中文字幕| 亚洲精品亚洲一区二区| 国产成人影院久久av| 成人一区二区视频在线观看| 国产蜜桃级精品一区二区三区| videossex国产| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 欧美成人性av电影在线观看| 亚洲av电影不卡..在线观看| 中文亚洲av片在线观看爽| 一个人观看的视频www高清免费观看| 蜜桃久久精品国产亚洲av| 全区人妻精品视频| 最近最新免费中文字幕在线| 亚洲国产日韩欧美精品在线观看| 国产精品av视频在线免费观看| 十八禁国产超污无遮挡网站| 最近视频中文字幕2019在线8| 99精品在免费线老司机午夜| 两个人视频免费观看高清| 午夜福利在线观看免费完整高清在 | 神马国产精品三级电影在线观看| 在线免费观看不下载黄p国产 | 高清在线国产一区| 国产真实伦视频高清在线观看 | 99在线人妻在线中文字幕| 国产免费男女视频| 一级毛片久久久久久久久女| 在线观看免费视频日本深夜| 欧美xxxx性猛交bbbb| 成年女人看的毛片在线观看| 久久午夜亚洲精品久久| 美女大奶头视频| av在线老鸭窝| 日本与韩国留学比较| 久久精品国产亚洲av天美| 国产av不卡久久| 内射极品少妇av片p| 免费高清视频大片| 搞女人的毛片| 美女cb高潮喷水在线观看| 九九在线视频观看精品| 精品人妻熟女av久视频| 精品国产三级普通话版| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 亚洲av中文字字幕乱码综合| 性插视频无遮挡在线免费观看| 久久热精品热| 午夜激情欧美在线| 他把我摸到了高潮在线观看| 国产亚洲精品av在线| 精品久久久久久久末码| 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 婷婷色综合大香蕉| 欧美一级a爱片免费观看看| 99久久中文字幕三级久久日本| 联通29元200g的流量卡| 日韩av在线大香蕉| 国产免费男女视频| 好男人在线观看高清免费视频| 精华霜和精华液先用哪个| 免费观看精品视频网站| 国产精品免费一区二区三区在线| 中文资源天堂在线| 禁无遮挡网站| 精华霜和精华液先用哪个| 成年女人毛片免费观看观看9| 精品午夜福利在线看| 看免费成人av毛片| 国产淫片久久久久久久久| 精品一区二区三区视频在线观看免费| 亚洲精品456在线播放app | 少妇的逼水好多| 少妇的逼好多水| 又黄又爽又免费观看的视频| 午夜福利视频1000在线观看| 最好的美女福利视频网| 欧美3d第一页| 天堂√8在线中文| 少妇高潮的动态图| 国产成人aa在线观看| 波多野结衣高清无吗| 国产又黄又爽又无遮挡在线| 精品免费久久久久久久清纯| 亚洲一区二区三区色噜噜| 简卡轻食公司| 久久精品国产亚洲av香蕉五月| 亚洲成av人片在线播放无| 欧美xxxx黑人xx丫x性爽| 欧美日韩黄片免| 校园春色视频在线观看| a级毛片a级免费在线| 免费av不卡在线播放| 春色校园在线视频观看| 国产精品无大码| 免费人成在线观看视频色| 欧美黑人巨大hd| 夜夜看夜夜爽夜夜摸| 女的被弄到高潮叫床怎么办 | 欧美日韩国产亚洲二区| 男女之事视频高清在线观看| 国产爱豆传媒在线观看| 免费黄网站久久成人精品| 中文字幕熟女人妻在线| 国产精品人妻久久久久久| 国产亚洲精品久久久com| 午夜福利欧美成人| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 欧美日韩综合久久久久久 | 少妇的逼水好多| 69av精品久久久久久| 成年女人看的毛片在线观看| 99久久九九国产精品国产免费| 男女视频在线观看网站免费| 国产视频一区二区在线看| 听说在线观看完整版免费高清| 国产伦在线观看视频一区| 露出奶头的视频| 亚洲不卡免费看| 日韩欧美三级三区| 亚洲在线观看片| 国产不卡一卡二| 久久人妻av系列| 国产一区二区激情短视频| 特级一级黄色大片| 亚洲无线在线观看| 国产免费男女视频| 欧美黑人巨大hd| 国产精品亚洲美女久久久|