• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    類似花狀結(jié)構(gòu)介晶鈷的大規(guī)??刂坪铣杉按判阅?/h1>
    2015-06-01 10:45:19關(guān)明云孫建華
    關(guān)鍵詞:花狀化工學(xué)院配位

    關(guān)明云 簡 妍 孫建華 徐 正

    (1江蘇理工學(xué)院化學(xué)與環(huán)境工程學(xué)院,江蘇省貴金屬深加工及應(yīng)用重點(diǎn)建設(shè)實(shí)驗(yàn)室,常州213001)

    (2南京大學(xué)化學(xué)與化工學(xué)院,配位化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京210093)

    類似花狀結(jié)構(gòu)介晶鈷的大規(guī)模控制合成及磁性能

    關(guān)明云1,2簡 妍1孫建華1,2徐 正*,2

    (1江蘇理工學(xué)院化學(xué)與環(huán)境工程學(xué)院,江蘇省貴金屬深加工及應(yīng)用重點(diǎn)建設(shè)實(shí)驗(yàn)室,常州213001)

    (2南京大學(xué)化學(xué)與化工學(xué)院,配位化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京210093)

    以二乙烯三胺(DETA)作為配位劑,快速合成了納米粒子定向組裝構(gòu)成的類似花狀的介晶鈷。通過控制反應(yīng)的速率和配位劑的種類,依次獲得了精美的鈷花、差形貌的枝晶、由納米粒子或納米片構(gòu)成的微球。配位劑在介晶鈷的形成過程中起了很重要的作用。探討了介晶鈷花的形成機(jī)理。介晶鈷不但具有鈷納米晶的性能(在300 K時(shí)矯頑力260 Oe),而且擁有塊體鈷的性能(飽和磁化強(qiáng)度168 emu·g-1)。合成方法簡便、有效且具有較高的產(chǎn)率。

    鈷;晶體組裝;介晶;取向搭接

    Mesocrystals defined by C?lfenet al.[1-3]have attractedgreatattentionforpotentiallyexciting applications,such as biominerals and their minetics, functional ceramics,sensors,lithium-ion battery,andphotovoltaic devices etc.In contrast to ion-mediated classical growth mechanism of a single crystal,the mesocrystals are constructed by nanocrystals instead of atoms/molecules as building blocks in orientedattachment fashion.They not only have the properties from the nanocrystals but also display collective properties produced by their interaction[4].Further intensive study on formation mechanism of mesocrystals is helpful for constructing novel materials by bottomup approaches.The number of reports on mesocrystals rapidly increases[5-25],but the types of mesocrystals are quite limited,such as carbonate[1,19],metal oxide[11], copper oxalate[15],Ag[22]etc.It is urgent to explore a facilemethodtoextendthespectrumofthe mesocrystals.

    Asoneoftheimportantmagneticmetal materials,cobalt has been the focus of intensive researchowingtotheirphysicalpropertiesand technological applications:such as high-density data storage,medical diagnosis,andbio-separation[26-29]. Various morphologies,such as nanoparticle,nanorod, nanotube,dendrite and snowflake microcrystal,have been synthesized[26-32].Here,we report a facile synthesis method in large scale for well-defined 3D flower-like cobalt mesocrystals.The time for Co mesocrystal formation is very short,only~10 min.The formation mechanism is investigated carefully.In addition,nicelookflowers,poor-lookdendrite,microsphere composed of Co nanoparticles or nanoplatesare obtained by simply adjusting reduction rate of Co2+.

    1 Experimental

    Cobalt chloride(CoCl2),diethylenetriamine(DETA), ethylenediamine(EN),sodium hydroxide(NaOH),and diamine hydrate(N2H4·H2O)were purchased from the Sinopharm Chemical Reagent Company.All chemical reagents were of analytical grade and were used without further purification.

    1.1 Synthesis

    2.5 mL CoCl2aqueous solution(1.429 mol·L-1) were mixed with 7.5 mL DETA under stirring,10 mL of NaOH aqueous solution(5 mol·L-1)and 5 mL of N2H4·H2O(85%)were added into the above solution under stirring for 1 min.The resultant solution was transferred into autoclave,and maintained at 100℃for 10 min.The black precipitates at the bottom were collected and washed with absolute ethanol and then dried in a vacuum oven at 80℃.

    1.2 Characterizations

    Products were characterized by X-ray powder diffraction(XRD)(Shimadzu XD-3A X-ray diffractometer with Ni filter,Cu Kα radiation(λ=0.154 18 nm) accelerating voltage of 40 kV,emission current 20 mA,scanning range 30°~80°,scanning rate of 0.06°· s-1).Thetransmission electron microscopy(TEM) images,high-resolution TEM(HRTEM)images and selected-area electron diffraction(SAED)patterns were obtained on a FEI Tecnai G220 S-TWIN highresolution transmission electron microscope,using an accelerating voltage of 200 kV.Scanning electron microscopy(SEM)images were taken with a JEOL JSM 5610LV apparatus with an accelerating voltage of 15 kV.Magnetization measurements of the products wereperformedonasuperconductingquantum interference device(SQUID)magnetometer(MPMS XL-7 Quantum Design).Zero-field-cooling(ZFC)and field-cooling(FC)curves were recorded under 100 Oe applied field between 575 K and 750 K.

    2 Results and discussion

    2.1 Morphology and structure characterization

    Thelow-magnificationSEMimages(Fig.1 a) clearly reveal the three-dimensional(3D)feature of the Co flower-like structure.The high-magnification SEM and field emission SEM(FESEM)images in Fig. 1b,c respectively show perfect flower-like structure and snowflake structure composed of several petals with a thick main trunk and many secondary trunks on both sides of the main trunk.The surface of the petals is not flat with many grooves,which is not expected for a single crystal.The length of the main trunks and the secondary branches are 2~8 μm and 0.1~2.6 μm respectively.The thickness of the petals is about severalhundrednanometers.TheXRD pattern of the products(Fig.1 d)indicates that all the diffraction peaks are indexed to the hexagonal phaseof Co(PDF No.05-0727)in good agreement with the literaturereports[31-32].No other impurity phase is detected.The energy-dispersive X-ray spectroscopy (EDS)analysis of the product(supporting information (SI)-1)shows that the sample is essentially pure cobalt which is consistent with the XRD results.The small amount of oxygen might attribute to the absorption oxygen or the oxidation of the Co surface partly.

    Fig.1 (a)Low-magnification SEM image of Co flower-like mesocrystals,(b)High-magnification SEM images of 3D Co flower-like mesocrystals,(c)FESEM images of Co snowflake mesocrystals,(d)XRD pattern of Co flower-like mesocrystals

    TEM images in SI-2a,b further reveal a welldefined flower-like structure with a thick main trunk and highly ordered second and third generation trunk. After closer look at the FESEM image of Fig.2 a,we can clearly see that the main trunk,the second and third generation trunk are composed of many spines. Dark field TEM image of Co petal in Fig.2 b also shows that the petal is composed of nanoparticles.It seems like polycrystalline.Fig.2 c shows the TEM image of a Co petal.The three parts of HRTEM images marked as A,B and C in Fig.2 d,e,f show the lattice fringes at the tip A of the main trunk and at the tips B and C of the secondary branches on the left and right sides of the main trunk,respectively.The lattice spacing of 0.22 nm between adjacent planes in each of these images corresponds to the distance between two(100)crystal planes.Figs.2g~I(xiàn) show the SAED patterns of three areas A,B,and C of an individual petal and Fig.2 J exhibits the ED pattern recorded from the whole petal.The SAED patterns recorded from different areas of the individual petal are almost identical.Zone axis projection is along [001].The main trunk and secondary trunks on both side of the main trunk of the petal have equivalent growth directions:such as the main trunk oriented along[110]with the two branches along[210]and [120][33].HRTEM image and the sharp diffraction spots show that cobalt flower composed of nanoparticles seems to be the single-crystalline.It may be deduced thatthenanoparticlesconstitutedCoflowerare aligned in a common crystallographic axis,which, therefore,exhibits scattering property similar to a singlecrystal.Itisthecharacterofthe mesocrystalline.

    Fig.2 (a)FESEM image of a Co petal,(b)Dark field TEM image of a Co petal,(c)TEM image of a Co petal[mark A: the tip of the main trunk;B:the tip of left secondary branch;C:tip of right secondary branch],(d,e,f)HRTEM images recorded from the A,B,C respectively in Fig.2 c.(g,h,I)SAED patterns recorded from A,B,C of Fig.2 c respectively,(J)ED patterns recorded from a petal of Co flower

    2.2 SEM and TEM characterization of the sample obtained under different experimental conditions

    Theinfluencefactorsontheformationof mesocrystal include surfactants,particles formation rate and reaction medium etc.As we learn from equation(1),

    the reducibility of N2H4depends on the concentration of OH-and N2H4.That is,the NH2NH2reductibility increases with concentration of alkaline and NH2NH2increasing,therefore the reduction rate of Co2+to Co0increases significantly,which directly leads to the increase in the nucleation and formation rate of cobalt and is beneficial to form cobalt flower by nanoparticle mediated mechanism.Figs.3a,b show the SEM images of the sample reacted for 360 min at 0.25 mol·L-1and 0.75 mol·L-1of NaOH concentration,respectively, while keeping the other parameters constant.At a lower NaOH concentration,the irregular spherical aggregates of Co2+nanoparticles are formed(Fig.3 a) and the diameter of the spheres decreases with the reduction rate of Co2+increasing(Fig.3 b).At a lower concentration of NaOH,Co formation rate is slower.It is beneficial to aggregate into larger spheres.When increasing the concentration of NaOH,Co2+reduction rateincreases,leadingtoanincreaseinthe nucleation rate of Co,therefore,the diameter of cobalt microsphere decreases.When the concentration ofNaOH increases to 1.25 mol·L-1,the formation rate of cobalt farther increases,which is of benefit for 1D growth to form the dendrites-like structures composed of Co nanoparticles(Fig.3 c).Fig.3 d and inset show the corresponding TEM image and ED pattern.The diffraction circles in the ED pattern clearly indicate that the dendrites are polycrystalline.Further increasing the concentration of NaOH,the well-defined flowerlike structures(Fig.3 e)are formed after reaction for 10 min.It is reasonable that when the NaOH concentration ishighenough,thecobaltformedexplosively, therefore,there have enough cobalt for simultaneous growth of main trunk,second and third generation trunk to form nice cobalt flower-like structure.Similar results are obtained by increasing N2H4·H2O amount. Figs.4a~d and SI~3 show the evolution of the shape for the products with N2H4·H2O amount increasing, from poor-look branch structure to the exquisiteflower-like structure.The temperature significantly influences reaction rate of the system,and therefore the morphology of the products.Fig.4 e displays that the shape of the products obtained at 40℃is sphere composed of nanoplates.When temperature is very low, reaction rate is very low,which is beneficial to form spherical structure.The above results show that the cobalt morphologies can be well controlled by kinetic parameters such as reaction rate.

    Fig.3 SEM images of the products obtained under a various concentrations of NaOH and reaction times in the hydrothermal system composed of DETA(7.5 mL),CoCl2(1.429 mol·L-1)and N2H4·H2O(5 mL):(a)0.25 mol·L-1for 360 min; (b)0.75 mol·L-1for 360 min;(c)1.25 mol·L-1for 20 min;(d)TEM image of the products obtained at NaOH (1.25 mol·L-1)for 20 min(ED pattern insetting);(e)3.75 mol·L-1for 10 min

    Fig.4 SEM images of the products obtained under various amounts of N2H4·H2O and reaction times in the hydrothermal system of DETA(7.5 mL),CoCl2(1.429 mol·L-1)and NaOH(5 mol·L-1):(a),(b)0.3 mL and 0.5 mL respectively for 3 h;(c),(d) 3 mL and 5 mL respectively for 10 min,(e)SEM images of the products obtained at typically synthesis condition except using 40℃instead of 100℃for 12 h

    Influence of DETA on the morphology is shown in Fig.5 .The perfect flower-like superstructures are formedbyadding7.5mLofDETA(Fig.5 a). Decreasing the amount of DETA to 0.5 mL and to 0 mL,the morphology of the superstructures becomes poor-look(Figs.5a,b).Fig.5 a shows that Co flowers obtained without DETA are composed of several plates.Fig.5 c shows TEM image of the plates,which are composed of nanoparticles.Corresponding ED pattern displays clear spots,which indicates that the plates are mesocrystals.At present time,we do not know the exact role played by DETA,but it might be related to the coordination interaction with as-formed cobalt nanoparticles.

    2.3 Growth mechanism of Co mesocrystal

    In order to further understand the formation mechanism of Co mesocrystal,control experiments are carried out under atmosphere and 100℃,which is convenient to observe the reaction progress with time. After the reaction bottle containing reactants is put into the oil bath and heated at 100℃for 3 min,the formation rate of Co is quite slow,only very few black solid floated on the surface of solution.SEM image in Fig.6 a shows that the morphology of product is poor dendrite composed of Co nanoparticles and no flowerlike Co mesocrystals are observed.After heated for 6 min,the reaction rate increases rapidly,a few flowerlike Co mesocrystals appear(Fig.6 b).After that time, the color of the solution becomes very violet and the reaction completes in 10 min.The flower-like Co mesocrystals are formed in large scale(Fig.6 c).It provides further evidences for the above discussion. Taking a closer observation on SEM image of theproduct,we can find a few of snowflake microstructure and the main product with 3D flower-like microstructure.For the snowflake microstructure,the seed is a hexagonal nanoplate and the 1D fast growth along the six crystallographic equivalent{100}directions of the hexagonal seeds occurs simultaneously in orientedattachmentfashiontoformasixfold-symmetric“snowflake”.As we can see from Fig.1 c that there have some protruding composed of Co nanoparticles in the center of the snowflake due to the nanoparticle oriented-attachment.The fast growth of 1D on those facetstakesplacesimultaneouslyinorientedattachment fashion when the reduction rate of Co2+is high enough and cobalt atom is formed explosively, and then the flower-like mesocrystal forms.Flowerlike Co mesocrystal are obtained using ethylenediamine (EN)instead ofDETAwhilekeepingtheother experimental parameters constant(see SEM image of Co in the SI-4).

    Fig.6 SEM images of the products obtained at the different time:(a)3 min,(b)6 min,c)10 min under atmospheric pressure and 100℃,keeping other experimental parameters constant(DETA(7.5 mL),CoCl2(1.429 mol·L-1),NaOH(5 mol·L-1), N2H·4H2O(5 mL))

    2.4 Magnetic properties

    Themagneticpropertiesofthecobalt mesocrystals were measured.From M-H curves in Fig. 7,the coercivity(Hc),saturation magnetization(Ms),and remanent magnetization(Mr)are obtained as ca.401.3 Oe,154.6 emu·g-1,and 11.8 emu·g-1,respectively,at 1.8 K and ca.260 Oe,153 emu·g-1,and 12 emu·g-1, respectively,at 300 K.The saturation magnetization is comparable to the bulk value(168 emu·g-1)due to the micrometer scale(2~8 μm)of the Co flower mesocrystals[28,34],but it exhibits enhanced coercive force.Hc value of the bulk Co(a few tens Oe)is due to that Co flower mesocrystals are composed of smaller nanoparticles.It indicates that the Co flower mesocrystallines have not only properties of bulk Co but also the properties from the nanocrystals.Zero-field-cooling (ZFC)and field-cooling(FC)curves(575 K~750 K) for the Co mesocrystals in SI-5 exhibit that the ferromagnetic transition temperature Tcis higher than 750 K,which is beyond the measuring range of the magnetometer in our laboratory.

    Fig.7 Magnetic hysteresis loops of as-prepared cobalt mesocrystals at 1.8 K and 300 K respectively

    3 Conclusions

    In summary,we have developed a facile and effective method for fabricating the well-defined cobalt flower-like mesocrystal in large scale and very short time(only 10 min).The cobalt flower-like mesocrystals exhibit the electron diffraction character of single crystals.The shape of Co superstructure can be adjustedbykineticparameters.Thesaturation magnetization of the Co flower-like superstructure is comparable to the bulk cobalt metal because of the large size(2~8 μm),while the coercive force is higher than that of bulk metal due to properties from the nanocrystals.The exquisite structure is beneficial tofundamental research for the formation mechanism of the mesocrystals and potential application in the field of catalysis,high-density data storage and sensor etc.

    Supporting information is available at http://www.wjhxxb. cn/wjhxxbcn/ch/index.aspx.

    [1]Ma M G,C?lfen H.Curr.Opin.Colliod Interface Sci.,2014, 19:56-65

    [2]C?lfen H,Antonietti M.Angew.Chem.Int.Ed.,2005,44: 5576-5591

    [3]Meldrum F C,C?lfen H.Chem.Rev.,2008,108:4332-4432

    [4]Zhou L,O′Brien P.Small,2008,4:1566-1574

    [5]Zhou L,Smyth-Boyle D,O′Brien P.J.Am.Chem.Soc.,2008, 130:1309-1320

    [6]Li T,You H J,Xu M W,et al.Appl.Mater.Interfaces,2012, 4:6942-6948

    [7](a)Oaki Y,Imai H.Small,2006,2:66-70

    (b)Popovic J,Cakan R D,Tornow J,et al.Small,2011,7:1127-1135

    [8]Yao R M,Cao C B,Bai J.CrystEngComm,2013,15:3279-3283

    [9]Ye J F,Liu W,Cai J G,et al.J.Am.Chem.Soc.,2011,133: 933-940

    [10]Mo M S,Lim S H,Mai Y W,et al.Adv.Mater.,2008,20: 339-342

    [11](a)Li Z H,Gener André,Richters J P,et al.Adv.Mater., 2008,20:1279-1285

    (b)Wang S S,Xu A W.CrystEngComm,2013,15:376-381

    (c)Liu Z,Wen X D,Wu X L,et al.J.Am.Chem.Soc.,2009, 131:9405-9412

    [12]Zhou N,Uchaker E,Wang H Y,et al.RSC Adv.,2013,3: 19366-19374

    [13]Sun J X,Chen G,Pei J,et al.J.Mater.Chem.,2012,22: 5609-5614

    [14](a)Tachikawa T,Zhang P,Bian Z F,et al.J.Mater.Chem. A,2014,2:3381-3388

    (b)Thachepan S,Li M,Mann S.Nanoscale,2010,2:2400-2405

    [15]Jongen N,Bowen P,Lemaitre J,et al.J.Colloid Interface Sci.,2000,226:189-198

    [16]Johannes I,Bots P,Kulak A,et al.Adv.Funct.Mater., 2013,23:1965-1973

    [17]Yuwono V M,Burrows N D,Soltis J A,et al.J.Am.Chem. Soc.,2010,132:2163-2165

    [18]Zhou Y,Wang X Y,Wang H,et al.Dalton Trans.,2014,43: 4711-4719

    [19]Dang F,Hoshino T,Oaki Y Y,et al.Nanoscale,2013,5: 2352-2357

    [20]Song R Q,Xu A W,Antonietti M,et al.Angew.Chem.Int. Ed.,2009,48:395-399

    [21]Liu Y Q,Kumar A,Fan Z,et al.Appl.Phys.Lett.,2013, 102:232903(1-5)

    [22](a)Fang J X,Ding B J,Song X P.Appl.Phys.Let.,2007,91: 083108(1-3)

    (b)Fang J X,Ding B J,Song X P,et al.Appl.Phys.Lett., 2008,92:173120(1-3)

    (c)Fang J X,Ding B J,Song X P.Cryst.Grow.Des.,2008,8: 3617-3622

    [23]Fang Z,Long L Y,Hao S H,et al.CrystEngComm,2014, 16:2061-2069

    [24](a)Guo X H,Yu S H.Cryst.Grow.Des.,2007,7:354-359

    (b)Guan M Y,Zhu G X,Shang T M,et al.CrystEngComm, 2012,14,6540-6547

    [25](a)Wang M S,Zhang Y P,Zhou Y J,et al.CrystEngComm, 2013,15:754-763

    (b)Park N H,Wang Y F,Seo W S,et al.CrystEngComm, 2013,15:679-685

    [26]Puntes V F,Krishnan K M,Alivisatos A P.Science,2001, 291:2115-2117

    [27]Xiemuxiding Abula(謝木西丁·阿布拉),Beysen Sadeh(拜山·沙德克),Mutila Aman(木提拉·阿曼),et al.Chinese J. Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)),2012,28(7):1403-1408

    [28]HE Wen-Qi(賀文啟),XIAO Yong(肖勇),CHENG Jia-Liang (成嘉亮),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2010,26(9):1685-1689

    [29]An K,Lee N,Park J,et al.J.Am.Chem.Soc.,2006,128: 9753-9760

    [30]YANG Pei-Xia(楊培霞),AN Mao-Zhong(安茂忠),SU Cai-Na(蘇彩娜),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報(bào)), 2007,23(9):1501-1504

    [31]Liu X,Yi R,Wang Y,et al.J.Phys.Chem.C,2007,111: 163-167

    [32]Zhu L P,Xiao H M,Zhang W D,et al.Cryst.Growth Des., 2008,8:1113-1118

    [33]Cao M H,Liu T F,Gao S,et al.Angew.Chem.Int.Ed., 2005,44:4197-4201

    [34]Bao J C,Tie C Y,Xu Z,et al.Adv.Mater.,2002,14:44-47

    Flower-Like Mesocrystal Cobalt:Controllable Synthesis in Large Scale and Magnetic Property

    GUAN Ming-Yun1,2JIAN Yan1SUN Jian-Hua1,2XU Zheng*,2
    (1Jiangsu Key Laboratory of Precious Metals Chemistry,School of Chemistry and Environmental Engineering,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China)
    (2State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering, Nanjing University,Nanjing 210093,China)

    Using diethylenetriamine(DETA)as coordination agent,a well-defined flower-like cobalt mesocrystal was synthesized rapidly by nanoparticles self assembly in oriented fashion.By adjusting reaction rate and kind of coordination agents,morphologies of cobalt can be transformed from nice-look flower,via poor-look dendrite,to microsphere composed of nanoparticles or nanoplates.DETA plays an important role in the formation process of cobalt mesocrystal.The possible formation mechanism is proposed.The cobalt mesocrystals not only exhibit Co nanocrystals property(an enhanced coercive force being 260 Oe at 300 K),but also have bulk Co property (saturation magnetization being 168 emu·g-1).The synthesis method in large scale is facile and effective with high yield.

    cobalt;crystallization assembly;mesocrystal;oriented attachment

    TQ050.4

    A

    1001-4861(2015)03-0619-08

    10.11862/CJIC.2015.084

    2014-11-03。收修改稿日期:2014-12-23。

    國家973重點(diǎn)建設(shè)項(xiàng)目基礎(chǔ)研究項(xiàng)目(No.2007CB936302),國家自然科學(xué)基金-面上項(xiàng)目(No.21373103),江蘇省自然科學(xué)基金-面上項(xiàng)目(No.BK2011260)資助項(xiàng)目。

    *通訊聯(lián)系人。E-mail:zhengxu@nju.edu.cn

    猜你喜歡
    花狀化工學(xué)院配位
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    德不配位 必有災(zāi)殃
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    《化工學(xué)報(bào)》贊助單位
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    三維花狀Fe2(MoO4)3微米球的水熱制備及電化學(xué)性能

    在线a可以看的网站| 51午夜福利影视在线观看| 亚洲国产色片| 两个人看的免费小视频| 全区人妻精品视频| 18禁国产床啪视频网站| www.www免费av| 色av中文字幕| 成人永久免费在线观看视频| av天堂在线播放| 十八禁网站免费在线| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 欧美区成人在线视频| 天堂av国产一区二区熟女人妻| 美女 人体艺术 gogo| av片东京热男人的天堂| 脱女人内裤的视频| 国产毛片a区久久久久| 国内少妇人妻偷人精品xxx网站| 日韩成人在线观看一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲性夜色夜夜综合| 国模一区二区三区四区视频| 免费在线观看亚洲国产| 最近最新中文字幕大全电影3| 亚洲无线观看免费| 欧美三级亚洲精品| 欧美一区二区精品小视频在线| 少妇人妻一区二区三区视频| 日本 av在线| 少妇的逼好多水| 国产高清有码在线观看视频| 国模一区二区三区四区视频| 男人的好看免费观看在线视频| 亚洲精品乱码久久久v下载方式 | 男女之事视频高清在线观看| 国产日本99.免费观看| 看免费av毛片| 国产乱人视频| 噜噜噜噜噜久久久久久91| 别揉我奶头~嗯~啊~动态视频| 亚洲在线观看片| 久久精品91蜜桃| 黄片小视频在线播放| 日韩欧美精品免费久久 | av天堂中文字幕网| 高清日韩中文字幕在线| 久久性视频一级片| 精品一区二区三区av网在线观看| 久久久久久人人人人人| 噜噜噜噜噜久久久久久91| 在线免费观看不下载黄p国产 | 午夜精品一区二区三区免费看| 成年女人看的毛片在线观看| 国产三级黄色录像| 久久久国产成人精品二区| 欧美日本视频| 在线视频色国产色| 狠狠狠狠99中文字幕| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区 | 国产亚洲欧美在线一区二区| 成人鲁丝片一二三区免费| 国产精品亚洲美女久久久| 男女午夜视频在线观看| 国产精品久久久久久人妻精品电影| 成人亚洲精品av一区二区| 国产精品国产高清国产av| 少妇丰满av| 亚洲黑人精品在线| 国产精品 欧美亚洲| 亚洲专区国产一区二区| 国产国拍精品亚洲av在线观看 | 成人特级黄色片久久久久久久| 国产私拍福利视频在线观看| 亚洲av免费高清在线观看| 午夜精品一区二区三区免费看| 99久久久亚洲精品蜜臀av| 国产黄a三级三级三级人| 午夜精品久久久久久毛片777| 99精品在免费线老司机午夜| 制服人妻中文乱码| 国语自产精品视频在线第100页| 久久精品国产自在天天线| 天天躁日日操中文字幕| 午夜精品一区二区三区免费看| 一进一出抽搐gif免费好疼| 国产一区二区在线av高清观看| 国产真实乱freesex| 麻豆一二三区av精品| 日韩免费av在线播放| 久久精品综合一区二区三区| 非洲黑人性xxxx精品又粗又长| 99久久99久久久精品蜜桃| 日本五十路高清| 免费大片18禁| 日本在线视频免费播放| 黄色日韩在线| 天堂√8在线中文| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 成人午夜高清在线视频| 两个人看的免费小视频| 最好的美女福利视频网| 久久久久国内视频| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放| 国产久久久一区二区三区| 精品不卡国产一区二区三区| 久久久久久大精品| 久久久国产成人精品二区| 又黄又爽又免费观看的视频| 88av欧美| 一进一出抽搐动态| 日本熟妇午夜| 亚洲av美国av| 黄色片一级片一级黄色片| 在线观看舔阴道视频| 五月伊人婷婷丁香| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 女人高潮潮喷娇喘18禁视频| 最近最新免费中文字幕在线| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 国产精品自产拍在线观看55亚洲| 尤物成人国产欧美一区二区三区| 91字幕亚洲| 欧美一区二区亚洲| 色尼玛亚洲综合影院| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看 | 老熟妇仑乱视频hdxx| 亚洲狠狠婷婷综合久久图片| 亚洲欧美精品综合久久99| 三级男女做爰猛烈吃奶摸视频| 日本精品一区二区三区蜜桃| 欧美黄色淫秽网站| 亚洲电影在线观看av| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| 欧美+亚洲+日韩+国产| 免费观看人在逋| 久久久久精品国产欧美久久久| 国产午夜福利久久久久久| 国产精品三级大全| 亚洲国产中文字幕在线视频| 男人舔奶头视频| 久久久久久久精品吃奶| 看片在线看免费视频| 午夜福利18| 欧美成人a在线观看| 亚洲av成人精品一区久久| 中文字幕av成人在线电影| 香蕉丝袜av| 国产精品 欧美亚洲| av在线蜜桃| 嫩草影院精品99| 精品久久久久久成人av| 亚洲成人久久性| 日韩欧美免费精品| 99热这里只有是精品50| 日本与韩国留学比较| 欧美成人a在线观看| 怎么达到女性高潮| 男女下面进入的视频免费午夜| 欧美乱妇无乱码| 91在线观看av| 一进一出好大好爽视频| 欧美色欧美亚洲另类二区| 老熟妇乱子伦视频在线观看| 久久精品影院6| 国产69精品久久久久777片| 精品福利观看| 久久精品影院6| 少妇的丰满在线观看| 在线观看免费视频日本深夜| 欧美一区二区亚洲| 啦啦啦韩国在线观看视频| 亚洲乱码一区二区免费版| 亚洲精华国产精华精| 麻豆一二三区av精品| 国产精品香港三级国产av潘金莲| 狂野欧美白嫩少妇大欣赏| 国产精品乱码一区二三区的特点| 97超视频在线观看视频| 在线看三级毛片| 国语自产精品视频在线第100页| 19禁男女啪啪无遮挡网站| 亚洲欧美精品综合久久99| 国产一区二区三区视频了| av在线天堂中文字幕| 在线播放国产精品三级| 亚洲精品一区av在线观看| 最近最新免费中文字幕在线| 欧美乱色亚洲激情| 美女黄网站色视频| 校园春色视频在线观看| 神马国产精品三级电影在线观看| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 日韩欧美国产一区二区入口| 亚洲成av人片免费观看| 免费无遮挡裸体视频| 国产一区二区亚洲精品在线观看| 欧美中文综合在线视频| 欧美日本亚洲视频在线播放| 在线观看日韩欧美| 亚洲人成网站在线播放欧美日韩| 18禁美女被吸乳视频| 亚洲欧美日韩高清在线视频| 91av网一区二区| 欧美成狂野欧美在线观看| 免费看光身美女| 亚洲av成人av| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 18禁美女被吸乳视频| 怎么达到女性高潮| 香蕉av资源在线| aaaaa片日本免费| 欧美日韩综合久久久久久 | 亚洲成人精品中文字幕电影| 成人性生交大片免费视频hd| 亚洲中文字幕日韩| 香蕉丝袜av| 欧美一级a爱片免费观看看| 18禁黄网站禁片免费观看直播| 久久精品国产99精品国产亚洲性色| 国产极品精品免费视频能看的| 日本a在线网址| 中文字幕久久专区| 国产精品久久久久久精品电影| 一级黄片播放器| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 天堂av国产一区二区熟女人妻| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 精品电影一区二区在线| 中亚洲国语对白在线视频| 人人妻人人看人人澡| 99久久精品热视频| 精品午夜福利视频在线观看一区| 婷婷精品国产亚洲av在线| 高清毛片免费观看视频网站| 国产精品亚洲美女久久久| 老汉色av国产亚洲站长工具| 日本三级黄在线观看| 人人妻,人人澡人人爽秒播| 俺也久久电影网| 国产精品99久久久久久久久| 亚洲av电影在线进入| 国产 一区 欧美 日韩| 国产真实伦视频高清在线观看 | 欧美成人一区二区免费高清观看| 欧美高清成人免费视频www| 久久久成人免费电影| 97超级碰碰碰精品色视频在线观看| 999久久久精品免费观看国产| 日日干狠狠操夜夜爽| 看黄色毛片网站| 免费电影在线观看免费观看| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 一级作爱视频免费观看| 国产老妇女一区| 亚洲七黄色美女视频| 亚洲av中文字字幕乱码综合| 亚洲国产欧洲综合997久久,| 黑人欧美特级aaaaaa片| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| 一区二区三区高清视频在线| 麻豆国产av国片精品| 三级男女做爰猛烈吃奶摸视频| 性色av乱码一区二区三区2| 99久久精品一区二区三区| 香蕉av资源在线| 午夜福利成人在线免费观看| 亚洲精品日韩av片在线观看 | 999久久久精品免费观看国产| 一个人观看的视频www高清免费观看| 久久精品国产综合久久久| 亚洲av成人av| 午夜精品一区二区三区免费看| 99久久精品热视频| 亚洲国产精品久久男人天堂| 一区福利在线观看| 色综合欧美亚洲国产小说| 国产精品久久久久久亚洲av鲁大| 无人区码免费观看不卡| 色哟哟哟哟哟哟| 精品久久久久久久末码| 老司机在亚洲福利影院| av视频在线观看入口| 国产熟女xx| 床上黄色一级片| 国产精品一区二区免费欧美| 国产欧美日韩一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 日本五十路高清| 国产成人aa在线观看| 国产精品久久久久久久电影 | 日韩欧美 国产精品| 日韩欧美精品免费久久 | www.色视频.com| 中出人妻视频一区二区| 少妇人妻一区二区三区视频| 老司机午夜福利在线观看视频| 国产精品久久久久久亚洲av鲁大| 精品无人区乱码1区二区| 日韩欧美 国产精品| 国产亚洲精品久久久com| 变态另类成人亚洲欧美熟女| 国模一区二区三区四区视频| 婷婷亚洲欧美| 老鸭窝网址在线观看| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| netflix在线观看网站| 国产三级黄色录像| 一区二区三区国产精品乱码| 午夜福利免费观看在线| 在线播放无遮挡| 色综合站精品国产| 中文字幕av在线有码专区| 亚洲精品粉嫩美女一区| 成人欧美大片| 久久香蕉国产精品| 国产激情偷乱视频一区二区| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 一个人免费在线观看的高清视频| 中文字幕av在线有码专区| 女生性感内裤真人,穿戴方法视频| 国产在线精品亚洲第一网站| 波多野结衣高清作品| 国产aⅴ精品一区二区三区波| 男女做爰动态图高潮gif福利片| 狂野欧美激情性xxxx| 亚洲真实伦在线观看| 亚洲av免费高清在线观看| 韩国av一区二区三区四区| 99精品欧美一区二区三区四区| 内地一区二区视频在线| 97碰自拍视频| 国产亚洲精品久久久com| 国产精品久久久久久久电影 | av天堂在线播放| 99热6这里只有精品| 日韩精品青青久久久久久| 黄色片一级片一级黄色片| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 精品一区二区三区人妻视频| av女优亚洲男人天堂| 三级国产精品欧美在线观看| 午夜精品久久久久久毛片777| 国产高潮美女av| 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| 欧美丝袜亚洲另类 | 国产免费一级a男人的天堂| 禁无遮挡网站| 国产精品综合久久久久久久免费| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区 | 免费人成在线观看视频色| 免费高清视频大片| 一级毛片高清免费大全| 叶爱在线成人免费视频播放| 国产精品99久久久久久久久| 久久久久久久精品吃奶| 麻豆成人av在线观看| 精品久久久久久久末码| 动漫黄色视频在线观看| 一级作爱视频免费观看| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 亚洲国产精品999在线| 女人被狂操c到高潮| 午夜福利18| 国产精品久久久久久久久免 | 国产av不卡久久| 窝窝影院91人妻| 欧美日韩中文字幕国产精品一区二区三区| 午夜日韩欧美国产| 搡老妇女老女人老熟妇| 欧美日韩精品网址| www.www免费av| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 久久精品91蜜桃| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| av天堂在线播放| 国产精品亚洲av一区麻豆| 丁香欧美五月| 亚洲不卡免费看| 午夜免费观看网址| 国产色婷婷99| or卡值多少钱| 欧美激情久久久久久爽电影| 男人和女人高潮做爰伦理| 一区二区三区高清视频在线| 国产视频内射| av欧美777| www.熟女人妻精品国产| 深夜精品福利| 看片在线看免费视频| 乱人视频在线观看| 成人国产综合亚洲| 日韩欧美精品免费久久 | 床上黄色一级片| 久久久久久久久中文| 国内毛片毛片毛片毛片毛片| 国产黄片美女视频| 日本一二三区视频观看| 久久精品人妻少妇| 性欧美人与动物交配| 欧美在线黄色| 国产综合懂色| 丰满乱子伦码专区| 欧美绝顶高潮抽搐喷水| 国产精品 国内视频| 国产精品亚洲一级av第二区| av女优亚洲男人天堂| 欧美又色又爽又黄视频| 欧美一级毛片孕妇| 91麻豆精品激情在线观看国产| 日本一本二区三区精品| 淫秽高清视频在线观看| 天天一区二区日本电影三级| 亚洲成av人片在线播放无| 欧美一区二区亚洲| 欧美最新免费一区二区三区 | 久久精品国产99精品国产亚洲性色| eeuss影院久久| www.熟女人妻精品国产| 亚洲精品粉嫩美女一区| 久久精品国产亚洲av涩爱 | 国产色爽女视频免费观看| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www| av视频在线观看入口| 国产视频一区二区在线看| 国产欧美日韩一区二区精品| 亚洲美女黄片视频| 精品久久久久久久久久久久久| 日本精品一区二区三区蜜桃| 中文资源天堂在线| 母亲3免费完整高清在线观看| 国产亚洲精品久久久久久毛片| 欧美日韩一级在线毛片| 亚洲精品日韩av片在线观看 | 久久精品国产自在天天线| 中文在线观看免费www的网站| 国产av不卡久久| 久久久久免费精品人妻一区二区| 亚洲黑人精品在线| 亚洲成人久久性| 美女高潮的动态| 国产蜜桃级精品一区二区三区| 天堂网av新在线| 欧美日韩中文字幕国产精品一区二区三区| 成人高潮视频无遮挡免费网站| a在线观看视频网站| 中文字幕av成人在线电影| 少妇的丰满在线观看| 午夜免费观看网址| 人人妻人人看人人澡| 久久6这里有精品| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| www日本黄色视频网| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 色老头精品视频在线观看| 亚洲五月婷婷丁香| av中文乱码字幕在线| 亚洲不卡免费看| 变态另类丝袜制服| www日本在线高清视频| 成人无遮挡网站| 精品电影一区二区在线| 一卡2卡三卡四卡精品乱码亚洲| 国产成年人精品一区二区| 中文资源天堂在线| 亚洲精品久久国产高清桃花| 又粗又爽又猛毛片免费看| 欧美极品一区二区三区四区| 亚洲18禁久久av| 搡老熟女国产l中国老女人| 久久精品91无色码中文字幕| 欧美一区二区精品小视频在线| 99久国产av精品| 久久久久久久久久黄片| 欧美日本视频| 性色avwww在线观看| 日韩精品青青久久久久久| 亚洲国产中文字幕在线视频| 亚洲精品国产精品久久久不卡| 成人高潮视频无遮挡免费网站| 国产亚洲精品久久久com| 男女午夜视频在线观看| 国产 一区 欧美 日韩| 天天添夜夜摸| 亚洲人成网站在线播放欧美日韩| 日本撒尿小便嘘嘘汇集6| 久久久成人免费电影| 看黄色毛片网站| 亚洲精华国产精华精| 好男人电影高清在线观看| 内地一区二区视频在线| 亚洲国产欧美人成| 亚洲av二区三区四区| bbb黄色大片| 男人舔女人下体高潮全视频| 国产欧美日韩精品一区二区| av视频在线观看入口| 两个人的视频大全免费| 精品午夜福利视频在线观看一区| 亚洲熟妇熟女久久| 国内精品一区二区在线观看| 男人和女人高潮做爰伦理| 91av网一区二区| 日韩大尺度精品在线看网址| 91在线精品国自产拍蜜月 | 欧美中文日本在线观看视频| 黄片小视频在线播放| 久久久久免费精品人妻一区二区| 国产成人影院久久av| 免费看a级黄色片| 久久国产精品人妻蜜桃| 我要搜黄色片| 三级国产精品欧美在线观看| 成人亚洲精品av一区二区| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区三区四区免费观看 | 国产精品99久久99久久久不卡| 国产成人aa在线观看| 久久这里只有精品中国| 午夜视频国产福利| 精品久久久久久久末码| av中文乱码字幕在线| 真实男女啪啪啪动态图| 制服丝袜大香蕉在线| 国内精品美女久久久久久| 欧美成人免费av一区二区三区| 国产成人福利小说| 白带黄色成豆腐渣| 国内精品久久久久久久电影| 精品乱码久久久久久99久播| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三区视频在线 | 国产精品电影一区二区三区| 99国产精品一区二区蜜桃av| 亚洲专区中文字幕在线| 国产精品 欧美亚洲| 亚洲狠狠婷婷综合久久图片| 动漫黄色视频在线观看| 亚洲av不卡在线观看| 欧美日韩中文字幕国产精品一区二区三区| 在线a可以看的网站| 欧美丝袜亚洲另类 | 91麻豆精品激情在线观看国产| 一本综合久久免费| 1024手机看黄色片| 搡女人真爽免费视频火全软件 | 国产亚洲欧美在线一区二区| 麻豆成人av在线观看| 欧美黄色淫秽网站| 亚洲内射少妇av| 欧美日韩精品网址| 国产视频内射| 国产欧美日韩精品亚洲av| 欧美日韩精品网址| 两人在一起打扑克的视频| 日韩欧美三级三区| 成人国产综合亚洲| 免费在线观看成人毛片| 男女床上黄色一级片免费看| 老熟妇乱子伦视频在线观看| 国产日本99.免费观看| 亚洲国产欧洲综合997久久,| 精品福利观看| 日本黄色片子视频| 床上黄色一级片| 欧美日韩综合久久久久久 | 久久亚洲真实| 最好的美女福利视频网| 一级毛片女人18水好多| 母亲3免费完整高清在线观看| 亚洲精品一区av在线观看| 中文字幕久久专区| 欧美成人一区二区免费高清观看| 在线视频色国产色| 午夜视频国产福利| 国产亚洲av嫩草精品影院| 午夜a级毛片| 一本综合久久免费| 日韩有码中文字幕| 香蕉av资源在线| 亚洲国产精品合色在线| 久久久久性生活片| 天堂√8在线中文| 日本成人三级电影网站| 欧美一级毛片孕妇|