• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice

    2014-04-06 12:20:02ShaochenSuTaoQiBaoliSuHuibinGuJianlinWangLanYang

    Shaochen Su, Tao Qi, Baoli Su, Huibin Gu, Jianlin Wang, Lan Yang

    1 School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    2 First Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    3 Changzhou Institute of Mechatronic and Technology, Changzhou, Jiangsu Province, China

    Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice

    Shaochen Su1, Tao Qi2, Baoli Su3, Huibin Gu3, Jianlin Wang1, Lan Yang1

    1 School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    2 First Hospital, Lanzhou University, Lanzhou, Gansu Province, China

    3 Changzhou Institute of Mechatronic and Technology, Changzhou, Jiangsu Province, China

    Tooth loss has been shown to affect learning and memory in mice and increases the risk of Alzheimer’s disease. The dentate gyrus is strongly associated with cognitive function. This study hypothesized that tooth loss affects neurons in the dentate gyrus. Adult male mice were randomly assigned to either the tooth loss group or normal control group. In the tooth loss group, the left maxillary and mandibular molars were extracted. Normal control mice did not receive any intervention. Immuno fl uorescence staining revealed that the density and absorbance of doublecortin- and neuronal nuclear antigen-positive cells were lower in the tooth loss group than in the normal control group. These data suggest that tooth loss may inhibit neurogenesis in the dentate gyrus of adult mice.

    nerve regeneration; neurogenesis; neurons; tooth loss; hippocampus; dentate gyrus; doublecortin; neuronal nuclear antigen; neural regeneration

    Funding:This study was supported by the Science and Technology Key Project of Ministry of Education of China, No. 106152; the Scientific Research Project of Second Hospital of Lanzhou University of China, No. C1708.

    Su SC, Qi T, Su BL, Gu HB, Wang JL, Yang L. Tooth loss inhibits neurogenesis in the dentate gyrus of adult mice. Neural Regen Res. 2014;9(17):1606-1609.

    Introduction

    A relationship between tooth loss and memory decline has become increasingly accepted. Epidemiological investigations have demonstrated that tooth loss increases the risk of senile dementia (Nakata, 1998). Animal studies have con fi rmed that a restrictive relationship exists between the teeth and memory. In mice, a large loss in the number of teeth reduces their learning and memory (Kato et al., 1997; Bergdahl et al., 2007). The hippocampus is a key region for higher neural activities such as emotion, behavior, learning, and memory. In particular, neurons in the dentate gyrus of animals and humans play a signi fi cant role in learning and memory, and their structure, number, and regeneration are strongly associated with cognitive function (Eichenbaum, 1999).

    In the present study, we performed double immunofluorescence staining with a marker of newly born neurons, doublecortin, and a marker of neuronal maturation, neuronal nuclear antigen, in the dentate gyrus of adult mice with tooth loss. Results from these experiments showed neurogenesis in this brain region of these mice.

    Materials and Methods

    Animals

    A total of 60 healthy adult male CD1 mice aged 3 or 4 months and weighing 20-30 g were provided by the Experimental Animal Center, Lanzhou University, China. All mice were housed in a standard cage placed in a quiet room (away from the sun and noise). Mice were kept at 22-23°C with a relative humidity of 45-50%, and under a 12-hour light/ dark cycle. The protocols were approved by the Animal Ethics Committee, Second Hospital, Lanzhou University, China.

    Experimental groups and model establishment

    All mice were equally and randomly divided into either the tooth loss group or the normal control group. Mice in the tooth loss group were intraperitoneally injected with 10% chloral hydrate 4 mL/kg and then fi xed in the supine position. The left maxillary and mandibular molars were then extracted 2 days later, thus establishing the tooth loss model. The normal control group did not receive any intervention.

    Preparation of tissue sections

    All mice were anesthetized with chloral hydrate 4 weeks after model establishment. After the heart was exposed, a puncture was made through the cardiac apex until it reached the ascending aorta. The right auricle was then cut with a pair of eye scissors. Physiological saline (150 mL) was used for washing until the lip and tongue became white. The blood vessels of the heart were fully fi xed with 250 mL 4% paraformaldehyde in phosphate-buffered saline (PBS; 0.01 mol/L, pH 7.4, 150 mL). After craniotomy, brain tissue was fi xed (overnight at 4°C)with 4% paraformaldehyde in PBS. Brain tissues were sliced into coronal sections (thickness of 5 μm) from the superior colliculus to the optic chiasm and from the cephalic side to caudal side. Three serial sections were obtained at intervals of 50 μm and placed on poly-lysine-coated slides for further staining.

    Figure 1 Effects of tooth loss on the distribution and morphology of newborn neurons in the mouse dentate gyrus (immunofuorescence staining).

    Table 1 Effects of tooth loss on the distribution of newborn neurons in the mouse dentate gyrus

    Double immunofuorescence staining for doublecortin and neuronal nuclear antigen

    Sections were dehydrated and permeabilized at room temperature (20°C) (Rohr et al., 2001). Antigen was retrieved with citric acid by exposing the sections in the microwave oven for 120 minutes. Sections were then treated with a mixture of hydrogen peroxide and methanol (1:50) at room temperature for 30 minutes to deactivate endogenous peroxidase. Sections were washed (5 minutes × 3) with 0.01 mol/L PBS, These sections were blocked with normal goat serum for 20 minutes, then incubated (overnight at 4°C) with the primary antibodies, donkey anti-doublecortin (1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and mouse anti-neuronal nuclear antigen (1:1,000; Chemicon, Hofheim, Germany). After washing (5 minutes × 3) with 0.01 mol/L PBS, sections were incubated (for 10 minutes at 37°C) with the secondary antibodies, goat anti-mouse IgG, Alexa 555 (1:300; Molecular Probes Gotingen, Germany) and goat anti-donkey IgG, Alexa 488 (1:300; Molecular Probes, Gotingen). All sections were subsequently washed (5 minutes × 3) with PBS 0.01 mol/L and then immersed in water, followed by dehydration using a graded alcohol series. The sections were placed in each alcohol grade for 2 minutes and then fi nally immersed in xylene, and moved in a fume cupboard where they were mounted with neutral resin.

    Data analysis

    Newborn neurons and the newborn granule cell layer in the dentate gyrus were observed with a confocal laser scanning microscope (LSM 510; Zeiss, Germany). The distribution, density, and absorbance values of newborn neurons were compared. Doublecortin-labeled newborn neurons in the dentate gyrus were quantified with a confocal laser scanning microscopy. The number (n) of newborn neurons in the granular cell layer and subgranular zone in each section was calculated. The area of the granular cell layer and subgranular zone in the dentate gyrus was also calculated, and the number (n/mm2) of doublecortin-positive cells in a unit area of the dentate gyrus was calculated by the grid test method (Zhu et al., 2009). Absorbance values of doublecortin- and neuronal nuclear antigen-labeled cells were obtained from both groups, as previously described (Zhou et al., 1995).

    Statistical analysis

    Data were expressed as the mean ± SD and were analyzed by the two-samplet-test, which was performed using SPSS 13.0 software (SPSS, Chicago, IL, USA). A value ofP< 0.05 was considered statistically signi fi cant.

    Results

    Distribution and morphology of newborn neurons in the dentate gyrus of mice with tooth loss

    The numbers of both doublecortin and neuronal nuclear antigen-labeled newly born neurons were high in the normal control group, but low in the tooth loss group.

    Doublecortin-labeled cells were detected in the granular cell layer and subgranular zone in both groups 4 weeks after model establishment. Dendrites vertically crossed the lamellar structure and were distributed two-cell widths between the granular cell layer and gate region. A few doublecortin-positive cells migrated to the granular cell layer. Doublecortin-positive cells in the gate region were scattered. Neuronal nuclear antigen-labeled cells were visible in the molecular layer, granular layer and subgranular zone, especially in the subgranular zone (Figure 1).

    In the normal control group, the number of doublecortin-positive cells was high in the subgranular zone of dentate gyrus. These doublecortin-positive cells were arranged in a cluster, and the synapse was long and continuous (Figure 1B). In the tooth loss group, the number of doublecortin-positive cells was low in the subgranular zone of the dentate gyrus. These doublecortin-positive cells were single (with a few in a cluster) and scattered, and the synapse was short and discontinuous (Figure 1A). In neuronal nuclear antigen-labeled images, neuronal nuclear antigen-positive granule cells in the normal control group were visible in the dentate gyrus, and most of them were mature and densely distributed (about 7-9 layers) with a spherical or elliptical shape (Figure 1D). In the tooth loss group, the number of neuronal nuclear antigen-positive cells was less in the dentate gyrus (Figure 1C).

    Effect of tooth loss on neurogenesis in the dentate gyrus

    Both the density and absorbance values of doublecortinand neuronal nuclear antigen-positive cells were signi fi cantly (P< 0.05) lower in the tooth loss group compared with the normal control group (Table 1).

    Discussion

    Neurogenesis mainly occurs in the subependymal layer and in the dentate gyrus of adult mammals. More specifically, neurogenesis occurs in the subgranular cell zone of the dentate gyrus, and involves neural stem cells/progenitor cells (Altman and Das, 1965; Eriksson et al., 1998). Neural stem cells in the dentate gyrus are located in the subgranule cell layer in hippocampus. Neurogenesis in the infragranular layer consists of three stages: (1) neural stem cell division, (2) gradual migration to the granule cell layer in which newborn cells are semi-mature, and (3) newborn cells integrated in the granule cell layer, with most cells differentiated into mature neural cells (Oyanagi et al., 2001; Leuner et al., 2010). The infragranular layer of the dentate gyrus is considered to be a region for neural stem cell proliferation, with its effects continuing into adulthood. Neural stem cells in the infragranular layer of adult mice constantly proliferate and migrate to the granule cell layer. Moreover, neural stem cells gradually transform into mature cells during migration, and finally differentiated into neurons in the granule cell layer (Corbo et al., 2002). Dentate gyrus is a key region in the brain in which neurogenesis occurs all through life (Nacher et al., 2001). Thus newborn cells may be strongly correlated with learning and memory. A previous study has con fi rmed that newborn cells in the granule cell layer are strongly associated with memory formation, and disruption of neural cell proliferation in the dentate gyrus affects learning and memory (Macklis, 2001).

    The present study may indicate that tooth loss plays a role in learning and memory impairment in mice, by observing neuronal regeneration in the dentate gyrus using double immunofluorescence staining for doublecortin and neuronal nuclear antigen. Our results verified that Doublecortin could be used to analyze neuronal regeneration in the dentate gyrus under different conditions such as environmental change, mature, illness or injury (Jin et al., 2002).

    Doublecortin is a microtubule-associated protein that is extensively expressed in the developing nervous system of mammas. Furthermore, doublecortin is necessary for neuronal migration and differentiation and can label the fi rst and second stages of neurogenesis in the infragranular layer of the dentate gyrus (Sska et al., 2000). Doublecortin is mainly expressed in neuronal cell bodies and plays a major role in migration and axonal differentiation (Gleeson et al., 1999; Friocourt et al., 2003). Our results from the high-powered confocal laser scanning microscope revealed that doublecortin-positive cells were mainly located in the infragranular layer of dentate gyrus. The number of doublecortin-labeled newly born neurons was high in the normal control group, but low in the tooth loss group. Neuronal nuclear antigen labels the fi rst and second stages of neurogenesis in the infragranular layer of the dentate gyrus, and is mainly expressed in mature neurons. Our staining results demonstrated that the number of neuronal nuclear antigen-positive cells was high in the normal control group, but low in the tooth loss group. This study showed that the number and density of newly born neural cells were lower in the tooth loss group compared with the normal control group. Antigen activity and number of positive cells were higher in the normal control group than in the tooth loss group. These results therefore suggest that the neurogenic capacity in the hippocampus is lower in the tooth loss group than in the normal control group.

    Our results from the immuno fl uorescence study demonstrated that tooth loss impaired the distribution, structure, and neurogenic capacity of neurons in the mouse dentate gyrus. These effects may have a negative impact on learning and memory. The alteration in neurotransmitter content, a decrease in cerebral blood fl ow and oxygen levels after tooth loss (Hu et al., 2003), and poor chewing-induced nutritional de fi ciencies may also result in injury to the brain structure and neuronal regeneration at different degrees (Chen et al., 2007). Nevertheless, the impact of tooth loss on learning and memory in mice requires further investigation.

    Author contributions:Su SC, Wang JL and Yang L participated in study design and implementation, result analysis, data statistics, manuscript writing, and submission. Wang JL and Yang L participated in theory and practice guidance, result analysis and manuscript submission. Qi T participated in study implementation and result analysis. Su BL and Gu HB participated in experimental statistics. All authors approved the final version of the paper.

    Conficts of interest:None declared.

    Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124: 319-335.

    Bergdahl M, Habib R, Bergdahl J, Nyberg L, Nilsson LG (2007) Natural teeth and cognitive function in humans. Scand J Psychol 48:557-565.

    Chen Y, Hong J, Xu J, Liao Y, Wei Z, Huang C (2007) Effects of multi-micronutrients on alleviating physical fatigue and improving learning and memory. Yingyang Xuebao 29:213-216.

    Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA. (2002) Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 22:7548-7557.

    Eichenbaum H (1999) Conscious awareness, memory and the hippocampus. Nat Neurosci 2:775-776.

    Eriksson PS, Per fi lieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313-1317.

    Friocourt G, Koulakoff A, Chafey P, Boucher D, Fauchereau F, Chelly J, Francis F (2003) Doublecortin functions at the extremities of growing neuronal processes. Cereb Cortex 13:620-626.

    Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257-271.

    Hu H, Huang J, Liu H (2003) Protective effects and mechanisms of serial TCM “Huoxuehuayu” prescriptions on cerebral ischemia-reperfusion injury in rats. Zhejiang Daxue Xuebao: Yixue Ban 32:502-506.

    Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A 99:11946-11950.

    Kato T, Usami T, Noda Y, Hasegawa M, Ueda M, Nabeshima T (1997) The effect of the loss of molar teeth on spatial memory and acetylcholine release from the parietal cortex in aged rats. Behav Brain Res 83:239-242.

    Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Ann Rev Psychol 61:111-140.

    Macklis JD (2001) Neurobiology: newmemories from new neurons. Nature 410:314-315.

    Nakata M (1998) Masticatory function and its effects on general health. Int Dent J 48:540-548.

    Oyanagi K, Kakita A, Kawasaki K, Hayashi S, Yamada M (2001) Expression of calbindin D-28k and parvalbumin in cerebral cortical dysgenesis induced by administration of ethylnitrosourea to rats at the stage of neurogenesis. Acta Neuropathol 101:375-382.

    Sska M, Ono J, Okada S, Nakamura Y, Kurahashi H (2000) Genetic alteration of the DCX gene in Japanese patients with subcortical laminar heterotopia or isolated lissencephaly sequence. J Hum Genet 45:167-170.

    Zhou Y, Haugland RP (1995) Use of a new fluorescent probe, seminaphtho fl uorescein-calcein, for determination of intracellular pH by simultaneous dual-emission imaging laser scanning confocal microscopy. J Cell Physiol 164:9-16.

    Zhu HL, Bin P, Wu JJ, Xu Q, Zhu WB, Wang BH (2009) A counting method for monoayer cells attached to culture plate in situ. Xibao Shengwuxue Zazhi 164:9-16.

    Copyedited by Farso M, de Souza M, Wang J, Qiu Y, Li CH, Song LP, Zhao M

    Jianlin Wang, Ph.D., School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou 730030, Gansu Province, China, jlwang@lzu.edu.cn. Lan Yang, M.D., School of Life Sciences, Lanzhou University; Second Hospital, Lanzhou University, Lanzhou 730030, Gansu Province, China, ylan2005@163.com.

    10.4103/1673-5374.141786

    http://www.nrronline.org/

    Accepted: 2014-07-30

    svipshipincom国产片| 99国产精品一区二区蜜桃av| 热99在线观看视频| 天天一区二区日本电影三级| 精品久久久久久久毛片微露脸| 欧美乱色亚洲激情| 十八禁人妻一区二区| 一级a爱片免费观看的视频| 国产午夜精品论理片| 久久九九热精品免费| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 长腿黑丝高跟| 身体一侧抽搐| 亚洲 欧美一区二区三区| 亚洲欧美日韩高清专用| 男女下面进入的视频免费午夜| 超碰成人久久| 国产成人一区二区三区免费视频网站| 在线免费观看的www视频| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 免费无遮挡裸体视频| 国产69精品久久久久777片 | 757午夜福利合集在线观看| 亚洲人与动物交配视频| 亚洲,欧美精品.| 午夜视频精品福利| 国产午夜精品论理片| 成人三级做爰电影| 午夜亚洲福利在线播放| 97人妻精品一区二区三区麻豆| 亚洲最大成人中文| 久久人妻av系列| 精品一区二区三区四区五区乱码| 免费观看人在逋| 少妇丰满av| 深夜精品福利| 99久久久亚洲精品蜜臀av| 又黄又粗又硬又大视频| 亚洲av成人精品一区久久| 熟女人妻精品中文字幕| 亚洲aⅴ乱码一区二区在线播放| 欧美黑人欧美精品刺激| 国产精品一及| 黄色 视频免费看| 亚洲专区字幕在线| 首页视频小说图片口味搜索| 毛片女人毛片| 床上黄色一级片| 国产精品影院久久| 免费一级毛片在线播放高清视频| 国产视频内射| 成人无遮挡网站| www.999成人在线观看| 国产男靠女视频免费网站| 欧美日韩黄片免| 久久国产精品影院| 欧美日韩国产亚洲二区| 精品国产乱子伦一区二区三区| svipshipincom国产片| 高清在线国产一区| 国产69精品久久久久777片 | 亚洲中文日韩欧美视频| 99久国产av精品| 亚洲国产色片| 狠狠狠狠99中文字幕| 日韩三级视频一区二区三区| 搡老岳熟女国产| 色哟哟哟哟哟哟| 国产伦在线观看视频一区| 国产人伦9x9x在线观看| 日本黄色片子视频| 性色avwww在线观看| 91av网站免费观看| 日本精品一区二区三区蜜桃| 日韩成人在线观看一区二区三区| 夜夜看夜夜爽夜夜摸| 天堂av国产一区二区熟女人妻| 少妇的丰满在线观看| 久久久国产成人免费| 搡老妇女老女人老熟妇| 19禁男女啪啪无遮挡网站| 一级a爱片免费观看的视频| 日韩欧美 国产精品| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦观看免费观看视频高清| 性欧美人与动物交配| 欧美成人性av电影在线观看| 免费高清视频大片| 国产成人系列免费观看| 三级国产精品欧美在线观看 | 国产蜜桃级精品一区二区三区| 大型黄色视频在线免费观看| 老司机在亚洲福利影院| 丁香六月欧美| 午夜成年电影在线免费观看| 国产成人aa在线观看| 免费看十八禁软件| 国产精品av久久久久免费| 久久婷婷人人爽人人干人人爱| 国产爱豆传媒在线观看| 无限看片的www在线观看| 九色国产91popny在线| 亚洲一区高清亚洲精品| 日本 欧美在线| 综合色av麻豆| 男女床上黄色一级片免费看| 欧美在线黄色| 三级国产精品欧美在线观看 | 波多野结衣高清作品| 在线观看一区二区三区| 此物有八面人人有两片| 亚洲精品在线美女| 一级黄色大片毛片| 国产成+人综合+亚洲专区| 亚洲 欧美一区二区三区| 国产激情久久老熟女| 亚洲欧美激情综合另类| 午夜免费激情av| 午夜亚洲福利在线播放| 亚洲精品粉嫩美女一区| 精品一区二区三区四区五区乱码| 国产精品影院久久| ponron亚洲| 欧美日韩黄片免| 亚洲人成网站在线播放欧美日韩| 久久久久免费精品人妻一区二区| 亚洲在线自拍视频| 国产又黄又爽又无遮挡在线| 色综合欧美亚洲国产小说| 国产成人一区二区三区免费视频网站| 1024手机看黄色片| 日韩高清综合在线| 欧美xxxx黑人xx丫x性爽| 母亲3免费完整高清在线观看| 好男人在线观看高清免费视频| 成人无遮挡网站| 香蕉丝袜av| 亚洲性夜色夜夜综合| 亚洲熟妇熟女久久| 午夜福利欧美成人| 国产真人三级小视频在线观看| 九九久久精品国产亚洲av麻豆 | 国产精品一及| 18禁国产床啪视频网站| 亚洲激情在线av| 97超视频在线观看视频| 综合色av麻豆| 嫩草影院入口| 69av精品久久久久久| 欧美黑人巨大hd| 成人无遮挡网站| 久久久久九九精品影院| 亚洲成av人片免费观看| 又大又爽又粗| 男人和女人高潮做爰伦理| 桃红色精品国产亚洲av| 亚洲成av人片免费观看| 免费看美女性在线毛片视频| 国产三级黄色录像| 亚洲自拍偷在线| 一区二区三区激情视频| 国产成人精品久久二区二区免费| 精品国内亚洲2022精品成人| 高清在线国产一区| 两人在一起打扑克的视频| 男人的好看免费观看在线视频| 亚洲av熟女| 国产欧美日韩一区二区三| 亚洲精品在线观看二区| 女同久久另类99精品国产91| 国产精品国产高清国产av| 亚洲av成人精品一区久久| 日本在线视频免费播放| 女人被狂操c到高潮| 国产成人一区二区三区免费视频网站| 91av网站免费观看| a级毛片a级免费在线| 亚洲精品美女久久久久99蜜臀| 岛国视频午夜一区免费看| 日韩 欧美 亚洲 中文字幕| 国产免费av片在线观看野外av| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品99久久99久久久不卡| 9191精品国产免费久久| 一级毛片女人18水好多| 国产精品野战在线观看| 精品福利观看| av在线蜜桃| 白带黄色成豆腐渣| 99精品在免费线老司机午夜| 久久人妻av系列| 久久久久国产一级毛片高清牌| 亚洲五月婷婷丁香| 亚洲精华国产精华精| 久久精品91无色码中文字幕| 欧美xxxx黑人xx丫x性爽| 麻豆av在线久日| 综合色av麻豆| 美女高潮喷水抽搐中文字幕| 日韩欧美精品v在线| 国产成人系列免费观看| 午夜福利在线在线| 国产精品久久久久久久电影 | 日韩av在线大香蕉| 偷拍熟女少妇极品色| 国产精品九九99| 十八禁网站免费在线| 久久中文字幕人妻熟女| 亚洲无线在线观看| 亚洲九九香蕉| 制服丝袜大香蕉在线| 欧美又色又爽又黄视频| 久久久国产欧美日韩av| 午夜免费成人在线视频| 男人舔奶头视频| 亚洲 国产 在线| 1000部很黄的大片| 色哟哟哟哟哟哟| 色老头精品视频在线观看| 超碰成人久久| 久久精品亚洲精品国产色婷小说| 国产精品野战在线观看| 精品久久久久久久久久久久久| 免费看日本二区| 欧美中文日本在线观看视频| 亚洲成人久久爱视频| 真人一进一出gif抽搐免费| 欧美在线一区亚洲| 日韩av在线大香蕉| 国内毛片毛片毛片毛片毛片| АⅤ资源中文在线天堂| 国产欧美日韩一区二区三| 欧美在线黄色| 欧美一区二区精品小视频在线| 成人特级黄色片久久久久久久| 精品福利观看| 757午夜福利合集在线观看| 91九色精品人成在线观看| 看片在线看免费视频| 国产av一区在线观看免费| 久久久久久久久免费视频了| 亚洲天堂国产精品一区在线| 精品久久久久久久久久久久久| 久久久色成人| 欧美xxxx黑人xx丫x性爽| 91久久精品国产一区二区成人 | 老司机午夜十八禁免费视频| 国产美女午夜福利| x7x7x7水蜜桃| 三级毛片av免费| 狂野欧美白嫩少妇大欣赏| 国产美女午夜福利| 国产成人aa在线观看| 18美女黄网站色大片免费观看| 夜夜爽天天搞| 欧美黑人巨大hd| 中亚洲国语对白在线视频| 久久亚洲真实| 久久天躁狠狠躁夜夜2o2o| 欧美激情在线99| 免费人成视频x8x8入口观看| 国产精品av久久久久免费| 偷拍熟女少妇极品色| 国内毛片毛片毛片毛片毛片| 69av精品久久久久久| 天天添夜夜摸| 国产一区二区三区在线臀色熟女| 嫩草影院精品99| 久久久国产精品麻豆| 免费高清视频大片| 五月玫瑰六月丁香| www.999成人在线观看| 国产主播在线观看一区二区| 久久精品国产清高在天天线| 国产精品一及| 99在线人妻在线中文字幕| 五月玫瑰六月丁香| 99精品欧美一区二区三区四区| 亚洲精品美女久久av网站| 国产成人福利小说| 久久中文字幕人妻熟女| 亚洲欧美一区二区三区黑人| 亚洲aⅴ乱码一区二区在线播放| 日本免费a在线| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 午夜福利视频1000在线观看| 欧美日韩福利视频一区二区| 国产精品美女特级片免费视频播放器 | 欧美黑人欧美精品刺激| 亚洲av日韩精品久久久久久密| 18禁裸乳无遮挡免费网站照片| 亚洲一区高清亚洲精品| 精品国产乱子伦一区二区三区| 亚洲最大成人中文| 999久久久国产精品视频| 欧美av亚洲av综合av国产av| 国产一区二区在线观看日韩 | 中文字幕精品亚洲无线码一区| 欧美日韩福利视频一区二区| 国产97色在线日韩免费| 亚洲avbb在线观看| xxx96com| 在线观看美女被高潮喷水网站 | 久久国产精品影院| 国产精品一区二区精品视频观看| 不卡一级毛片| 99国产极品粉嫩在线观看| 亚洲欧美日韩无卡精品| 美女大奶头视频| 久久精品国产亚洲av香蕉五月| 亚洲熟妇熟女久久| 成在线人永久免费视频| 久久精品91无色码中文字幕| 国产成人av教育| 欧美中文综合在线视频| 99热精品在线国产| 国产激情偷乱视频一区二区| 无限看片的www在线观看| 亚洲欧美精品综合一区二区三区| 亚洲电影在线观看av| 国产爱豆传媒在线观看| 欧美av亚洲av综合av国产av| 18禁国产床啪视频网站| 琪琪午夜伦伦电影理论片6080| 夜夜爽天天搞| 亚洲人成伊人成综合网2020| 国产激情久久老熟女| 亚洲一区二区三区不卡视频| 黄色 视频免费看| 一级a爱片免费观看的视频| 国产午夜精品久久久久久| 亚洲精品久久国产高清桃花| 成人鲁丝片一二三区免费| 午夜精品一区二区三区免费看| 老司机深夜福利视频在线观看| 一进一出抽搐gif免费好疼| 色吧在线观看| 亚洲黑人精品在线| x7x7x7水蜜桃| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品一区二区| 欧美精品啪啪一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲 国产 在线| 国产一区二区在线观看日韩 | 日日干狠狠操夜夜爽| 毛片女人毛片| 最新在线观看一区二区三区| 日本三级黄在线观看| 窝窝影院91人妻| 日韩精品中文字幕看吧| 99久久久亚洲精品蜜臀av| 神马国产精品三级电影在线观看| 亚洲国产看品久久| 亚洲18禁久久av| 听说在线观看完整版免费高清| 欧美xxxx黑人xx丫x性爽| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 窝窝影院91人妻| 国产精品一区二区三区四区免费观看 | 亚洲熟妇熟女久久| 国产黄色小视频在线观看| 黄片大片在线免费观看| 两人在一起打扑克的视频| 亚洲avbb在线观看| 啦啦啦观看免费观看视频高清| 亚洲午夜理论影院| 韩国av一区二区三区四区| 亚洲av五月六月丁香网| 999久久久精品免费观看国产| 国产免费男女视频| 婷婷亚洲欧美| 亚洲熟女毛片儿| 美女大奶头视频| 岛国视频午夜一区免费看| 久久久久久大精品| 久久久久九九精品影院| 给我免费播放毛片高清在线观看| 中文字幕熟女人妻在线| cao死你这个sao货| 真人一进一出gif抽搐免费| 色在线成人网| 一进一出好大好爽视频| 综合色av麻豆| 久久久久九九精品影院| 欧美黄色淫秽网站| 亚洲av成人精品一区久久| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 久久国产乱子伦精品免费另类| 亚洲av成人av| 欧美xxxx黑人xx丫x性爽| 日本撒尿小便嘘嘘汇集6| 夜夜躁狠狠躁天天躁| 婷婷亚洲欧美| 波多野结衣高清无吗| 色综合亚洲欧美另类图片| 91av网站免费观看| 一本久久中文字幕| www国产在线视频色| 可以在线观看毛片的网站| 欧美精品啪啪一区二区三区| 18禁观看日本| 18禁国产床啪视频网站| 日韩av在线大香蕉| 麻豆国产av国片精品| 日本在线视频免费播放| 国产伦一二天堂av在线观看| 悠悠久久av| 变态另类丝袜制服| 两性夫妻黄色片| 高清在线国产一区| 国产99白浆流出| 久久天堂一区二区三区四区| 国产精品精品国产色婷婷| 真人一进一出gif抽搐免费| 国内久久婷婷六月综合欲色啪| 久久精品国产综合久久久| 成人av一区二区三区在线看| 亚洲熟妇中文字幕五十中出| 观看美女的网站| 欧美日韩福利视频一区二区| 天堂网av新在线| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 最近在线观看免费完整版| 丰满人妻熟妇乱又伦精品不卡| 全区人妻精品视频| 日本精品一区二区三区蜜桃| 亚洲av熟女| 夜夜夜夜夜久久久久| 看片在线看免费视频| 97碰自拍视频| 国产一区二区激情短视频| 两性夫妻黄色片| 国产成人av激情在线播放| 欧美不卡视频在线免费观看| 99国产极品粉嫩在线观看| 国产精品九九99| 久久这里只有精品19| 一级毛片高清免费大全| 日韩欧美精品v在线| 一边摸一边抽搐一进一小说| 久久人妻av系列| 变态另类成人亚洲欧美熟女| 久久久成人免费电影| 亚洲av熟女| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 五月玫瑰六月丁香| 两性夫妻黄色片| 精品久久久久久久久久免费视频| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 最近视频中文字幕2019在线8| 亚洲精品中文字幕一二三四区| 小蜜桃在线观看免费完整版高清| 日本黄色视频三级网站网址| 日韩欧美一区二区三区在线观看| 最新中文字幕久久久久 | 99国产综合亚洲精品| 国产探花在线观看一区二区| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产| 99久久国产精品久久久| 国产乱人伦免费视频| 成人特级av手机在线观看| 制服人妻中文乱码| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 欧美乱码精品一区二区三区| 男人舔奶头视频| 免费观看人在逋| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 国产精品久久久av美女十八| 男女视频在线观看网站免费| 日本在线视频免费播放| 免费av不卡在线播放| 88av欧美| 亚洲人与动物交配视频| 99久久精品一区二区三区| 好男人电影高清在线观看| 亚洲无线在线观看| 国产精品亚洲av一区麻豆| 熟妇人妻久久中文字幕3abv| 在线观看一区二区三区| 好男人在线观看高清免费视频| 久久精品国产综合久久久| www日本黄色视频网| 国产成人精品无人区| 伦理电影免费视频| 麻豆久久精品国产亚洲av| 国产黄a三级三级三级人| 99精品久久久久人妻精品| 99久久99久久久精品蜜桃| av国产免费在线观看| 欧美成狂野欧美在线观看| 亚洲中文日韩欧美视频| 亚洲精品一区av在线观看| 亚洲九九香蕉| 制服人妻中文乱码| 嫩草影视91久久| 日韩欧美免费精品| 九色国产91popny在线| h日本视频在线播放| av国产免费在线观看| 国产精品女同一区二区软件 | 欧美极品一区二区三区四区| 国产视频一区二区在线看| 中文字幕熟女人妻在线| 老司机福利观看| 亚洲国产高清在线一区二区三| 国产高清视频在线观看网站| 两人在一起打扑克的视频| 老熟妇乱子伦视频在线观看| 亚洲精品色激情综合| 亚洲人与动物交配视频| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 国模一区二区三区四区视频 | 亚洲天堂国产精品一区在线| 精品电影一区二区在线| 国产伦人伦偷精品视频| 中文字幕最新亚洲高清| 18禁观看日本| av视频在线观看入口| www.熟女人妻精品国产| 悠悠久久av| 老鸭窝网址在线观看| 国产激情偷乱视频一区二区| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| 国产黄色小视频在线观看| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 19禁男女啪啪无遮挡网站| 国产日本99.免费观看| 国产精品久久久久久久电影 | 久久精品91蜜桃| 嫩草影院精品99| 国产av一区在线观看免费| 欧美av亚洲av综合av国产av| 亚洲七黄色美女视频| 国产又黄又爽又无遮挡在线| 国产av在哪里看| 搡老妇女老女人老熟妇| 真实男女啪啪啪动态图| av中文乱码字幕在线| 午夜福利视频1000在线观看| 真人做人爱边吃奶动态| 中文字幕人成人乱码亚洲影| 国产精华一区二区三区| 熟妇人妻久久中文字幕3abv| 亚洲国产欧洲综合997久久,| 欧美黄色淫秽网站| 身体一侧抽搐| 免费人成视频x8x8入口观看| 亚洲av中文字字幕乱码综合| 国产精品久久久人人做人人爽| 精品无人区乱码1区二区| 在线a可以看的网站| 99国产综合亚洲精品| 在线播放国产精品三级| 2021天堂中文幕一二区在线观| 俺也久久电影网| 亚洲无线观看免费| 老汉色av国产亚洲站长工具| 亚洲精品乱码久久久v下载方式 | 一边摸一边抽搐一进一小说| 中文字幕av在线有码专区| 国产91精品成人一区二区三区| 老司机福利观看| 国产乱人视频| 欧美xxxx黑人xx丫x性爽| 免费看光身美女| 精品国产三级普通话版| 国产欧美日韩一区二区精品| 特级一级黄色大片| 久久精品影院6| www.精华液| 国产乱人视频| 夜夜爽天天搞| 欧美高清成人免费视频www| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 亚洲自偷自拍图片 自拍| 在线视频色国产色| 俺也久久电影网| 熟妇人妻久久中文字幕3abv| 97超视频在线观看视频| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女| 亚洲精品色激情综合| 色av中文字幕| 日本 av在线| 免费在线观看成人毛片| 国产一级毛片七仙女欲春2| 黄色日韩在线| 成人午夜高清在线视频| 日本一本二区三区精品| 啦啦啦免费观看视频1| 午夜精品在线福利| 欧美精品啪啪一区二区三区| 欧美一区二区国产精品久久精品|