饒愛(ài)水,李清梅,胡 健,吳關(guān)鵬
(中國(guó)衛(wèi)星海上測(cè)控部,江陰 214431)
箭載GPS定位臨近地面衛(wèi)星對(duì)流層延遲改正模型
饒愛(ài)水,李清梅,胡 健,吳關(guān)鵬
(中國(guó)衛(wèi)星海上測(cè)控部,江陰 214431)
針對(duì)經(jīng)典對(duì)流層延遲改正模型無(wú)法處理負(fù)仰角衛(wèi)星誤差修正的問(wèn)題,在傳統(tǒng)球?qū)ΨQ(chēng)標(biāo)準(zhǔn)大氣模型的基礎(chǔ)上,采用射線描跡法建立了GPS信號(hào)穿透對(duì)流層的數(shù)學(xué)模型,推導(dǎo)了根據(jù)對(duì)流層折射最低點(diǎn)海拔高度計(jì)算對(duì)流層延遲改正的計(jì)算公式;為求解對(duì)流層折射最低點(diǎn)海拔高度,采用最小二乘法求得 GPS信號(hào)穿透對(duì)流層時(shí)地心張角與最低點(diǎn)海拔高度之間的線性方程,提出了根據(jù)衛(wèi)星和火箭之間的夾角與地心張角之間的關(guān)系進(jìn)行迭代計(jì)算,進(jìn)而求得最低點(diǎn)海拔高度的方法;最后引入了模型誤差因子,評(píng)估對(duì)流層延遲改正模型的效果。采用火箭飛行試驗(yàn)數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證,結(jié)果表明,該模型提供的方法能夠消除負(fù)仰角衛(wèi)星大部分對(duì)流層延遲,消除的最大延遲可達(dá)135 m,消除對(duì)流層延遲后的臨近地面衛(wèi)星參與定位計(jì)算使最終定位精度提高25 m,計(jì)算迭代次數(shù)平均10次,尤其適合箭載GPS實(shí)時(shí)定位。
折射指數(shù);折射率;地心張角;射線描跡;大氣折射
經(jīng)典的對(duì)流層延遲改正模型包括Hopfield模型、Saastamoinen模型、Black模型等直接計(jì)算模型,也包括CFA模型、Chao模型、Niell模型等利用映射函數(shù)計(jì)算模型[1],適用于仰角大于5°的情況,部分文獻(xiàn)研究了在仰角在0°和5°之間的對(duì)流層改正模型[2],網(wǎng)絡(luò)差分對(duì)流層誤差內(nèi)插模型也被大量研究[3],但對(duì)于負(fù)仰角的對(duì)流層延遲改正尚缺乏研究。運(yùn)載火箭飛行高度通常超過(guò)對(duì)流層最大高度(60 km),對(duì)于仰角大于0°的衛(wèi)星,對(duì)流層延遲改正為0 m;對(duì)于仰角小于0°且貼近地面的衛(wèi)星,由于無(wú)線電波穿透整個(gè)對(duì)流層,對(duì)流層延遲改正數(shù)可達(dá)上百米。貼近地面衛(wèi)星對(duì)最終定位結(jié)果的精度影響很大,采用衛(wèi)星動(dòng)態(tài)遮蔽角[4]可有效屏蔽貼近地面衛(wèi)星對(duì)定位結(jié)果的影響,但減少了參與定位衛(wèi)星個(gè)數(shù)。本文基于射線描跡法[5-6],研究了GPS信號(hào)穿透對(duì)流層時(shí)的延遲改正模型,提出了根據(jù)對(duì)流層折射最低點(diǎn)海拔高度計(jì)算延遲改正的方法。
在球?qū)ΨQ(chēng)的大氣模型下,采用射線描跡法,考慮貼近地面衛(wèi)星信號(hào)穿透對(duì)流層進(jìn)入箭載GPS接收機(jī)的情況。圖1把大氣示意為兩層,GPS衛(wèi)星從G點(diǎn)發(fā)出無(wú)線電波,在A′2點(diǎn)進(jìn)入大氣層,經(jīng)過(guò)大氣折射最低點(diǎn)A0,從A1點(diǎn)進(jìn)入第2層大氣,大氣層外緣A2點(diǎn)穿出,進(jìn)入位于R點(diǎn)的接收機(jī)。A0、A1、A2點(diǎn)距離地心的距離分別為r0、r1、r2,在A1、A2點(diǎn)的大氣入射角分別為z1、z2,對(duì)應(yīng)的出射角分別為z′1、z′2,[A0, A1)、[A1,A2)之間的大氣折射指數(shù)分為n1(A0點(diǎn)的折射指數(shù))、n2(A1點(diǎn)的折射指數(shù)),A0A1、A1A2的長(zhǎng)度分別為l1、l2,對(duì)應(yīng)的地心張角分別為c1、c2。根據(jù)Snell定律[7],有:
在△OA1A2中,
對(duì)應(yīng)的折線長(zhǎng)度為
圖 1 箭載GPS信號(hào)穿透對(duì)流層示意圖Fig.1 On-board GPS signals penetrate through troposphere
當(dāng)大氣被劃分為m層時(shí)(2≤ i≤m ),有:
定義Vtrop為對(duì)流層延遲,根據(jù)對(duì)流層延遲計(jì)算公式[1],有:
式中,S為電磁波在大氣中傳輸?shù)穆窂?,n(s)為路徑上的大氣折射指數(shù)。在球?qū)ΨQ(chēng)的m層大氣模型下,上式可近似為
路徑S對(duì)應(yīng)的地心張角Cs為
根據(jù)大氣折射率計(jì)算公式[7]:
式中,
其中:h為大氣的海拔高度,單位m;P為大氣氣壓,單位為100 N/m2;T為大氣絕對(duì)溫度,單位K;t為大氣溫度,單位℃。本文采用ICAO(國(guó)際民航組織)標(biāo)準(zhǔn)大氣模型[8-9]計(jì)算大氣壓力和溫度,得到的大氣折射率符合負(fù)指數(shù)模型[10-11],在海平面的折射率為311,在35 km高空的折射率為1.6。
給定電波射線距離地心最低點(diǎn)的地心距r0和大氣分層厚度hi( i=1~m)后,可計(jì)算得出對(duì)流層延遲。圖2示意了對(duì)流層延遲與最低點(diǎn)海拔高度 h0(其中h0=r0-ae)的關(guān)系,最外層大氣的海拔高度取60 km,大氣厚度設(shè)為10 m時(shí)的計(jì)算結(jié)果,對(duì)應(yīng)的地心張角如圖3中的曲線Cs所示。
圖3描述對(duì)流層延遲取對(duì)數(shù)后與h0的線性關(guān)系,用分段函數(shù)擬合,得到如下的公式:
圖3還描述了地心張角Cs(單位弧度)與最低點(diǎn)海拔高度h0(單位m)的線性關(guān)系,最小二乘法擬合得到的公式如下:
圖 2 對(duì)流層延遲隨最低點(diǎn)海拔高度變化曲線Fig.2 Relationship between tropospheric delay and lowest altitude
圖3 地心張角及對(duì)流層延遲與最低點(diǎn)海拔高度的線性關(guān)系Fig.3 Linear relationship between geocentric angle, tropospheric delay and the lowest altitude
當(dāng)運(yùn)載火箭飛行高度大于對(duì)流層高度時(shí),大氣折射率為1,設(shè)運(yùn)載火箭距離地心的距離為rR,最外層大氣距離地心的距離為點(diǎn)和Am點(diǎn)應(yīng)用公式(1),有:
式中,rG為GPS距離地心的距離。根據(jù)公式(12)、(14)、(15),可以計(jì)算得出GPS衛(wèi)星、地心、運(yùn)載火箭三者之間的夾角:
在導(dǎo)航定位計(jì)算過(guò)程中,容易得到上一次的GPS衛(wèi)星和運(yùn)載火箭的位置。在△GOR中,利用余弦定理,有:
式中,rGR為GPS與運(yùn)載火箭的直線距離。
根據(jù)公式(16)和(17),利用迭代法可以算出電波射線距離地心最低點(diǎn)的地心距r0,進(jìn)而根據(jù)公式(11)計(jì)算得出電離層延遲的大小。
分析火箭飛行試驗(yàn)數(shù)據(jù),采用內(nèi)符合精度[12]分析方法得到跟蹤弧段內(nèi)火箭的位置精度,不考慮對(duì)流層延遲改正時(shí)得到的結(jié)果如圖4所示,圖中兩處波峰分別由2號(hào)衛(wèi)星和5號(hào)衛(wèi)星穿透對(duì)流層引起。采用本文提供的對(duì)流層延遲改正方法,得到的對(duì)流層延遲改正值和最低點(diǎn)海拔高度如圖5所示,其中最低點(diǎn)海拔高度迭代計(jì)算的平均次數(shù)為10次,定位精度如圖6所示。
圖5表明,對(duì)流層延遲改正最大值為135 m,電波折射最低點(diǎn)的海拔高度為6.8 km;圖6表明,采用本文的方法,GPS定位精度從48 m提高到23 m。
圖 4 箭載GPS位置精度原始曲線圖Fig.4 Original precision of on-board GPS position
圖 5 對(duì)流層延遲改正值及最低點(diǎn)海拔高度關(guān)系曲線Fig.5 Relationship between tropospheric delay correction and lowest altitude
圖 6 箭載GPS定位對(duì)流層延遲改正后的位置精度曲線Fig.6 Precision of on-board GPS after tropospheric delay correction
引入模型誤差因子mσ ,對(duì)公式(11)的結(jié)果進(jìn)行修正:
式中,V表示大氣層延遲總誤差,包括對(duì)流層延遲和電離層延遲,模型誤差因子包含了電離層延遲誤差、球?qū)ΨQ(chēng)大氣模型誤差以及大氣折射率計(jì)算模型誤差等。圖6顯示了σm分別為1.0和1.7的情況,當(dāng)σm=1.7時(shí),大氣折射誤差修正被消除,定位精度與屏蔽2號(hào)衛(wèi)星和5號(hào)衛(wèi)星的結(jié)果相同。
本文在國(guó)際民航組織標(biāo)準(zhǔn)大氣模型的基礎(chǔ)上,采用標(biāo)準(zhǔn)氣象元素計(jì)算了大氣折射率,采用射線描跡法對(duì)箭載GPS定位時(shí)電波穿透對(duì)流層進(jìn)行分析,采用分層求和方法得到了對(duì)流層延遲改正與對(duì)流層折射最低點(diǎn)海拔高度之間的計(jì)算公式,對(duì)流層延遲最大可達(dá)200 m;通過(guò)線性擬合的方法,發(fā)現(xiàn)了電波穿透對(duì)流層對(duì)應(yīng)的地心張角與最低點(diǎn)海拔高度之間的線性方程,地心張角最大可達(dá)17°;提出了根據(jù)衛(wèi)星和火箭之間的夾角與地心張角之間的關(guān)系進(jìn)行迭代計(jì)算,進(jìn)而求得最低點(diǎn)海拔高度的方法。
采用火箭飛行試驗(yàn)數(shù)據(jù)對(duì)該方法進(jìn)行了驗(yàn)證,結(jié)果表明,該方法能有效修正對(duì)流層延遲,計(jì)算方法簡(jiǎn)單,適合箭載GPS實(shí)時(shí)定位。引入了模型誤差因子,以表征誤差改正的實(shí)際效果,采用內(nèi)符合精度作為誤差修正效果的依據(jù)。由于未考慮電離層延遲改正,導(dǎo)致模型誤差因子較大,下一步將研究臨近地面的負(fù)仰角衛(wèi)星的電離層延遲改正方法。
(References):
[1] 趙鐵成, 韓曜旭. GPS定位系統(tǒng)中幾種對(duì)流層模型的探討[J]. 全球定位系統(tǒng), 2011(1): 46-52. Zhao Tie-cheng, Han Yao-xu. Study on several tropospheric models in GPS positioning system[J]. GNSS World of China, 2011(1): 46-52.
[2] 段成林, 馬傳令, 曹建峰, 等. 一種低仰角對(duì)流層折射修正的新方法[J]. 紅外與激光工程, 2012, 41(5): 1195-1199. Duan Cheng-lin, Ma Chuan-ling, Cao Jian-feng, et al. A new method on tropospheric refraction correction at low elevation[J]. Infrared and Laser Engineering, 2012, 41(5): 1195-1199.
[3] 潘樹(shù)國(guó), 王姍姍, 沈雪峰, 等. 顧及高程差異的網(wǎng)絡(luò)差分對(duì)流層誤差內(nèi)插模型[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2012, 20(2): 192-195. Pan Shu-guo, Wang Shan-shan, Shen Xue-feng, et al. Interpolation model for troposphere delay error on network differential considering elevation difference[J]. Journal of Chinese Inertial Technology, 2012, 20(2): 192-195.
[4] Rao Ai-shui, Li Yong-gang, Hu Jian, et al. Dynamic calculation method of satellite elevation mask with rocket onboard GPS real-time positioning[C]//China Satellite Navigation Conference 2014 Proceedings. 2014: 27-34.
[5] 李德鑫, 楊日杰, 孫洪星, 等. 基于射線分層算法的電磁波大氣吸收衰減特性分析[J]. 電訊技術(shù), 2012, 52(1): 80-85. Li De-xin, Yang Ri-jie, Sun Hong-xing, et al. Characteristic analysis of atmospheric absorption and attenuation based on rays layering algorithm[J]. Telecommunication Engineering, 2012, 52(1): 80-85.
[6] Wu X L, Hu X G, Wang G, Zhong H J, Tang C P. Evaluation of COMPASS ionospheric model in GNSS positioning[J]. Advances in Space Research, 2012, 51(6): 959-968.
[7] Mcgraw G A. Tropospheric error modeling for high integrity airborne GNSS navigation[J]. Position Location and Navigation Symposium, 2012(4): 158-166.
[8] Rohm W, Bosy J. The verification of GNSS tropospheric tomography model in a mountainous area [J]. Advances in Space Research, 2011, 47(10): 1721- 1730.
[9] Awange J L, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K. GNSS remote sensing of the Australian tropopause[J]. Nature Climate Change, 2011, 105: 597-618.
[10] Wang X Y, Wang X L, Dai Z Q, Ke F Y, Cao Y C, Wang F F, Song L C. Tropospheric wet refractivity tomography based on the BeiDou satellite system[J]. Advances in Atmospheric Sciences, 2014.
[11] Bender M, Stosiusa R, Zusa F, et al. GNSS water vapour tomography-expected improvements by combining GPS, GLONASS and Galileo observations[J]. Advances in Space Research, 2011, 47(5): 886-897.
[12] Ren Chao, Peng Jia-di, She Di. Effects of low GPS satellite elevation mask angle on estimation of tropospheric delay[J]. Journal of Geodesy and Geodynamics, 2011, 31(6): 125-127.
Tropospheric delay correction model of near ground satellite position using on-board GPS
RAO Ai-shui, LI Qing-mei, HU Jian, WU Guan-peng
(China Satellite Maritime Tracking and Controlling Department, Jiangyin 214431, China)
In view that classical tropospheric delay correction model cannot deal with deviation correction of negative elevation angel satellite, the phenomenon when GPS signal penetrate troposphere using radar ray tracing was modeled based on traditional spherical symmetry standard atmosphere model, and the formulas for computing the correction of tropospheric delay was deduced based on the lowest altitude of troposphere reflection. To calculate the lowest altitude of tropospheric refraction, the liner equation between geocentric angel and the lowest altitude when GPS signal penetrate troposphere was obtained by using least square method. Then a method for calculating the lowest altitude was proposed based on iterative computation using the relationship between the angle of satellite-to-rocket and the geocentric angel. Finally the efficiency of tropospheric delay correction model was evaluated by introducing the model’s error factor. The test data of rocket flight were used to validate the model, and the result proves that the proposed method can eliminate most of the tropospheric delay of up to 135 m, and improve the precision of the near ground satellite position of up to 25 m. This method is especially appropriate to real-time positioning of on-board GPS.
refractive index; refractivity; geocentric angle; ray tracing; atmospheric refraction
V19
:B
2015-05-15;
:2015-08-25
饒愛(ài)水(1980—),男,工程師,從事航天測(cè)控研究。E-mail:lqmei03@163.com
1005-6734(2015)05-0670-04
10.13695/j.cnki.12-1222/o3.2015.05.019