• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    浸漬/共沉淀法對BaO改性單Pd催化劑凈化甲醇汽油車尾氣性能的影響

    2015-06-01 10:30:48張雪喬田浩杞葉芝祥陳耀強
    無機化學學報 2015年1期
    關鍵詞:工程學院X射線成都

    張雪喬 田浩杞 葉芝祥 陳耀強

    (1成都信息工程學院資源環(huán)境學院,成都610225)

    (2四川大學催化材料科學研究所,成都610064)

    浸漬/共沉淀法對BaO改性單Pd催化劑凈化甲醇汽油車尾氣性能的影響

    張雪喬1,2田浩杞1葉芝祥1陳耀強*,2

    (1成都信息工程學院資源環(huán)境學院,成都610225)

    (2四川大學催化材料科學研究所,成都610064)

    采用浸漬和共沉淀兩種方法分別制備了BaO改性的Pd/CeO2-ZrO2-La2O3-Al2O3催化劑。運用N2吸附-脫附,X射線衍射(XRD),H2程序升溫還原(H2-TPR),NH3程序升溫脫附(NH3-TPD),透射電子顯微鏡(TEM)和X射線光電子能譜(XPS)對催化劑進行表征,并考察其對甲醇,CO,C3H8和NO的催化性能?;钚詼y試結果表明,BaO的引入可明顯改善Pd催化劑對甲醇,CO,C3H8和NO的催化活性,且浸漬法最佳,起燃溫度(T50)分別降低了43,31,45和35℃。XRD,H2-TPR及XPS結果表明,浸漬法引入BaO主要通過表面改性方式,強化Pd-Ce界面間的相互作用,改善催化劑的還原性能,進而提高催化劑的低溫活性;而共沉淀法則是通過結構改性方式增加CeO2晶格缺陷,加速活性氧物種的流動,Ce3+濃度的增加是促使CO氧化活性顯著提高的主要原因。

    氧化鋇;鈀;鈰;甲醇;催化轉化

    Alternative fuels become important research interests owing to an increased concern on environmental protection and the need to reduce the dependency on petroleumoil[1].Methanol(orits mixture with gasoline)has been suggested as an alternative fuel due to its larger octane number and less air pollution[2].Although vehicles operating on the gasoline-methanol fuel produce an exhaust with a lower carbon monoxide(CO),hydrocarbons(HCs)and nitrogen oxides(NOx),etc,it emits various partial oxidationproductssuchasformaldehydeand unburned methanol vapor[3],which are harmful to the environment.Therefore,it is crucial to develop an efficient catalyst for purification of methanol,CO,HCs and NOx,simultaneously.

    Pd-based catalysts have attracted much attention for its lower price,more facilities and higher activity for the oxidation of HCs and CO compared with Rh,Ptbased catalysts.Ceria species widely used in three-way catalysts(TWC)exhibit a multiple effects on catalytic performance,such as increasing in oxygen storage capacity(OSC)of TWC[4],improving CO and NO conversion[5],promotinglow temperaturewater-gas shift[6],stabilizing noble metal dispersion[7]and minimizing the thermally induced sintering ofsupports[8]. Hence,increasing attentions are focused on TWC with Pd species as catalytic active sites and ceria as the support[9-10].Barium oxide(BaO)is regarded an effective promoter for improving OSC of ceria-zirconia[11],NOxstorage capacity[12],and thermal stability of ceria-based catalysts,etc[13].Moreover,BaO can also improve catalytic activity for the conversion of CO,HC,NOxin vehicle exhaust[14].So far,there have been available many kinds of introduction methods,including microemulsion[15],sol-gel[16],impregnation[17]and co-precipitation methods[18].These preparation methods play an important role in promoting the performance of the catalyst.However,BaO-modifiedPdcatalystsby different methods to purify methanol exhaust have not yet been reported,to the best of our knowledge.

    In the present work, Pd-BaO catalysts modified by impregnation/co-precipitation method were preparedand applied in purification of gasoline-methanol exhaust.The effect of preparation methods on textural, structural,redox,acidity,electronpropertiesand catalytic performance was investigated.

    1 Experimental

    1.1 Catalyst preparation

    Ce0.45Zr0.45La0.1O1.95-Al2O3(CZLA)solid solution was preparedbyco-precipitationmethodfromthe corresponding raw materials:Ce(NO3)3·6H2O,ZrOCO3· H2O,La(NO3)3·6H2O and Al(NO3)3·9H2O.The precipitates were filtered, washed, dried at 105 ℃ overnight, and then calcined at 600 ℃ in air for 3 h to obtain CZLA support. The theoretical mass percentage of Al2O3in the oxides is 50.0%.

    To obtain the Pd/CZLA-Ba mixed oxides prepared by co-precipitation method(co-catBa),the BaO-doped Ce0.45Zr0.45La0.1O1.95-Al2O3(CZLA-Ba)was prepared according to the same process for CZLA; then Pd(NO3)2aqueous solution was deposited on CZLA-Basuppor tmaterials by in cipient wetness method.The obtained sample was dried and calcined at 550℃for 3 h.The resulting powders were milled with desired deionized water to obtain slurry,then the resulting slurry was washcoated onto a honeycomb cordierite(2.5 cm3,the weight was 1.1 g,Corning, America).The loading of washcoat was kept about 140 g·L-1.The washcoated catalysts were dried at 120℃for 2 h and calcined at 550℃for 3 h.Another type ofBaO-loadedPd-Ba/CZLAmixedoxideswas obtained by impregnation method(im-catBa).The asprepared CZLA powders were impregnated in the aqueoussolutionofBa(NO3)2andPd(NO3)2..The successive process followed was the same as the process for Pd/CZLA-Ba.The loadings of Pd and BaO relativetosupportwere2.0wt%and5.0wt%, respectively.Inordertocompare,thePd/CZLA sample without BaO(cat0)was prepared.

    1.2 Catalysts characterization

    Textural properties were evaluated by low temperaturenitrogenadsorption-desorptionona QUADRASORB SI Automated Surface Area&Pore Size Analysizer(U.S.).The samples were evacuated at 300℃for 3 h.

    X-ray diffraction(XRD)patterns of catalysts were recorded on a DX-1000 X-ray diffractometer operated at 30 kV and 20 mA,using Cu Kα radiation(λ=0.154 18 nm).The crystalline phases were identified according to PDF(The Powder Diffraction File)reference data from International Centre for Diffraction Data(ICDD) of Joint Committee on Powder Diffraction Standards (JCPDS).

    Hydrogen temperature-programmed reduction (H2-TPR)experiments were performed in a selfassembledexperimental setup with a thermal conductivity detector. All samples(100 mg)were pretreated in a quartz tubular micro-reactor in a flow of pure N2at 500℃for 1 h,and then cooled down to room temperature.The reduction was carried out in a flow of 5%H2-95%N2from 200 to 1 000℃with a heating rate of 8℃·min-1.

    Temperature-programmed desorption of NH3NH3(NH3-TPD)experiments were carried out in a fixedbed quartz reactor.A typical sample mass of 80 mg and a gas flow rate of 30 mL·min-1were used during the experiments.The experiment included four stages: (1)degasification of the sample in Ar at 400℃for 1 h to clear surface,(2)adsorbed 2%NH3at room temperature for 1 h,(3)isothermal desorption in Ar at room temperature until no NH3was detected and(4) temperature programmed desorption in Ar at 10℃· min-1up to 550℃.The detector was a thermal conductivity detector.

    The size of the precipitates was observed with transmission electron microscopy(TEM)using a Tecnai G2 F20 S-TWIN apparatus operated at 200 kV.

    X-ray photoelectron spectroscopy(XPS) measurements were performed on a spectrometer(XSAM-800,KRATOS Co)using Mg Kα radiation (hν=1 486.6 eV)under ultra-high vacuum condition. The binding energy was determined by reference to the C1s binding energy of 284.8 eV.

    1.3 Activity evaluation

    The catalytic purification for methanol exhaust was evaluated in a continuous flow fixed-bed reactor by passing mixed gases similar to the gasohol exhaust,and the gases were regulated using mass-flow controllers.The simulated exhaust gas was a mixture of 0.5%~0.6%CO,0.07%~0.08%C3H8,0.08%~0.09%NO,1.9%~2.2%O2,0.02%~0.03%methanol, and N2as the balance gas.The gas space velocity was 30 000 h-1.The organic reaction products were analyzed by gas chromatography(GC-2000,China)equipped with FID detector and a Porapak-Q column.The concentrations of CO,HC,NO,O2and CO2were analyzed online by a five-component FGA-4001.

    2 Results and discussion

    2.1 XRD

    The XRD patterns of Ba-modified Pd/CZLA are shown in Fig.1.

    Fig.1 XRD patterns of Pd/CeO2-ZrO2-La2O3-Al2O3(Pd/CZLA)doped by BaO

    As seen from Fig.1,all of the diffractograms show the main reflections typical of a cubicfluoritestructured material,with fcc unit cells at 29.0°,33.6°, 48.2°,and 58.6°,corresponding to the(111),(200), (220)and(311)planes[14,19].Forco-catBa,no diffraction peaks for BaO are detected,indicating that Ba2+ions are doped into CeO2-ZrO2framework forming homogeneous CeO2-ZrO2solid solutions.Based on BraggslawandScherrerformula,thelattice parameters and crystallite sizes of all samples are calculated and the results are listed in Table 1.It can be observed that the lattice parameter of co-catBa is larger than that of cat0.The ionic radius of Ba2+(0.134 nm)is larger than that of Ce4+/Ce3+(0.097 nm/ 0.114 nm)or Zr4+(0.084 nm).Therefore,the addition of Ba2+into the CeO2-ZrO2lattice will result in lattice expansion.However,the lattice parameter of im-catBa is smaller than that of cat0.The diffraction peak reveals the phase segregation for the mixed oxide, with the presence of characteristic Ba2AlLaO5phase peaks.It may be resulted from the fact that due to bigger radius of La3+(0.106 nm)than that of Ce4+,a portion of La3+ions has been extracted from the mixed oxides and combined with Ba2+forming the Ba2AlLaO5, which leads to the significant lattice shrinkage of imcatBa.The similar result has been reported by other groups[20].The XPS results in the following discussion will give more details on this point.So,it can be considered that co-precipitation method will lead to most Ba2+ions into the CeO2-ZrO2lattice,while the impregnation method can lead to the most Ba2+ions remaining on the surface of samples.Besides,no visible PdO or metallic Pd is present in the XRD patterns for all the catalysts,indicating that the content of Pd is too low to be detected or that the Pd particles are well dispersed on the supports.

    Table1 Textural and structural properties of Pd/CZLA mixed oxides doped by BaO

    2.2 Nitrogen adsorption-desorption

    The textural properties of Pd catalysts modified by BaO with different methods are summarized in Table 1.As shown in Table 1,BET specific surface area of the im-catBa and co-catBa catalyst is 192 m2· g-1and 147 m2·g-1,smaller than that of cat0(276 m2· g-1).But the average pore diameters are obviously affected and even increased from 5.1 nm to 7.9 nm (im-catBa)and 7.4 nm(co-catBa),respectively.This reveals that the introduction of BaO by two methods does not increase the surface area of samples but can broaden the average pore diameter.The cumulative pore volume of im-catBa is 0.33 mL·g-1,higher than that of co-catBa(0.22 mL·g-1).This phenomenon may be resulted from the blocking of small pores or the formation of larger ones.It is confirmed by the increase of the average pore diameter.The same conclusion is alsoreportedinref.[21].Moreover, previous studies consider that this result can be explained by the formation of new phases[22].So the increased pore volume may be resulted from the presence of Ba2AlLaO5as detected by XRD.The bigger pore volume and average pore diameter are beneficial to the adsorption/desorption of reaction species,leading to an improvement of the catalytic activity.This is further confirmed by the result of the catalytic performance of the mterial.In summary,the textural properties of Pd catalyst are enhanced by two different preparation methods and the impregnation method is superior to co-precipitation method.

    2.3 H2-TPR

    The TPR profiles of catalysts are shown in Fig.2. The TPR profile of cat0 shows two peaks β and γ at 150℃and 300℃,which are associated with the reduction of PdO species and surface oxygen of CeO2[23].In the case of BaO modified catalysts,the in tensity of the peak soverlow-temperatureis in creased with asimul taneous decrease of the intensityofthepeakγ.Andthereduction temperatures of peaks also shift to lower temperatures. There is a direct correlation between the peak area and the amount of reductive species.The reduction peak areas of co-catBa and im-catBa are larger than that of cat0.These demonstrate that the addition of Ba2+is beneficial for the reduction of PdO species and also can increase the amount of reductive species on the surface of Pd-based catalysts.

    Fig.2 H2-TPR profiles of Pd/CZLA doped by BaO with impregnation/co-precipitation

    Compared with cat0,the im-catBa catalyst shows two peaks α and β at 80℃and 110℃,which is attributed to the reduction of PdO species highly dispersed on the surface of the support and the interactionbetweenPdOandthesupport[24], respectively.But,unlike the im-catBa catalyst,cocatBa exhibits only one peak α below 200℃,and the intensity of α peak is obviously higher than that of im-catBa.It indicates that the introduction of BaO by co-precipitation clearly promotes the high dispersion of PdO species on the surface of the support and accelerates the reduction rate of PdO.However,the easierreductionofim-catBaandco-catBahas differentreasons.Fortheco-catBasample,the intensity of reduction peak of PdO specie dispersed on the surface of the support increases obviously.We mayattributethisphenomenontothestructural modification in the CeO2-ZrO2lattice when some Ce4+cations are substituted by Ba2+leading to the formation of more homogeneous solid solution.This is confirmed by XRD.As reported in refs[25-26],the introduction of Ba2+in CeO2-ZrO2lattice can induce structuredisorderandcreateadditionalanion vacancies,thus increasing the oxygen mobility in the bulk of solid solution,causing partial O2-anion diffusion from bulk to surface,and then increasing the reducibility of Pd catalyst.For the im-catBa sample, two reduction peaks α and β have been improved,and the shoulder peak β area is distinctly larger than that of peak α.This fact is mainly associated with the surface modification.The enrichment of Ba2+dispersed on the surface of samples prepared by impregnation method will promote the high dispersion of PdO species on the surface of the support,especially strengthentheinteractionbetweenPdOandthe support.So,except for the highly dispersed PdO,the Pd-CeinteractionspeciesformedinthePd-Ce interfaceisanothermainspecies.Inaddition, reference[27]reports that the hydrogen spillover may occur during the PdO reduction and promotes the reduction of CeO2-support.The presence of BaO strongly modifies the dispersion of PdO,facilitating diffusion of hydrogen between in PdO particles or PdO particles and the support,which favors the reduction of PdO and the ceria surface.

    Based on the above analyses,co-catBa prepared by co-precipitation has a better redox property than im-catBa prepared by impregnation.Different from the co-catBa samples with structural modification,there are two kinds of activity species in the im-catBa sample,such as highly dispersed PdO and the Pd-Ce species formed in the Pd-Ce interface.

    2.4 NH3-TPD

    Fig.3 shows the NH3-TPD of the samples doped by BaO with different methods.The desorption peak of the cat0 sample not only has the most wide temperature range from 100℃to 700℃,but also has the largest peak area.In addition,the NH3-TPD profileofun-dopedsampleexhibitsthree distinguished desorption peaks α,β and γ at 180,250and 500℃,respectively,which can be ascribed to the NH3desorption of weak acid sites,middle strong acid sites and strong acid sites on the surface of aluminumcontaining samples.

    Fig.3 NH3-TPD profiles of Pd/CZLA doped by BaO with impregnation/co-precipitation

    As for im-catBa and co-catBa,both the peak temperature and the peak area decrease,and the middle strong acid sites and strong acid sites nearly fade away. This is because that BaO is a basic alkaline compound. The addition of alkaline earth metal oxides will first neutralize some strong and middle strong acid sites on the surface,and then neutralize the weak acid sites, resulting in a decline in the surface acidity.Moreover, the peak area of co-catBa is smaller than that of imcatBa.This may be due to the following reasons:(1)the surface acid sites of catalysts are mainly determined by the number of hydroxyl groups on the surface of aluminum and the aluminum atoms,the more hydroxyl groups and aluminum atoms,the more H+and empty electron orbital[28].Combined with the results of XRD and H2-TPR,it can be inferred that co-precipitation method,leading to almost all of Ba2+ions into the CZ lattice,forming homogeneous solid solution,will result maximumneutralizationforallacidsites.The impregnation method only modifies the surface of the catalyst by promoting high dispersion of the PdO,which must neutralize part of the surface acid sites;(2) Furthermore,the amount of surface acidity vary in the order of cat0>im-catBa>co-catBa.This result corresponds well with the trend of BET specific surface area.According to the principle of NH3adsorption/ desorption,the higher surface area for a catalyst,the more surface acid sites.So,the decrease in surface area of im-catBa and co-catBa catalysts is a crucial factor leading to the decline of surface acid sites.The cocatBa has lesser amount of surface acidity than imcatBa.

    2.5 TEM

    TEM images of the catalyst after doping BaO by impregnation/co-precipitation method are shown in Fig. 4.From Fig.4(a)and(b),the average sizes of Pd particle for co-catBa and im-catBa are about 2 and 4 nm, respectively.The dispersion of Pd particles of co-catBa is seemingly higher than that of im-catBa.This may be due to the formation of homogeneous solid solutions as implied by XRD result,which leads to a more compact bond between Pd and the support.So the more highly dispersed Pd particles,the higher reducibility as proved by Wang et al[24].This conclusion is in good agreement with the result of H2-TPR in this work.Therefore,it can be concluded that doping with BaO by co-precipitation is more conductive to the dispersion of Pd particles than by impregnation.

    Fig.4 TEM images of Pd/CZLA doped by BaO with impregnation/co-precipitation

    2.6 XPS

    Fig.5 (a)and(b)show the XPS spectra of Pd3d and Ce3d after treatment by XPSPEAK,respectively. Table 2 summarizes the binding energy(BE)values and the surface atomic ratios calculated from XPS.

    Fig.5 Pd3d(a)and Ce3d(b)XPS spectra of catalysts

    Table2 Binding energy and surface composition results of three catalysts

    As shown in Table 2 and Fig.5(a),the binding energies of the Pd3d5/2electrons of all catalysts fall in the range of 336.4~337.0 eV.Recent XPS reference values for the binding energies of PdO and metallic Pd0are 336.8 and 335.2 eV,respectively[29].The bindingenergyofcat0Pd3d5/2is336.4eV, significantly higher than that of Pd0,but lower than that of PdO.It indicates that Pd exists in a partly oxidized state.Compared with the cat0,the Pd3d peaks of im-catBa and co-catBa shift to higher BE by 0.5~0.6 eV.As reported in Ref.[30],the addition of BaO could increase the electron density around PdO as an electron donor,resulting in a decrease in the binding energy value,which is in contrast to our results.In this study,the surface atomic ratios of Pd on the cat0,im-catBa and co-catBa are 0.22%,0.41% and 0.79%,respectively.According to the results of H2-TPR and TEM,it can be speculated that the binding energy shift is related with the increase of the Pd species dispersion.Furthermore,the Ce3d5/2BE values of im-catBa and co-catBa are all enhanced from881.8eVto882.5eVand882.2eV, respectively.Usually,thisphenomenoncanbe understood as the strong metal-support interaction (SMSI)effect[31].Unlike co-catBa,the im-catBa sample has more obvious increase for the Ce3d5/2BE values by 0.7 eV.This result implies that impregnation method is more beneficial to promote the Pd-Ce interaction than co-precipitation method.SMSI could change the surface chemical surrounding of PdO and CeO2forming chemical bonding such as Pd-O-Ce in the interface of palladium particles and the support. This is consisted with the result of H2-TPR.

    Fig.5 (b)shows the Ce3d XPS spectra of three samples.The peaks for Ce3d are complex,and they aresplitintotheCe3d5/2andCe3d3/2spin-orbit component of cerium ion.The peaks are assigned as V,V″and V″′for Ce3d5/2,while the corresponding Ce3d3/2peaks are labeled as U,U″and U″′[32]. According to the literatures[32-33],the peaks at V′,U″represent the presence of Ce3+,while characteristic peaks of Ce4+present at V,V″,V″′,U,U″,U″′.As seen from(b),all samples display characteristic peaks of Ce3+and Ce4+,which indicates that combination of Ce3+and Ce4+for cerium species coexists in the samples.The concentrations of surface Ce3+in the samples,obtainedbycalculatingtherelative integrated areas under the curve of each deconvoluted peaks,are shown in Table 2.From Table 2,the concentration of surface Ce3+over co-catBa is 26.57%, higherthanthatofim-catBa(25.84%).Theconcentrations of surface Ce3+vary in the order of cocatBa>im-catBa>cat0.The higher the Ce3+concentration is,the more Ce3+/Ce4+redox couples are. Therefore,the materials with higher Ce3+concentration will possess better redox property.This observation agrees well with the H2-TPR results.

    In addition,the quantitative XPS analysis(Table 2)shows a higher concentration of Ce,Zr,especially Al and La ions on the surface of im-catBa than that of cat0andco-catBa.Itfurthersubstantiatesthe formation of Ba2AlLaO5compound oxides.Moreover, the higher concentration of Ce and Zr ions on the surface of co-catBa may be related to the substitution Ba2+for Ce4+and Zr4+ions corresponding to the lattice expansion.These results have been confirmed by XRD.

    2.7 Catalytic performance of catalysts

    The catalytic activities of cat0,im-catBa and cocatBa catalysts for conversion of methanol,CO,C3H8and NO in the simulated exhaust gas are shown in Fig.6(a),(b),(c),(d).As seen from Fig.6,the conversion of methanol,CO,C3H8and NO over all catalysts increases continuously with the raising of temperature.Compared(a)and(b),it can be seen that the catalytic activity of co-catBa is lower for methanol conversion,but much higher for CO conversion than that of im-catBa.The data of light-off temperature(T50) and complete-conversion temperature(T90)obtained from Fig.6 are listed in Table 3.(T50and T90are used to evaluate the performances of catalysts.The T50and T90are the temperature at which a given pollutant conversion reaches 50%and 90%,respectively.)Compared with cat0,the T50of CO over co-catBa is 140℃, while over im-catBa is 160℃.These phenomena probably relate to the adsorption competition between CO and CH3OH on the surface of the catalyst.The interaction between the molecular CO and Pd atom can result in strongly adsorbed CO on the surface of PdcatalystandtheformationofthePd-CO complexes.The strong adsorption of CO on Pd catalyst isunfavorableformethanoloxidationsincea dominating adsorption of CO is achieved during the competition adsorption process[34].From H2-TPR,TEM and XPS characterizations,the co-catBa catalyst hasthe best reducibility,more highly dispersion,maximum surface Ce3+concentration and the most surface atomic ratio of Pd.So,the catalyst co-catBa has the best catalytic activity for CO conversion[35].Differently,the best catalytic activity for CH3OH conversion over the im-catBa catalyst may be related to the chemical bond Pd-O-Ce formed in the Pd-CZ interface.The doping of CZ into Pd catalyst will generate plenty of oxygen adspecies on the Pd/CeO2interface[36],which can be desorbed and participate in the methanol oxidation at lower temperature.Moreover,Arosio et al.[37]demonstrated that the interaction of Pd-Ce bond could contribute to the catalytic activity of Pd/CeO2for the methane oxidation.So it can be inferred that the higher activity for methanol conversion over the imcatBacatalystisrelatedwiththestrongPd-Ce interaction.

    Fig.6 Conversion of methanol(a),CO(b),C3H8(C),NO(d)as a function of reaction temperature under stoichiometric CH3OH+CO+C3H8+NO+O2

    Furthermore,we focus on studying C3H8and NO, which are the most difficult to convert in exhaust gases from gasoline-methanol vehicles.As seen from Fig.6(c),(d)and Table 3,the trend of catalytic activity for C3H8conversion is consistent with NO conversion. The conversion of C3H8and NO varies in the order of im-catBa>cat0>co-catBa.This may be ascribed to the propane-assisted decomposition of NO.Compared with the catalyst cat0,the T50of C3H8and NO over the catalyst im-catBa decreases by 31,35℃,but the T50increases by 35,75℃over the catalyst co-catBa.It is obvious that the addition of BaO with the impregnation method can be more effective to improve the catalytic activity,and with the co-precipitation method isnegative.TheactivityforNOreductionis dependent upon the amount of acidity,not just its strength,when saturated hydrocarbons are used as the reducing agent[38].Similarly the surface acidity of catalysts decreases due to the doping of alkaline earth metals,whichcausesadecreaseinpropane conversion[28].Soitisspeculatedthatthecoprecipitation method resulting the lowest acidity is the important reason leading to the decrease of the C3H8and NO conversion.

    However,im-catBa has less total acidity,but has better catalytic activity for C3H8and NO conversion. This may be resulted from following reasons:1)it is generally accepted that the NOx storage takes place on multiple types of barium sites which have different activities toward NOx storage reduction[39].BaO on the Pd-Ba-OSC/Al2O3catalyst surface can increases the amount of active sites for NOreactions at low temperature as suggested by Tanja et al[40].So it can be considered that the formation of Ba2AlLaO5phases may be beneficial to the conversion of NO;2)Pd ions areactivesitesforNO,C3H8adsorptionand activation.So the more surface enrichment of Pd species,the higher catalytic activity.On the other hand,the Pd-CZ interface where exists additional sites for oxidant(NO)activation has a direct effect on the NO de-oxidation and C3H8oxidation[41-42].From H2-TPR and XPS characterizations,the catalyst im-catBa has more surface enriched Pd species and the Pd-O-Ce species on the Pd-CZ interface due to the surface modification.These may be the crucial factors leading to the excellent catalytic activity towards NO and C3H8.

    Based on the above analyses,the redox property and highly dispersed PdO species have an important impactonthecatalyticperformanceforCO conversion.ThePd-CeinteractioninthePd-Ce interface may be the primary factor leading to the excellent catalytic activity towards methanol,NO and C3H8conversion.

    Table3 Light-off(T50)and complete-conversion temperature(T90)of methanol,CO,C3H8and NO over catalysts

    3 Conclusions

    The addition of BaO to Pd-based catalyst by impregnation/co-precipitation method greatly improves thetextural,redoxpropertiesandeffectively strengthens the metal-support interaction.The Pd-Ba catalysts exhibit better catalytic performance,and imcatBa is superior to co-catBa.Different synthesis methods modify Pd-based catalyst in different ways. Co-precipitation method is mainly based on the lattice modification when some Ce4+cations are substituted by Ba2+,causing structure disorder and additional anionvacancies.So,co-precipitationmethodwill cause the formation of more Ce3+,accompanied by the creation of more Ce3+/Ce4+redox couples,which leads to a better redox property.The redox property of the catalysthelpstheCOconversion.However, impregnation method is mainly based on the surface modification.The enrichment of dispersed Ba2+on the surface of the catalyst will promote high dispersion of PdO species on the surface of the support,especially willstrengthenthePd-CeinteractioninPd-Ce interfaceofPd-O-Cespecies.ThestrongPd-Ce interaction may be beneficial to the conversion of methanol,C3H8and NO.

    [1]Kowalewicz A,Wojtyniak M.Proc.Inst.Mech.Eng.J.Autom. Eng.,2005,219:103-125

    [2]Cenk S,Kadir U,Mustafa C.Renew.Energy,2008,33:1314 -1323

    [3]McCabe R W,Mitchell P J.Appl.Catal.,1986,27:83-98

    [4]Mondelli C,Santo D V,Trovarelli A,et al.Catal.Today, 2006,113:81-86

    [5]Monte D R,Kaspar J,Fornasiero P,et al.Inorg.Chim.Acta, 2002,334:318-326

    [6]Kenevey K,Valdivieso F,Soustelle M,et al.Appl.Catal.B: Environ.,2001,29:93-101

    [7]Liotta L F,Longoa A,Macaluso A,et al.Appl.Catal.B: Environ.,2004,48:133-149

    [8]Magdalena K,Elbieta T,Bogusaw M,et al.Appl.Catal.A: General,2012,445-446:280-286

    [9]Hungría A B,Browning N D,Erni R P,et al.J.Catal., 2005,235:251-61

    [10]Osorio G P,Moyado S F,Petranovskii V,et al.Catal.Lett., 2006,1/2:110-116

    [11]Vidmar P,Fornasiero P,Ka?par J,et al.J.Catal.,1997,171: 160-168

    [12]Tanja K,Ulla L,Katariina R T,et al.Appl.Catal.A: General,2006,298:65-72

    [13]Groppi G,Cristiani C,Lietti L,et al.Catal.Today,1999,50: 399-412

    [14]AtribakI,BuenoLA,GarcíaGA.J.Catal.,2008,259:123-132

    [15]Martínez A A,Fernández G M,Hungría A B,et al.Catal. Today,2007,126:90-105

    [16]Thammachart M,Meeyoo V,Risksomboon T,et al.Catal. Today,2001,68:53-60

    [17]Damyanova S,Bueno J M C.Appl.Catal.A:General,2003, 253:135-141

    [18]Laurent S,Forge D,Port M,et al.Chem.Rev.,2008,108: 2064-2067

    [19]Corbos E C,Courtois X,Bion N,et al.Appl.Catal.B: Environ.,2008,80:62-71

    [20]Li G F,Wang Q Y,Zhao B,et al.J.Mol.Catal.A:Chem., 2010,326:69-74

    [21]Corbos E C,Courtois X,Bion N,et al.Appl.Catal.B: Environ.,2007,76:357-367

    [22]Piacentini M,Maciejewski M,Baiker A.Appl.Catal.B: Environ.,2006,66:126-136

    [23]Sun K P,Lu W W,Wang M,et al.Appl.Catal.A:General, 2004,268:107-113

    [24]Wang Q Y,Li G F,Zhao B,et al.J.Hazard.Mater., 2011,189:150-157

    [25]Yamazaki S,Matsui T,Ohashi T,et al.Solid State Ionics, 2000,136-137:913-919

    [26]Mikulova J,Rossignol S,Gerard F,et al.J.Solid State Chem.,2006,179:2511-2519

    [27]Feio L S F,Hori C E,Damyanova S,et al.Appl.Catal.A: General,2007,316:107-116

    [28]HE Shen-Nan(何勝楠),SHI Zhong-Hua(史忠華),CHEN Yao-Qiang(陳耀強),et al.Acta Phys.-Chim.Sin.(物理化學學報),2011,27(5):1157-1162

    [29]Voogt E H,Mens A J M,Gijzeman O L J,et al.Surf.Sci., 1996,350:21-31

    [30]YAO Yan-Ling(姚艷玲),FANG Rui-Mei(方瑞梅), SHI Zhong-Hua(史忠華),et al.Chin.J.Catal.(催化學報), 2011,32:589-594

    [31]Zhao M,Li X,Zhang L H,et al.Catal.Today,2011,175: 430-434

    [32]Larachi F,Pierre J,Adnot A,et al.Appl.Surf.Sci.,2002,195:236-245

    [33]Hungría A B,Fernández G M,Anderson J A,et al.J.Catal., 2005,235:262-271

    [34]Wang J A,Aguilar R G,Wang R.Appl.Surf.Sci.,1999, 147:44-51

    [35]Corbos E C,Courtois X,Bion N,et al.Appl.Catal.B: Environ.,2007,76:357-367

    [36]Luo Y J,Xiao Y H,Cai G H,et al.Fuel,2012,93:533-538

    [37]Arosio F,Colussi S,Trovarelli A,et al.Appl.Catal.B: Environ.,2008,80:335-342

    [38]Armor J N.Catal.Today,1996,31:191-198

    [39]Yang M,Li Y P,Wang J,et al.J.Catal.,2010,271:228-238

    [40]Tanja K,Ulla L,Katariina R T,et al.Appl.Catal.A: General,2006,298:65-72

    [41]Peng N,Zhou J F,Chen S H,et al.J.Rare Earths,2012,30: 342-349

    [42]Fernández G M,Martnez A A,Iglesias J A,et al.Appl. Catal.B:Environ.,2001,31:39-50

    BaO Modified Pd-Based Catalysts:Synthesis by Impregnation/Co-Precipitation and Application in Gasoline-Methanol Exhaust Purification

    ZHANG Xue-Qiao1,2TIAN Hao-Qi1YE Zhi-Xiang1CHEN Yao-Qiang*,2
    (1College of Resources and Environment,Chengdu University of Information Technology,Chengdu 610225,China)
    (2Institute of Catalytic Material Science,Sichuan University,Chengdu 610064,China)

    Barium oxide was developed to modify palladium catalysts supported on CeO2-ZrO2-La2O3-Al2O3(CZLA) compound oxides by impregnation/co-precipitation methods.Low temperature N2adsorption-desorption,X-ray diffraction(XRD),H2-temperature-programmed reduction(H2-TPR),NH3-temperature programmed desorption(NH3-TPD),transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)were employed to characterize the influence of the preparation method on physicochemical properties of the catalyst.Catalytic activity performance for methanol,CO,C3H8and NO conversion was evaluated.Catalytic activity results show that the addition of BaO has a positive effect on the conversion of all pollutants,and the best results are achieved by the impregnation method.The light-off temperature decreases by 43,31,45 and 35℃,respectively.The XRD,H2-TPR and XPS results confirm that the impregnation method is mainly based on the surface modification.The enrichment of Ba2+strengthens the Pd-Ce interaction in Pd-Ce interface,promoting the reductive ability,thus increasing the catalytic activity at low temperature.The co-precipitation method results in structure disorder and additional anion vacancies accompanied by the formation of more Ce3+,which may be beneficial to the conversion of CO.

    barium oxide;palladium;ceria;methanol;catalytic activity removal

    O643.36+1;O643.31

    A

    1001-4861(2015)01-0166-11

    10.11862/CJIC.2015.002

    2014-04-24。收修改稿日期:2014-09-08。

    國家自然科學基金(No.51408076,11405113),四川省教育廳重點科研基金(No.14ZA0163),成都信息工程學院科研人才基金(No.J201416)資助項目。

    *通訊聯(lián)系人。E-mail:nic7501@scu.edu.cn,Tel:+86 28 85418451;會員登記號:S06N4556M1006。

    猜你喜歡
    工程學院X射線成都
    “X射線”的那些事兒
    實驗室X射線管安全改造
    機電安全(2022年5期)2022-12-13 09:22:26
    福建工程學院
    福建工程學院
    虛擬古生物學:當化石遇到X射線成像
    科學(2020年1期)2020-01-06 12:21:34
    福建工程學院
    穿過成都去看你
    青年歌聲(2019年2期)2019-02-21 01:17:20
    數(shù)看成都
    先鋒(2018年2期)2018-05-14 01:16:16
    福建工程學院
    成都
    汽車與安全(2016年5期)2016-12-01 05:21:56
    99九九在线精品视频| 欧美xxⅹ黑人| 韩国精品一区二区三区| 色94色欧美一区二区| 视频在线观看一区二区三区| 国产男女内射视频| svipshipincom国产片| 中文字幕色久视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av教育| 国内毛片毛片毛片毛片毛片| 国产黄频视频在线观看| 国产三级黄色录像| 狠狠精品人妻久久久久久综合| 国产成+人综合+亚洲专区| 一级毛片电影观看| 国产精品 欧美亚洲| 久久久久视频综合| 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 制服人妻中文乱码| 国产伦人伦偷精品视频| 国产精品久久久人人做人人爽| 精品人妻一区二区三区麻豆| 成人av一区二区三区在线看 | 大香蕉久久网| 99精品欧美一区二区三区四区| 国产精品国产av在线观看| videosex国产| 一级片免费观看大全| 1024视频免费在线观看| 两人在一起打扑克的视频| 日韩中文字幕视频在线看片| www.熟女人妻精品国产| 高清在线国产一区| 久久久久视频综合| 汤姆久久久久久久影院中文字幕| 久久久欧美国产精品| 老熟妇仑乱视频hdxx| 亚洲欧美日韩高清在线视频 | www日本在线高清视频| 涩涩av久久男人的天堂| 欧美黑人欧美精品刺激| 亚洲av日韩精品久久久久久密| 欧美黑人精品巨大| 91精品国产国语对白视频| 日韩制服骚丝袜av| 天天操日日干夜夜撸| 国产成人精品在线电影| 国产精品偷伦视频观看了| 91九色精品人成在线观看| 国产成+人综合+亚洲专区| 国产免费视频播放在线视频| 1024视频免费在线观看| 亚洲国产日韩一区二区| 国产精品二区激情视频| 美女高潮喷水抽搐中文字幕| 日韩欧美一区二区三区在线观看 | 99香蕉大伊视频| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 国产精品免费视频内射| 老司机影院成人| 中国国产av一级| 久久久久国内视频| 亚洲av欧美aⅴ国产| 满18在线观看网站| 欧美黄色片欧美黄色片| 91精品三级在线观看| 日韩欧美免费精品| 桃花免费在线播放| 久久人人爽av亚洲精品天堂| 精品卡一卡二卡四卡免费| 欧美少妇被猛烈插入视频| 色精品久久人妻99蜜桃| 欧美激情高清一区二区三区| 国产一区二区激情短视频 | 精品免费久久久久久久清纯 | 一个人免费在线观看的高清视频 | 久久性视频一级片| 18禁国产床啪视频网站| 啦啦啦啦在线视频资源| 一级黄色大片毛片| 欧美激情久久久久久爽电影 | 大码成人一级视频| 国产精品一区二区在线不卡| 中文字幕av电影在线播放| 老司机午夜十八禁免费视频| 午夜福利在线免费观看网站| 国产欧美亚洲国产| 亚洲九九香蕉| 99国产精品一区二区蜜桃av | 首页视频小说图片口味搜索| 午夜成年电影在线免费观看| 天堂俺去俺来也www色官网| 国产一卡二卡三卡精品| 满18在线观看网站| 精品国产乱码久久久久久小说| 婷婷丁香在线五月| 亚洲欧美日韩高清在线视频 | 一边摸一边抽搐一进一出视频| 男人舔女人的私密视频| 欧美97在线视频| 亚洲第一av免费看| 国产日韩欧美亚洲二区| 两个人免费观看高清视频| 国产伦理片在线播放av一区| 人妻 亚洲 视频| 国产xxxxx性猛交| 免费少妇av软件| 国产一区有黄有色的免费视频| 亚洲视频免费观看视频| 这个男人来自地球电影免费观看| 一区二区三区四区激情视频| 乱人伦中国视频| 国产伦理片在线播放av一区| 免费女性裸体啪啪无遮挡网站| 国产精品一区二区在线观看99| 精品国产一区二区三区四区第35| 一区二区三区激情视频| 秋霞在线观看毛片| 婷婷成人精品国产| 18禁观看日本| 国产成人精品久久二区二区91| 成人三级做爰电影| 又紧又爽又黄一区二区| 久久av网站| 午夜精品久久久久久毛片777| 王馨瑶露胸无遮挡在线观看| 18禁观看日本| 欧美激情 高清一区二区三区| 欧美老熟妇乱子伦牲交| 亚洲av成人不卡在线观看播放网 | 日韩 欧美 亚洲 中文字幕| 十八禁高潮呻吟视频| 欧美黑人精品巨大| 国产黄频视频在线观看| 王馨瑶露胸无遮挡在线观看| 搡老岳熟女国产| 91成年电影在线观看| 国产成人精品无人区| 久久久精品免费免费高清| 午夜免费观看性视频| 亚洲欧美色中文字幕在线| 国产三级黄色录像| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频 | 乱人伦中国视频| 久热这里只有精品99| 丁香六月天网| 在线观看一区二区三区激情| 蜜桃国产av成人99| 午夜两性在线视频| 少妇 在线观看| 一本一本久久a久久精品综合妖精| 亚洲五月婷婷丁香| 国产高清国产精品国产三级| 精品国产乱子伦一区二区三区 | 亚洲国产av影院在线观看| 色精品久久人妻99蜜桃| 交换朋友夫妻互换小说| 99久久精品国产亚洲精品| 咕卡用的链子| 深夜精品福利| 最新的欧美精品一区二区| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 天堂8中文在线网| 人人澡人人妻人| 成人18禁高潮啪啪吃奶动态图| 国产一区二区 视频在线| 欧美激情久久久久久爽电影 | 美女午夜性视频免费| 国产av一区二区精品久久| 91成人精品电影| 国产高清视频在线播放一区 | 香蕉国产在线看| 久久免费观看电影| 国产精品秋霞免费鲁丝片| 亚洲国产中文字幕在线视频| 9色porny在线观看| 美女主播在线视频| 欧美+亚洲+日韩+国产| 国产精品自产拍在线观看55亚洲 | 操出白浆在线播放| 欧美精品亚洲一区二区| 久久久久精品人妻al黑| 国产成人影院久久av| 久久精品成人免费网站| 少妇人妻久久综合中文| 黄色a级毛片大全视频| 亚洲精品成人av观看孕妇| 美女高潮到喷水免费观看| 一级片'在线观看视频| 亚洲精品第二区| 视频区欧美日本亚洲| 国产精品亚洲av一区麻豆| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 久久综合国产亚洲精品| 午夜福利乱码中文字幕| 亚洲国产av新网站| 韩国高清视频一区二区三区| 欧美日韩亚洲综合一区二区三区_| 男女高潮啪啪啪动态图| 成年av动漫网址| 大型av网站在线播放| 中国国产av一级| 极品少妇高潮喷水抽搐| 亚洲色图 男人天堂 中文字幕| av不卡在线播放| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 美女视频免费永久观看网站| 美女大奶头黄色视频| 亚洲色图综合在线观看| 91麻豆精品激情在线观看国产 | 国产真人三级小视频在线观看| 欧美日韩视频精品一区| 秋霞在线观看毛片| 狠狠婷婷综合久久久久久88av| 国产高清国产精品国产三级| 国产精品久久久av美女十八| 99精品久久久久人妻精品| 热99国产精品久久久久久7| 亚洲,欧美精品.| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 国产免费av片在线观看野外av| 免费在线观看黄色视频的| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| 操美女的视频在线观看| 飞空精品影院首页| 青草久久国产| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 国产亚洲欧美精品永久| 天天躁夜夜躁狠狠躁躁| 亚洲激情五月婷婷啪啪| 两性午夜刺激爽爽歪歪视频在线观看 | 久久影院123| 精品一区二区三区四区五区乱码| 精品国内亚洲2022精品成人 | 免费在线观看影片大全网站| 99re6热这里在线精品视频| 日本av免费视频播放| 日日夜夜操网爽| 亚洲午夜精品一区,二区,三区| 国产高清视频在线播放一区 | 永久免费av网站大全| 99久久国产精品久久久| 亚洲精品久久午夜乱码| 亚洲午夜精品一区,二区,三区| 99久久人妻综合| 日韩欧美免费精品| 国产成人a∨麻豆精品| 亚洲,欧美精品.| 成年女人毛片免费观看观看9 | av天堂久久9| 欧美亚洲日本最大视频资源| 1024香蕉在线观看| 亚洲七黄色美女视频| 亚洲熟女精品中文字幕| 午夜久久久在线观看| 欧美激情久久久久久爽电影 | 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 中国国产av一级| 婷婷色av中文字幕| 国产又色又爽无遮挡免| 亚洲七黄色美女视频| 久久香蕉激情| 黄片播放在线免费| 建设人人有责人人尽责人人享有的| 男女午夜视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产人伦9x9x在线观看| 精品一品国产午夜福利视频| 大香蕉久久成人网| 真人做人爱边吃奶动态| 飞空精品影院首页| 精品国产一区二区三区四区第35| 国产一区二区激情短视频 | 亚洲成国产人片在线观看| 伦理电影免费视频| av在线老鸭窝| 日韩大片免费观看网站| 亚洲伊人色综图| 十八禁人妻一区二区| 国产成人免费无遮挡视频| 欧美av亚洲av综合av国产av| 色94色欧美一区二区| 欧美精品一区二区大全| 69精品国产乱码久久久| 欧美大码av| 久久国产精品影院| 久久毛片免费看一区二区三区| 国产麻豆69| 欧美日韩黄片免| a级毛片在线看网站| 黄色怎么调成土黄色| 99久久人妻综合| 99re6热这里在线精品视频| 国产精品av久久久久免费| 国内毛片毛片毛片毛片毛片| 久久久久精品人妻al黑| 久久久国产成人免费| 男女国产视频网站| 少妇 在线观看| 精品国产一区二区三区四区第35| 成年人黄色毛片网站| 丝袜脚勾引网站| 性色av乱码一区二区三区2| netflix在线观看网站| 91精品三级在线观看| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 国产在线免费精品| 欧美日韩一级在线毛片| 多毛熟女@视频| 国产成+人综合+亚洲专区| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 久9热在线精品视频| 久久 成人 亚洲| 国产免费av片在线观看野外av| 成人三级做爰电影| 亚洲欧美色中文字幕在线| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠躁躁| 国产成人一区二区三区免费视频网站| 女性被躁到高潮视频| 在线天堂中文资源库| 爱豆传媒免费全集在线观看| 男人爽女人下面视频在线观看| 三上悠亚av全集在线观看| 国产深夜福利视频在线观看| 国产精品二区激情视频| 国产伦人伦偷精品视频| 国产精品免费大片| 97精品久久久久久久久久精品| cao死你这个sao货| 国产精品一区二区精品视频观看| 国产精品 国内视频| 9热在线视频观看99| 免费高清在线观看日韩| 中文字幕最新亚洲高清| 国产深夜福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 国产一级毛片在线| 深夜精品福利| 午夜福利在线观看吧| 黄色a级毛片大全视频| 黄片小视频在线播放| 亚洲av电影在线观看一区二区三区| 亚洲精品久久成人aⅴ小说| e午夜精品久久久久久久| 亚洲一区中文字幕在线| 欧美激情 高清一区二区三区| 桃红色精品国产亚洲av| 欧美国产精品一级二级三级| xxxhd国产人妻xxx| 欧美国产精品va在线观看不卡| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 久9热在线精品视频| 麻豆乱淫一区二区| cao死你这个sao货| 五月天丁香电影| 国产淫语在线视频| 亚洲天堂av无毛| 欧美中文综合在线视频| 亚洲专区字幕在线| 五月天丁香电影| 精品亚洲成a人片在线观看| 日韩欧美免费精品| 久久精品亚洲av国产电影网| 久久影院123| 香蕉丝袜av| 美女福利国产在线| 五月开心婷婷网| av国产精品久久久久影院| 人妻一区二区av| 国产精品一区二区免费欧美 | 色综合欧美亚洲国产小说| 国产亚洲av片在线观看秒播厂| 日韩有码中文字幕| 我要看黄色一级片免费的| 亚洲国产精品999| 男人操女人黄网站| 一区二区三区四区激情视频| 亚洲精品第二区| h视频一区二区三区| 国内毛片毛片毛片毛片毛片| 久久久久久亚洲精品国产蜜桃av| 午夜福利视频精品| av在线app专区| 99精国产麻豆久久婷婷| 老司机午夜福利在线观看视频 | 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 国产亚洲一区二区精品| 久久香蕉激情| av在线app专区| 成年女人毛片免费观看观看9 | 国产精品1区2区在线观看. | 欧美另类一区| a级毛片黄视频| 久久精品熟女亚洲av麻豆精品| 精品久久久久久久毛片微露脸 | 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡 | 免费人妻精品一区二区三区视频| 国产一级毛片在线| 性少妇av在线| av欧美777| 制服人妻中文乱码| 国产一区二区激情短视频 | 免费看十八禁软件| 丝袜在线中文字幕| av片东京热男人的天堂| 午夜福利乱码中文字幕| 伦理电影免费视频| tube8黄色片| 热99re8久久精品国产| 老司机在亚洲福利影院| kizo精华| 91国产中文字幕| 成人三级做爰电影| 不卡av一区二区三区| 女人高潮潮喷娇喘18禁视频| 免费观看av网站的网址| 国产激情久久老熟女| 自线自在国产av| 首页视频小说图片口味搜索| 少妇被粗大的猛进出69影院| 亚洲欧美日韩高清在线视频 | 最近最新免费中文字幕在线| 另类精品久久| 日本vs欧美在线观看视频| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 正在播放国产对白刺激| 精品熟女少妇八av免费久了| 夫妻午夜视频| 国产精品香港三级国产av潘金莲| 亚洲精品乱久久久久久| 成人av一区二区三区在线看 | 国产成+人综合+亚洲专区| 高清视频免费观看一区二区| 国产成人欧美在线观看 | 国产一区二区三区av在线| 欧美人与性动交α欧美软件| 国产一区二区三区在线臀色熟女 | 婷婷成人精品国产| 满18在线观看网站| 咕卡用的链子| 亚洲成av片中文字幕在线观看| www.精华液| 国产日韩欧美亚洲二区| 中国美女看黄片| 亚洲自偷自拍图片 自拍| 亚洲av美国av| 最新在线观看一区二区三区| 欧美亚洲日本最大视频资源| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 俄罗斯特黄特色一大片| 老司机在亚洲福利影院| 99香蕉大伊视频| av在线老鸭窝| 欧美大码av| 亚洲av日韩精品久久久久久密| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 男男h啪啪无遮挡| 视频区欧美日本亚洲| 色视频在线一区二区三区| 久久久欧美国产精品| 免费不卡黄色视频| 国产精品久久久久久精品古装| 大型av网站在线播放| 精品第一国产精品| 丝袜喷水一区| 两性夫妻黄色片| 久久久久国产精品人妻一区二区| 久久久久久久久久久久大奶| 老司机靠b影院| 一本色道久久久久久精品综合| 欧美午夜高清在线| 丁香六月欧美| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 18在线观看网站| 老司机在亚洲福利影院| 性高湖久久久久久久久免费观看| 午夜成年电影在线免费观看| 蜜桃在线观看..| 男男h啪啪无遮挡| 人成视频在线观看免费观看| 国产精品久久久久久精品古装| 十分钟在线观看高清视频www| 久久亚洲精品不卡| 多毛熟女@视频| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 亚洲欧美色中文字幕在线| 桃花免费在线播放| 99精品欧美一区二区三区四区| 成人影院久久| 午夜免费观看性视频| 一级片'在线观看视频| 精品国产一区二区三区四区第35| 久久久久久亚洲精品国产蜜桃av| 97在线人人人人妻| 国产一区二区在线观看av| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 国产在线一区二区三区精| 777米奇影视久久| 国产欧美日韩精品亚洲av| 在线十欧美十亚洲十日本专区| 久久性视频一级片| 亚洲欧美色中文字幕在线| 91老司机精品| 免费观看av网站的网址| 水蜜桃什么品种好| a在线观看视频网站| 999精品在线视频| 99香蕉大伊视频| 狠狠精品人妻久久久久久综合| 香蕉国产在线看| 亚洲中文字幕日韩| 1024视频免费在线观看| 久久久久网色| 性色av乱码一区二区三区2| 我要看黄色一级片免费的| 中文字幕人妻丝袜制服| 免费一级毛片在线播放高清视频 | 人妻一区二区av| 国产av国产精品国产| 国产精品.久久久| 久久热在线av| 亚洲精品一二三| 亚洲国产中文字幕在线视频| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 波多野结衣av一区二区av| 最新在线观看一区二区三区| 97在线人人人人妻| 精品一区二区三区四区五区乱码| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 亚洲中文av在线| 亚洲欧美日韩另类电影网站| 十分钟在线观看高清视频www| 日本精品一区二区三区蜜桃| 美女福利国产在线| 性色av乱码一区二区三区2| 97人妻天天添夜夜摸| 国产成人精品久久二区二区91| 手机成人av网站| 日韩人妻精品一区2区三区| www日本在线高清视频| 亚洲一码二码三码区别大吗| a 毛片基地| 亚洲精品日韩在线中文字幕| 秋霞在线观看毛片| 国产一区二区三区av在线| 蜜桃国产av成人99| 黄色片一级片一级黄色片| 亚洲成人免费av在线播放| 国产精品一区二区免费欧美 | 97人妻天天添夜夜摸| 午夜精品久久久久久毛片777| 国产日韩欧美亚洲二区| 国产男女内射视频| 一本一本久久a久久精品综合妖精| 亚洲 欧美一区二区三区| videosex国产| 搡老熟女国产l中国老女人| 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全免费视频| 中文字幕制服av| 欧美国产精品一级二级三级| 丝袜美腿诱惑在线| 欧美日韩亚洲高清精品| 亚洲国产av影院在线观看| h视频一区二区三区| 久久99热这里只频精品6学生| 精品国产一区二区三区久久久樱花| 欧美 亚洲 国产 日韩一| 中国美女看黄片| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 久久久久久人人人人人| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频|