• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CLE Peptides in Vascular Development

    2013-11-22 03:38:26YiQiangJinbinWuHuibinHanandGuodongWang
    Journal of Integrative Plant Biology 2013年4期

    Yi Qiang,Jinbin Wu,Huibin Han and Guodong Wang

    Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry,Ministry of Education,National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China,College of Life Sciences,Shaanxi Normal University,Xi’an 710062,China

    Introduction

    Cell-cell communication via peptides is essential for plant growth,development and responses to environmental cues.To date,only a few secreted peptides have been characterized as extracellular ligands that functionally interact with cell surface receptors to trigger signaling cascades leading to proper cellular functions(Murphy et al.2012).A number of Arabidopsis CLAVATA3/Embryo Surrounding Region-related(CLE)peptides,normally derived from the conserved C-terminal CLE motif of their precursors,coordinate stem cell fate in different types of plant meristems(Fiers et al.2007;Hirakawa et al.2010a,2011;Betsuyaku et al.2011).The mature CLV3 peptides are 12-AA hydroxylated peptides or 13-AA arabinosylated peptides(Gao and Guo 2012;Matsubayashi 2012).It has been recognized that leucine-rich repeat receptor-like kinases(LRR-RLK)are commonly receptors for CLE peptides,and WUSCHEL-related HOMEOBOX(WOX)transcription factors are downstream targets in CLE signaling pathways(Betsuyaku et al.2012;Murphy et al.2012).Accumulating evidence suggests that the CLE-RLK-WOX module appears to be conserved in different types of meristems including the shoot apical meristem(SAM),the root apical meristem(RAM),and the vascular meristem(Betsuyaku et al.2012;Murphy et al.2012).

    The CLV3 peptide,a key player in stem cell homoeostasis at the SAM,is perceived by three parallel receptor complexes:CLV1,CLV2-CORYNE(CRN)/SUPPRESSOR OF LLP1–2(SOL2),and RECEPTOR-LIKE PROTEIN KINASE 2(RPK2)(Bleckmann et al.2010;Guo et al.2010;Kinoshita et al.2010;Zhu et al.2010).A negative feedback loop maintains a balanced stem cell population where CLV3 restricts expression of the stem cell-promoting transcription factor WUSCHEL(WUS),and WUS activates CLV3 expression(Brand et al.2000;Schoof et al.2000).

    Overexpression of many CLE genes including CLV3,CLE19 and CLE40,or exogenously applied chemically synthesized peptides leads to an arrest of root growth,while clv2,crn/sol2,and rpk2 mutations can suppress the arrested short-root phenotype(Fiers et al.2005;Strabala et al.2006;Miwa et al.2008;Müller et al.2008;Kinoshita et al.2007,2010).The cle40 mutant exhibits abnormal cell patterning and a short-root phenotype with an enlarged WOX5 expression domain(Stahl et al.2009).The CLE40 peptide acts through the receptor-like kinase ACR4 to repress the expression of WOX5(Stahl et al.2009).Similar to the CLV3-CLV-WUS signaling pathway in the SAM,a CLE40-ACR4-WOX5 pathway exists to regulate stem cell homeostasis in the RAM(Stahl et al.2009).

    Recently,CLE8 has been shown to play crucial roles in embryo and endosperm development in Arabidopsis(Fiume and Fletcher 2012).CLE8 is specifically expressed in the endosperm and in the apical portion of young embryos.The cle8 mutant produces smaller and defective seeds/embryos,while transgenic lines overexpressing CLE8 produce slightly larger seeds/embryos.CLE8 promotes the expression of WOX8,which suggests that CLE8-WOX8 could form a signaling module to regulate seed growth and seed size(Fiume and Fletcher 2012).Currently,little is known about the potential receptor(s)for CLE8 regarding its role in embryogenesis.Specific RLKs have been identified as key regulators for normal embryo and seed development(Nodine et al.2011).Thus,it is likely that CLE8 signaling is perceived by one or more RLKs.This hypothesis is further supported by the fact that there is a strong similarity of binding affinities among different CLE peptides(Matsubayashi 2012;Shinohara et al.2012).

    The plant vascular system,which connects different plant organs,typically consists of two conductive tissues named phloem and xylem,and a meristematic tissue named the(pro-)cambium.The(pro-)cambium is located between phloem and xylem,and is able to differentiate into phloem and xylem(Lucas 2010;Hirakawa et al.2011).A picture of the complex regulatory network that controls vascular development is emerging(Fukuda 2012).The progress is highlighted by the identification of many CLE genes that are involved in vascular development(Fiers et al.2004;Ito et al.2006;Hirakawa et al.2008;Whitford et al.2008;Kondo et al.2011).In particular,the characterization of the Tracheary Element Differentiation Inhibitory Factor(TDIF)/CLE41/CLE44-TDR/PXY-WOX4 signaling module has greatly advanced our understanding of vascular regulation(Hirakawa et al.2008;Hirakawa et al.2010a,2010b).Here,we review the recent advances in cell-cell communication via CLE peptides and their receptors in aspects of vascular development.

    TDIF/CLE41/CLE44 Regulates Vascular Stem Cell Maintenance

    Tracheary Element Differentiation Inhibitory Factor(TDIF),a CLE-like peptide,was originally isolated as a suppressor of tracheary element differentiation from Zinnia elegans mesophyll cell culture medium(Ito et al.2006).The functional TDIF is a 12-AA peptide with two hydroxyproline residues.TDIF is identical to the CLE domains of CLE41 and CLE44,and is highly homologous to those of CLE42 and CLE46(Ito et al.2006).The CLE family can be classified into two groups of A-type and B-type CLE peptides.The majority of CLE peptides,grouped as A-type CLE peptides,affect SAM and RAM development but show no TDIF-like activity(Kinoshita et al.2007;Whitford et al.2008).B-type CLE peptides such as TDIF,CLE41,CLE42,and CLE44 were able to inhibit xylem vessel differentiation,but had no effect on SAM and RAM.Consistently,transgenic plants overexpressing CLE41 and CLE44 exhibit a xylem vessel strand-discontinuous phenotype,which has also been observed in peptide-treated plants(Hirakawa et al.2008;Whitford et al.2008).In addition,both overexpression and exogenous treatments with TDIF-like peptides promote procambial cell proliferation,suggesting a dual role of TDIF-like peptides in vascular development(Hirakawa et al.2008;Whitford et al.2008).

    TDR/PXY has been identified as the receptor for TDIF/CLE41/CLE44 by screening T-DNA insertion mutants for LRR-RLK genes(Fisher and Turner 2007;Hirakawa et al.2008).T-DNA insertion lines of the TDR/PXY gene were insensitive to TDIF/CLE41/CLE44(Hirakawa et al.2008).Biochemical analysis further confirmed that TDIF/CLE41/CLE44 bind specifically to TDR/PXY in vitro.However,the A-type peptides CLV3,CLE2,CLE9,and CLE19 do not bind to TDR/PXY(Hirakawa et al.2008).In addition,the tdr/pxy mutant exhibited formation of xylem vessels adjacent to phloem cells and reduced procambial cell proliferation,while no defects were observed in the SAM and the RAM(Fisher and Turner 2007;Hirakawa et al.2008;Etchells and Turner 2010).Collectively,these results confirm that TDR/PXY functions specifically as a receptor for TDIF.TDR/PXY is expressed primarily in the(pro-)cambium and CLE41 is expressed preferentially in phloem cells.Thus,CLE41,which is produced in the phloem,is perceived by TDR/PXY to fine-tune proliferation and xylem differentiation of procambial cells(Figure 1;Hirakawa et al.2008;Etchells and Turner 2010).

    WUSCHEL-related HOMEOBOX4(WOX4),a gene controlling maintenance of the vascular cambium,was recently found to be a key target for proliferation but not for the differentiation of procambial cells into xylem in the TDIF/CLE41/CLE44 pathway(Hirakawa et al.2010b;Suer et al.2011).WOX4 expression is detected preferentially in procambium and cambium cells,which is similar to the expression pattern of TDR/PXY(Figure 1).Additionally,WOX4 expression is positively controlled by the TDIF/CLE41/CLE44 peptide in a TDR/PXY-dependent manner(Hirakawa et al.2010b).Overexpression of WOX4 does not affect expression levels of CLE41/44 or alter the phenotype mediated by CLE41/44(Hirakawa et al.2010b).Loss-of-function studies of WOX4 revealed that it is required for procambial/cambial cell proliferation,but not for inhibition of cambial cell differentiation into xylem cells.Thus,there are at least two TDIF/CLE41/CLE44-dependent pathways in the regulation of(pro-)cambial development.One of which,the TDIF/CLE41/CLE44-TDR/PXY-WOX4 pathway,promotes(pro-)cambial cell proliferation(Figure 1).Another pathway may target a yet unidentified component(s)to inhibit the differentiation of(pro-)cambial cells into xylem cells(Hirakawa et al.2010b).

    Figure 1.The TDIF/CLE41/CLE44-TDR/PXY-WOX4 signaling pathway in vascular tissues.The TDIF/CLE41/CLE44 peptide secreted from phloem cells(lime),is perceived by TDR/PXY on(pro-)cambial cells(grey)to upregulate WOX4 expression.The signal then promotes(pro-)cambial cell proliferation and inhibits the differentiation of(pro-)cambial cells into xylem cells(green).The involvement of a xylem-derived signal(?)and its putative receptor(??)in controlling phloem development is an open question.The proposed TDIF/CLE41/CLE44-TDR/PXYWOX4 signaling module is shown on the right.There is no evidence for WOX4 controlling CLE41 expression(???).

    Other CLE Peptides Control Vascular Development

    The Brassica napus CLE19(BnCLE19)gene is expressed in organ primordia and in pericycle cells facing the protoxylem poles of the root hair region(Fiers et al.2004).Misexpression of BnCLE19 in Arabidopsis leads to the formation of disconnected xylem elements as well as vascular islands in flower buds,suggesting that CLE19 functions in early xylem development(Fiers et al.2004).Additionally,exogenously applied A-type CLE peptide CLE19,as well as CLE6 and CLV3,enhance the effects of B-type peptides TDIF/CLE41/CLE44 on vascular development(Whitford et al.2008).Consistently,transgenic plants simultaneously overexpressing CLE41 and CLE6 genes exhibit a massive proliferation of vascular cells(Whitford et al.2008).Exogenous application of an A-type CLE peptide alone normally results in suppression of stem cell proliferation in the SAM and RAM,while having no effect on vascular development(Kinoshita et al.2007;Whitford et al.2008).Thus,rather than an antagonistic relationship,A-type CLE peptides cooperate with TDIF/CLE41/CLE44 to enhance(pro-)cambium proliferation,suggesting a complex crosstalk of different CLE peptides in vascular development.

    A number of A-type CLE peptides inhibit protoxylem element formation in Arabidopsis root when applied exogenously(Kondo et al.2011).One of these,CLE10,is preferentially expressed in root vascular tissues.In vitro application of CLE10 peptide or overexpression of CLE10 significantly represses protoxylem vessel formation in roots as well as root growth,which appears to be accomplished by repression of two Arabidopsis Response Regulator(ARR)genes,ARR5 and ARR6(Kondo et al.2011).Furthermore,it is thought that CLE10 acts through the CLV2 receptor,as the clv2 mutant exhibited insensitivity to CLE10 in the suppression of protoxylem vessel formation(Kondo et al.2011).

    It has been shown that a number of CLE genes are preferentially expressed in vascular tissues by analysis of CLE promoter-driven reporters,suggesting that additional CLEs other than the aforementioned CLE peptides may play roles in vascular development(Jun et al.2010).It was reported previously that transcripts for a few CLE genes increase during xylogenesis,making them very good candidates for future investigation(Kubo et al.2005).Thus,the sophisticated synergistic and/or antagonistic interactions of various CLE peptides may orchestrate the well-organized formation of vascular tissues.Further studies to determine the functions of additional CLE genes that are expressed in vascular tissues will be crucial for our understanding of the roles of CLEs in vascular development.

    Crosstalk Between CLE Peptides and Phytohormones in Vascular Development

    Phytohormones(e.g.,auxin,cytokinins,and brassinosteroids)are important in mediating intercellular communications that control the differentiation and proliferation of vascular cells(Fukuda 2004;Dettmer et al.2009).With the recent advances in our understanding of CLE peptide function,a picture is emerging that vascular development is regulated through the crosstalk between CLE peptide-mediated pathways and phytohormone-mediated pathways.

    As discussed previously,A-type CLEs strengthen the effect of B-type CLEs on procambium proliferation.In addition,the synergistic effect on procambium cell proliferation depends on auxin because it is enhanced in the presence of NAA,and is suppressed by the auxin transport inhibitor NPA(Whitford et al.2008).This indicates that auxin is necessary for enhancement of procambium proliferation mediated by CLE peptides.Taken together,it is apparent that there is not only crosstalk among different types of CLE peptides,but also crosstalk between CLE peptides and auxin.A plausible explanation for these observations is that procambial cells are specified by overlapping expression domains of A-type and B-type CLE peptides that are regulated by auxin.

    The majority of A-type CLE peptides,including CLE10,can inhibit protoxylem vessel formation in Arabidopsis roots by specifically repressing the expression of ARR5 and ARR6 which are two negative regulators of cytokinin signaling(Kondo et al.2011).Indeed,the protoxylem vessel formation of lateral roots was strongly inhibited in arr5 arr6 double mutants.However,the double mutant arr10 arr12 is resistant to the CLE10 peptide in terms of protoxylem vessel formation(Kondo et al.2011).ARR10 and ARR12 are members of the type-B ARR family,which are positive regulators of cytokinin signaling(Yokoyama et al.2007).Additionally,mutants of cytokininrelated genes and cytokinin receptors exhibit increased protoxylem cell files and loss of other cell types(M?h?nen et al.2000;M?h?nen et al.2006).CLE10 overexpression and exogenously applied cytokinin and CLE10 strongly inhibit the formation of protoxylem vessels(Kondo et al.2011).Collectively,these data suggest that CLE10 regulates protoxylem vessel formation by activating cytokinin signaling through the repression of type-A ARRs.

    In addition to auxin and cytokinin,brassinosteroids positively regulate xylem differentiation,as BR-signaling mutants exhibit a reduced number of vascular bundles and xylem vessels(Ca?o-Delgado et al.2004;Fukuda 2004).Furthermore,it was recently shown that auxin transport coupled with brassinosteroid signaling is required to establish a proper pattern of vascular bundles,strengthening the crucial role of brassinosteroids in vascular development(Iba?es et al.2009).However,little is currently known about the crosstalk between brassinosteroidmediated and CLE peptide-mediated signaling pathways in vascular development.

    Conclusions and Future Perspectives

    Over the past couple of years,our understanding of the functions of CLE ligands in vascular development has made significant progress.The finding of the TDIF/CLE41/CLE44-TDR/PXY-WOX4 module provides valuable insights into the regulatory mechanism and intercellular communication in vascular tissues.The TDIF/CLE41/CLE44 peptide,secreted from phloem,is perceived by TDR/PXY located in the plasma membrane of(pro-)cambial cells to regulate WOX4 expression.This signal then suppresses xylem cell differentiation of procambial cells,and promotes their proliferation(Figure 1;Hirakawa et al.2008;Hirakawa et al.2010b).However,this proposed regulatory model is likely missing xylem-derived intercellular signals for phloem-fate commitment.The involvement of a xylem-derived signal and its putative receptor in controlling phloem development remain unknown(Figure 1).Thus,further investigation is essential to identify such signal molecules.In addition,two LRRRLKs,MORE LATERAL GROWTH(MOL1)and REDUCED IN LATERAL GROWTH(RUL1),were lately revealed to antagonistically control cambium activity,in which MOL1 is a repressor and RUL1 is an activator(Agusti et al.2011).MOL1 negatively regulates the expression of RUL1,PXY and WOX4,indicating the existence of unidentified and possibly parallel RLK-mediated signaling pathways that regulate vascular development.It is plausible that CLE genes,which are preferentially expressed in vasculature,may be perceived by MOL1 or RUL1,as they are close homologues of TDR/PXY.

    A few CLE genes other than TDIF/CLE41/CLE44,for instance CLE10,have been found to regulate various aspects of vascular development,which suggests a complicated intercellular communication network is involved in forming well-organized vascular tissues.Futhermore,the finding that many CLE genes are preferentially expressed in vasculature implies that additional CLE genes may be involved in regulating vascular development.However,the exact function of these CLE genes in vascular development remains to be elucidated.It is very challenging to study the function of CLE genes because of functional redundancies and difficulties in obtaining loss-of-function mutants.An antagonistic peptide technology is currently being established for the functional dissection of CLE genes(Song et al.2013).It is expected that this technology will potentially be applied to elucidate the role(s)of CLE genes during various developmental processes.

    Based on limited findings,a picture of crosstalk between CLE peptides and phytohormones is emerging.For instance,CLE peptide-mediated procambial proliferation is enhanced in the presence of auxin.Additionally,CLE10 inhibits protoxylem vessel formation through the activation of cytokinin signaling.Despite these new insights,the interactions between CLE peptides and phytohormones remain largely unknown.The challenge in the future lies in understanding how CLE signals integrate with phytohormone signals to build the regulatory network that controls vascular development.

    Acknowledgements

    We thank Dr.Susan Urbanus(Ludwig-Maximilians University)for her critical reading of the manuscript.Research in our lab was supported by the National Natural Science Foundation of China(31271575;31200902),by the Fundamental Research Funds for the Central Universities(GK201103005),and by the Specialized Research Fund for the Doctoral Program of Higher Education from the Ministry of Education of China(20120202120009).

    Agusti J,Lichtenberger R,Schwarz M,Nehlin L,Greb T(2011)Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth.PLoS Genet.7,e1001312.

    Betsuyaku S,Sawa S,Yamada M(2011)The function of the CLE peptides in plant development and plant-microbe interactions.The Arabidopsis Book 9,e0149.doi:10.1199:tab.0149.

    Bleckmann A,Weidtkamp-Peters S,Seidel CA,Simon R(2010)Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane.Plant Physiol.152,166–176.

    Brand U,Fletcher JC,Hobe M,Meyerowitz EM,Simon R(2000)Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity.Science 289,617–619.

    Ca?o-Delgado A,Yin Y,Yu K,Vafeados D,Mora-García S,Cheng JC,Nam KH,Li J,Chory J(2004)BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis.Development 131,5341–5351.

    Dettmer J,Elo A,Helariutta Y(2009)Hormone interactions during vascular development.Plant Mol.Biol.69,347–360.

    Etchells JP,Turner SR(2010)The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division.Development 137,767–774.

    Fiers M,Hause G,Boutilier K,Casamitjana-Martinez E,Weijers D,Offringa R,van der Geest L,van Lookeren Campagne M,Liu CM(2004)Mis-expression of the CLV3/ESR-like gene CLE19 in Arabidopsis leads to a consumption of root meristem.Gene 327,37–49.

    Fiers M,Golemiec E,Xu J,van der Geest L,Heidstra R,Stiekema W,Liu CM(2005)The 14-Amino Acid CLV3,CLE19,and CLE40 Peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2-dependent pathway.Plant Cell 17,2542–2553.

    Fiers M,Ku KL,Liu CM(2007)CLE peptide ligands and their roles in establishing meristems.Curr.Opin.Plant Biol.10,39–43.

    Fisher K,Turner S(2007)PXY,a receptor-like kinase essential for maintaining polarity during plant vascular-tissue development.Curr.Biol.17,1061–1066.

    Fiume E,Fletcher JC(2012)Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8.Plant Cell 24,1000–1012.

    Fukuda H(2004)Signals that control plant vascular cell differentiation.Nat.Rev.Mol.Cell Biol.5,379–391.

    Fukuda H(2012)Peptides regulating plant vascular development.In:Irving HR,Gehring C,eds.Plant Signaling Peptides,Signaling and Communication in Plants.Springer-Verlag,Berlin.pp.59–76.

    Gao X,Guo Y(2012)CLE peptides in plants:Proteolytic processing,structure-activity relationship,and ligand-receptor interaction.J.Integr.Plant Biol.54,738–745.

    Guo Y,Han L,Hymes M,Denver R,Clark SE(2010)CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification.Plant J.63,889–900.

    Hirakawa Y,Shinohara H,Kondo Y,Inoue A,Nakanomyo I,Ogawa M,Sakagami Y(2008)Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system.Proc.Natl.Acad.Sci.USA 105,15208–15213.

    Hirakawa Y,Kondo Y,Fukuda H(2010a)Regulation of vascular development by CLE peptide-receptor systems.J.Integr.Plant Biol.52,8–16.

    Hirakawa Y,Kondo Y,Fukuda H(2010b)TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis.Plant Cell Physiol.22,2618–2629.

    Hirakawa Y,Kondo Y,Fukuda H(2011)Establishment and maintenance of vascular cell communities through local signaling.Curr.Opin.Plant Biol.14,17–23.

    Iba?es M,F`abregas N,Chory J,Ca?o-Delgado AI(2009)Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles.Proc.Natl.Acad.Sci.USA 106,13630–13635.

    Ito Y,Nakanomyo I,Motose H,Iwamoto K,Sawa S,Dohmae N,Mimura T,Fukuda H,Demura T(2006)Dodeca-CLE peptides as suppressors of plant stem cell differentiation.Science 313,842–845.

    Jun J,Fiume E,Roeder AHK,Meng L,Sharma VK,Osmont KS,Baker C,Ha CM,Meyerowitz EM,Feldman LJ,Fletcher JC(2010)Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis.Plant Physiol.154,1721–1736.

    Kinoshita A,Nakamura Y,Sasaki E,Kyozuka J,Fukuda H,Sawa S(2007)Gain-of-function phenotypes of chemically synthetic CLAVATA3/ESR-related(CLE)peptides in Arabidopsis thaliana and Oryza sativa.Plant Cell Physiol.48,1821–1825.

    Kinoshita A,Betsuyaku S,Osakabe Y,Mizuno S,Nagawa S,Stahl Y,Simon R,Yamaguchi-Shinozaki K,Fukuda H,Sawa S(2010)RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.Development 137,3911–3920.

    Kondo Y,Hirakawa Y,Kieber JJ,Fukuda H(2011)CLE peptides can negatively regulate protoxylem vessel formation via cytokinin signaling.Plant Cell Physiol.52,37–48.

    Kubo M,Udagawa M,Nishikubo N,Horiguchi G,Yamaguchi M,Ito J,Mimura T,Fukuda H,Demura T(2005)Transcription switches for protoxylem and metaxylem vessel formation.Genes Dev.19,1855–1860.

    Lucas WJ(2010)Plant vascular biology and agriculture.J.Integr.Plant Biol.52,4–7.

    M?h?nen AP,Bonke M,Kauppinen L,Riikonen M,Benfey PN,Helariutta Y(2000)A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root.Gene.Dev.14,2938–2943.

    M?h?nen AP,Bishopp A,Higuchi M,Nieminen KM,Kinoshita K,T?orm?kangas K,Ikeda Y,Oka A,Kakimoto T,Helariutta Y(2006)Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development.Science 311,94–98.

    Matsubayashi Y(2011)Small post-translationally modified peptide signals in Arabidopsis.The Arabidopsis Book 9,e0150.doi:10.1199:tab.0150.

    Miwa H,Betsuyaku S,Iwamoto K,Kinoshita A,Fukuda H,Sawa S(2008)The receptor-like kinase SOL2 mediates CLE signaling in Arabidopsis.Plant Cell Physiol.49,1752–1757.

    Müller R,Bleckmann A,Simon R(2008)The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1.Plant Cell 20,934–946.

    Murphy E,Smith S,De Smet I(2012)Small signaling peptides in Arabidopsis development:How cells communicate over a short distance.Plant Cell 24,3198–3217.

    Nodine MD,Bryan AC,Racolta A,Jerosky KV,Tax FE(2011)A few standing for many:Embryo receptor-like kinases.Trends Plant Sci.16,211–217.

    Shinohara H,Moriyama Y,Ohyama K,Matsubayashi Y(2012)Biochemical mapping of a ligand-binding domain within Arabidopsis BAM1 reveals diversified ligand recognition mechanisms of plant LRR-RKs.Plant J.70,845–854.

    Schoof H,Lenhard M,Haecker A,Mayer KF,Jürgens G,Laux T(2000)The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.Cell 100,635–644.

    Song XF,Guo P,Ren SC,Xu TT,Liu CM(2013)Antagonistic peptide technology for functional dissection of CLE genes in Arabidopsis.Plant Physiol.doi:dx.doi.org/10.1104/pp.112.211029

    Stahl Y,Wink RH,Ingram GC,Simon R(2009)A signaling module controlling the stem cell niche in Arabidopsis root meristems.Curr.Biol.19,909–914.

    Strabala TJ,O’donnell PJ,Smit AM,Ampomah-Dwamena C,Martin EJ,Netzler N,Nieuwenhuizen NJ,Quinn BD,Foote HCC,Hudson KR(2006)Gain-of-function phenotypes of many CLAVATA3/ESR genes,including four new family members,correlate with tandem variations in the conserved CLAVATA3/ESR domain.Plant Physiol.140,1331–1344.

    Suer S,Agusti J,Sanchez P,Schwarz M,Greb T(2011)WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis.Plant Cell 23,3247–3259.

    Whitford R,Fernandez A,De Groodt R,Ortega E,Hilson P(2008)Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells.Proc.Natl.Acad.Sci.USA 105,18625–18630.

    Yokoyama A,Yamashino T,Amano Y,Tajima Y,Imamura A,Sakakibara H,Mizuno T(2007)Type-B ARR transcription factors,ARR10 and ARR12,are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana.Plant Cell Physiol.48,84–96.

    Zhu Y,Wang Y,Li R,Song X,Wang Q,Huang S,Jin JB,Liu CM,Lin J(2010)Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis.Plant J.61,223–233.

    精品午夜福利视频在线观看一区| 国产1区2区3区精品| 极品人妻少妇av视频| 丝袜美腿诱惑在线| 一a级毛片在线观看| 国产乱人伦免费视频| 欧美激情 高清一区二区三区| 午夜91福利影院| 国产精品亚洲av一区麻豆| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲真实| 亚洲精品久久成人aⅴ小说| 欧美不卡视频在线免费观看 | 午夜福利乱码中文字幕| 国产亚洲精品久久久久久毛片 | 欧美日韩中文字幕国产精品一区二区三区 | 桃红色精品国产亚洲av| 老汉色av国产亚洲站长工具| 亚洲av成人不卡在线观看播放网| 美国免费a级毛片| 欧美一级毛片孕妇| 久久精品成人免费网站| 久久久久精品人妻al黑| 99国产极品粉嫩在线观看| 亚洲一区中文字幕在线| 国产精品欧美亚洲77777| 中文欧美无线码| 日本wwww免费看| 1024视频免费在线观看| 人妻一区二区av| 人人妻,人人澡人人爽秒播| 黄色女人牲交| 亚洲精品国产区一区二| 99久久99久久久精品蜜桃| 成人三级做爰电影| 欧美乱妇无乱码| 一个人免费在线观看的高清视频| 日本欧美视频一区| 黄网站色视频无遮挡免费观看| 亚洲在线自拍视频| 性少妇av在线| 午夜福利在线观看吧| 视频区欧美日本亚洲| 黄片小视频在线播放| 免费在线观看影片大全网站| 国产亚洲精品一区二区www | 日韩成人在线观看一区二区三区| 久热爱精品视频在线9| 窝窝影院91人妻| 精品久久蜜臀av无| 超色免费av| 人人妻人人澡人人爽人人夜夜| av欧美777| 18禁观看日本| 99国产精品一区二区三区| 久久影院123| 国产97色在线日韩免费| 午夜精品久久久久久毛片777| 精品国产一区二区三区久久久樱花| 国产不卡一卡二| 欧美日韩亚洲高清精品| 亚洲国产精品合色在线| 怎么达到女性高潮| 大码成人一级视频| 波多野结衣一区麻豆| 亚洲精品中文字幕一二三四区| 99国产精品免费福利视频| 午夜福利视频在线观看免费| 亚洲熟女毛片儿| 亚洲一区二区三区不卡视频| 欧美大码av| 视频区图区小说| 午夜福利在线观看吧| 少妇裸体淫交视频免费看高清 | 中亚洲国语对白在线视频| 午夜福利免费观看在线| 丰满的人妻完整版| 国产日韩欧美亚洲二区| 亚洲成人免费电影在线观看| 91在线观看av| 欧美久久黑人一区二区| 狂野欧美激情性xxxx| 69精品国产乱码久久久| 人成视频在线观看免费观看| 午夜福利免费观看在线| 男女床上黄色一级片免费看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人国产一区在线观看| 在线视频色国产色| 12—13女人毛片做爰片一| 欧美精品亚洲一区二区| 91在线观看av| 看免费av毛片| 国内久久婷婷六月综合欲色啪| 操美女的视频在线观看| 亚洲色图 男人天堂 中文字幕| cao死你这个sao货| 久久久国产精品麻豆| 国产精品免费一区二区三区在线 | 五月开心婷婷网| 午夜免费观看网址| 色在线成人网| 丝袜在线中文字幕| 麻豆成人av在线观看| 女人爽到高潮嗷嗷叫在线视频| 夜夜躁狠狠躁天天躁| 成人18禁在线播放| 18禁裸乳无遮挡动漫免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲av日韩在线播放| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻丝袜一区二区| 国产xxxxx性猛交| 老熟女久久久| 美女视频免费永久观看网站| 久热爱精品视频在线9| 欧美性长视频在线观看| 午夜福利影视在线免费观看| 亚洲精品久久午夜乱码| 首页视频小说图片口味搜索| 欧美日韩一级在线毛片| 99riav亚洲国产免费| 亚洲av欧美aⅴ国产| 叶爱在线成人免费视频播放| 国产午夜精品久久久久久| 亚洲视频免费观看视频| 国产xxxxx性猛交| 国产日韩欧美亚洲二区| 国产欧美日韩一区二区三区在线| 建设人人有责人人尽责人人享有的| 曰老女人黄片| 欧美国产精品va在线观看不卡| 中文字幕av电影在线播放| 在线播放国产精品三级| 可以免费在线观看a视频的电影网站| 国产极品粉嫩免费观看在线| 欧美日韩成人在线一区二区| 最近最新免费中文字幕在线| 亚洲av熟女| 少妇裸体淫交视频免费看高清 | 99热网站在线观看| 18禁黄网站禁片午夜丰满| 久久午夜亚洲精品久久| 视频在线观看一区二区三区| www.精华液| 久久人妻熟女aⅴ| 俄罗斯特黄特色一大片| 欧美黄色片欧美黄色片| 热99久久久久精品小说推荐| 久久精品国产亚洲av香蕉五月 | aaaaa片日本免费| 国产极品粉嫩免费观看在线| 麻豆国产av国片精品| 国产精华一区二区三区| 麻豆av在线久日| 老鸭窝网址在线观看| 天堂中文最新版在线下载| 香蕉丝袜av| 黄色视频,在线免费观看| 国产男女超爽视频在线观看| 欧美激情极品国产一区二区三区| 1024香蕉在线观看| 亚洲精品一二三| 他把我摸到了高潮在线观看| 日韩欧美一区视频在线观看| 国产又色又爽无遮挡免费看| 国产xxxxx性猛交| 99re在线观看精品视频| 国产不卡一卡二| 一区福利在线观看| 午夜福利乱码中文字幕| 亚洲精品久久成人aⅴ小说| 一区二区日韩欧美中文字幕| 国产精品香港三级国产av潘金莲| 国产xxxxx性猛交| 日韩精品免费视频一区二区三区| 久久久精品免费免费高清| 免费在线观看完整版高清| 91麻豆精品激情在线观看国产 | 久久狼人影院| 久久亚洲精品不卡| 日韩欧美一区视频在线观看| 少妇被粗大的猛进出69影院| 国产不卡av网站在线观看| 一进一出好大好爽视频| a级片在线免费高清观看视频| 国产91精品成人一区二区三区| 黄片小视频在线播放| 男女床上黄色一级片免费看| 欧美日本中文国产一区发布| 岛国毛片在线播放| 精品久久久久久久毛片微露脸| 99国产综合亚洲精品| 日本一区二区免费在线视频| 一级作爱视频免费观看| bbb黄色大片| 两人在一起打扑克的视频| 欧美黄色淫秽网站| 自拍欧美九色日韩亚洲蝌蚪91| 熟女少妇亚洲综合色aaa.| 国产高清videossex| 黑人欧美特级aaaaaa片| av国产精品久久久久影院| 一级毛片高清免费大全| 91在线观看av| 欧美激情久久久久久爽电影 | 人成视频在线观看免费观看| 视频在线观看一区二区三区| 香蕉国产在线看| 黑人欧美特级aaaaaa片| 亚洲精品久久午夜乱码| 免费在线观看日本一区| 色播在线永久视频| 国产精品久久久久成人av| 色老头精品视频在线观看| 欧美精品亚洲一区二区| 热re99久久精品国产66热6| 三上悠亚av全集在线观看| 极品少妇高潮喷水抽搐| 精品亚洲成国产av| 久久久精品免费免费高清| 欧美黑人欧美精品刺激| 视频区欧美日本亚洲| 男女之事视频高清在线观看| 最近最新免费中文字幕在线| 后天国语完整版免费观看| 亚洲人成伊人成综合网2020| 久久精品国产99精品国产亚洲性色 | 欧美日韩一级在线毛片| 操美女的视频在线观看| 校园春色视频在线观看| 精品第一国产精品| 亚洲成人手机| 757午夜福利合集在线观看| 成人特级黄色片久久久久久久| 999久久久国产精品视频| 欧美精品高潮呻吟av久久| 午夜免费观看网址| 亚洲av日韩精品久久久久久密| 亚洲七黄色美女视频| 欧美日韩成人在线一区二区| 国产国语露脸激情在线看| 久久精品国产99精品国产亚洲性色 | av网站在线播放免费| 最近最新中文字幕大全电影3 | 国产国语露脸激情在线看| 中出人妻视频一区二区| 国产片内射在线| 久久国产亚洲av麻豆专区| 欧美 亚洲 国产 日韩一| 国产亚洲精品久久久久久毛片 | 久久午夜亚洲精品久久| 亚洲一区高清亚洲精品| 国产高清国产精品国产三级| 久久 成人 亚洲| 亚洲一区中文字幕在线| 妹子高潮喷水视频| 在线视频色国产色| a级片在线免费高清观看视频| 国产免费现黄频在线看| 欧美精品人与动牲交sv欧美| 香蕉国产在线看| 国产成人欧美在线观看 | 国产精品久久久av美女十八| 亚洲视频免费观看视频| 精品久久久久久久毛片微露脸| 亚洲五月天丁香| 黄色片一级片一级黄色片| 色综合欧美亚洲国产小说| 精品国产乱子伦一区二区三区| 成人永久免费在线观看视频| 成人特级黄色片久久久久久久| 国产日韩欧美亚洲二区| 久久中文看片网| 少妇裸体淫交视频免费看高清 | 欧美一级毛片孕妇| 日韩欧美在线二视频 | 欧美黑人精品巨大| 久久久久精品人妻al黑| 国产成人精品久久二区二区91| 欧美成狂野欧美在线观看| 在线av久久热| 最近最新中文字幕大全电影3 | 在线观看日韩欧美| 法律面前人人平等表现在哪些方面| 看片在线看免费视频| 欧美精品亚洲一区二区| 黑人巨大精品欧美一区二区蜜桃| 黄色女人牲交| 亚洲熟女精品中文字幕| 日本一区二区免费在线视频| 日韩欧美在线二视频 | 香蕉丝袜av| 老司机午夜十八禁免费视频| 一级毛片女人18水好多| 水蜜桃什么品种好| 在线观看一区二区三区激情| 午夜福利免费观看在线| 免费观看a级毛片全部| 最近最新中文字幕大全电影3 | 99精品在免费线老司机午夜| 午夜两性在线视频| avwww免费| 天堂中文最新版在线下载| 亚洲,欧美精品.| 男女之事视频高清在线观看| 亚洲人成伊人成综合网2020| 日日爽夜夜爽网站| 超碰97精品在线观看| 国产91精品成人一区二区三区| 天天操日日干夜夜撸| 成年女人毛片免费观看观看9 | 男人舔女人的私密视频| 午夜免费观看网址| 亚洲黑人精品在线| 自拍欧美九色日韩亚洲蝌蚪91| 香蕉久久夜色| av中文乱码字幕在线| 亚洲中文av在线| 欧美色视频一区免费| 精品第一国产精品| 麻豆乱淫一区二区| 午夜福利一区二区在线看| cao死你这个sao货| 精品久久蜜臀av无| 亚洲av成人一区二区三| 精品电影一区二区在线| 岛国毛片在线播放| 欧美色视频一区免费| 精品卡一卡二卡四卡免费| 国产高清激情床上av| 日本一区二区免费在线视频| 一区二区三区激情视频| 亚洲av电影在线进入| 老司机福利观看| 中文字幕制服av| 一夜夜www| xxxhd国产人妻xxx| 精品国产一区二区三区四区第35| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 美女高潮喷水抽搐中文字幕| 精品国产一区二区久久| 午夜两性在线视频| 性色av乱码一区二区三区2| 日日爽夜夜爽网站| 亚洲精品一二三| av网站在线播放免费| 婷婷成人精品国产| 一级,二级,三级黄色视频| 亚洲色图综合在线观看| 久久久久久人人人人人| 亚洲欧美一区二区三区黑人| 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 亚洲av熟女| 男男h啪啪无遮挡| 日韩欧美一区二区三区在线观看 | 亚洲色图 男人天堂 中文字幕| 免费日韩欧美在线观看| 国产主播在线观看一区二区| 亚洲精品自拍成人| 国产高清videossex| 91字幕亚洲| 99riav亚洲国产免费| 国产在视频线精品| 亚洲男人天堂网一区| 久久久久视频综合| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| 搡老熟女国产l中国老女人| 欧美黑人欧美精品刺激| 精品午夜福利视频在线观看一区| 亚洲熟女毛片儿| 一个人免费在线观看的高清视频| 国产日韩一区二区三区精品不卡| 女人被躁到高潮嗷嗷叫费观| 一个人免费在线观看的高清视频| 欧美大码av| videos熟女内射| 亚洲五月天丁香| 国精品久久久久久国模美| 免费看a级黄色片| 男女免费视频国产| 怎么达到女性高潮| 成人av一区二区三区在线看| 亚洲av欧美aⅴ国产| 成人18禁在线播放| 亚洲少妇的诱惑av| 色94色欧美一区二区| 99热网站在线观看| 欧美日韩黄片免| tube8黄色片| 一级作爱视频免费观看| 欧美乱色亚洲激情| 亚洲第一青青草原| 中国美女看黄片| 美国免费a级毛片| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区91| 欧美日韩亚洲国产一区二区在线观看 | 成人三级做爰电影| 欧美精品啪啪一区二区三区| 午夜福利视频在线观看免费| 美女高潮到喷水免费观看| 首页视频小说图片口味搜索| 成人特级黄色片久久久久久久| 久久中文看片网| 国产成人av教育| 久久热在线av| 三上悠亚av全集在线观看| 亚洲性夜色夜夜综合| 国产日韩一区二区三区精品不卡| 欧美av亚洲av综合av国产av| 天天添夜夜摸| 熟女少妇亚洲综合色aaa.| 国产精品免费视频内射| 91麻豆精品激情在线观看国产 | 久久精品成人免费网站| 咕卡用的链子| 村上凉子中文字幕在线| 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 午夜两性在线视频| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 又黄又粗又硬又大视频| 人妻 亚洲 视频| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 伊人久久大香线蕉亚洲五| 精品国产乱码久久久久久男人| 国产精品欧美亚洲77777| 一边摸一边做爽爽视频免费| 亚洲精品粉嫩美女一区| 精品国产一区二区久久| av不卡在线播放| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 国产精品久久电影中文字幕 | 黄色女人牲交| 麻豆国产av国片精品| 亚洲一区二区三区不卡视频| 一区二区日韩欧美中文字幕| 免费观看a级毛片全部| 精品国产国语对白av| 国产淫语在线视频| 青草久久国产| 久久精品国产综合久久久| 国产高清激情床上av| 亚洲综合色网址| 国产精品免费大片| 妹子高潮喷水视频| 亚洲九九香蕉| 成人影院久久| 日韩制服丝袜自拍偷拍| 久久人妻福利社区极品人妻图片| 亚洲第一欧美日韩一区二区三区| 天堂俺去俺来也www色官网| 国产一区二区三区在线臀色熟女 | 老司机福利观看| 婷婷成人精品国产| 久久人妻熟女aⅴ| 国产在线精品亚洲第一网站| 午夜福利视频在线观看免费| 欧美精品一区二区免费开放| 超碰成人久久| 成年人免费黄色播放视频| 国产男女内射视频| 久久久久久久国产电影| 亚洲国产欧美一区二区综合| 中文字幕高清在线视频| 亚洲精品一二三| 狂野欧美激情性xxxx| 少妇粗大呻吟视频| 国产精品 国内视频| 在线国产一区二区在线| av视频免费观看在线观看| 亚洲人成伊人成综合网2020| 麻豆乱淫一区二区| 天堂中文最新版在线下载| av国产精品久久久久影院| 国产高清激情床上av| 性少妇av在线| 国产一区二区三区视频了| 精品福利永久在线观看| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 成年女人毛片免费观看观看9 | 捣出白浆h1v1| 丰满人妻熟妇乱又伦精品不卡| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 国产乱人伦免费视频| 大陆偷拍与自拍| 人妻丰满熟妇av一区二区三区 | 亚洲一码二码三码区别大吗| 美女福利国产在线| 午夜福利,免费看| 日本wwww免费看| 欧美日韩黄片免| 日韩人妻精品一区2区三区| 国产日韩一区二区三区精品不卡| 巨乳人妻的诱惑在线观看| 国产精华一区二区三区| 一本大道久久a久久精品| 一二三四社区在线视频社区8| 国产精品久久电影中文字幕 | 91成年电影在线观看| 我的亚洲天堂| 在线永久观看黄色视频| 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 亚洲色图 男人天堂 中文字幕| av免费在线观看网站| 男女免费视频国产| 午夜91福利影院| 国产三级黄色录像| 黄片播放在线免费| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 91成人精品电影| 日本wwww免费看| 国产高清视频在线播放一区| 超色免费av| 一边摸一边抽搐一进一出视频| 精品久久久久久久毛片微露脸| 我的亚洲天堂| 国产精品国产av在线观看| 精品久久蜜臀av无| 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 一级a爱视频在线免费观看| 免费观看人在逋| 看黄色毛片网站| 老汉色av国产亚洲站长工具| 黄色丝袜av网址大全| 日本欧美视频一区| 日本vs欧美在线观看视频| 国产精品综合久久久久久久免费 | 91大片在线观看| 亚洲精品久久成人aⅴ小说| 欧美丝袜亚洲另类 | 校园春色视频在线观看| 亚洲美女黄片视频| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 国产色视频综合| 麻豆乱淫一区二区| 国产精品 国内视频| 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 在线国产一区二区在线| 国产精品九九99| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 欧美色视频一区免费| 黄网站色视频无遮挡免费观看| 精品福利永久在线观看| 老司机深夜福利视频在线观看| 国产男女超爽视频在线观看| 丁香六月欧美| 捣出白浆h1v1| 亚洲欧美日韩高清在线视频| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 亚洲av成人不卡在线观看播放网| 精品熟女少妇八av免费久了| 久久婷婷成人综合色麻豆| 两性夫妻黄色片| 在线观看www视频免费| 十八禁人妻一区二区| 久久国产精品影院| 中国美女看黄片| 黄色成人免费大全| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 国产麻豆69| 国产精品影院久久| 免费观看a级毛片全部| 亚洲精品国产区一区二| 欧美精品一区二区免费开放| 建设人人有责人人尽责人人享有的| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 一级,二级,三级黄色视频| 亚洲欧美精品综合一区二区三区| 电影成人av| 变态另类成人亚洲欧美熟女 | a级毛片黄视频| 亚洲七黄色美女视频| 757午夜福利合集在线观看| 最近最新中文字幕大全免费视频| 国产精品乱码一区二三区的特点 | 国产成+人综合+亚洲专区| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 国产精品av久久久久免费| 亚洲一区二区三区不卡视频| 精品国产乱码久久久久久男人| 一本大道久久a久久精品| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 最近最新中文字幕大全免费视频| 一边摸一边抽搐一进一出视频| 久久久久久久精品吃奶| 九色亚洲精品在线播放| 最新的欧美精品一区二区| 亚洲中文字幕日韩| 午夜精品在线福利| 久久久久久人人人人人| 精品无人区乱码1区二区|