• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Neuroprotective effects of Buyang Huanwu decoction on cerebral ischemia-induced neuronal damage

    2014-04-06 12:20:04QingchunMuPengfeiLiuXitongHuHaijunGaoXuZhengHaiyanHuang

    Qingchun Mu, Pengfei Liu Xitong Hu Haijun Gao Xu Zheng Haiyan Huang

    1 First Hospital of Bethune, Jilin University, Changchun, Jilin Province, China

    2 Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China

    Neuroprotective effects of Buyang Huanwu decoction on cerebral ischemia-induced neuronal damage

    Qingchun Mu1,2, Pengfei Liu1, Xitong Hu1, Haijun Gao1, Xu Zheng1, Haiyan Huang1

    1 First Hospital of Bethune, Jilin University, Changchun, Jilin Province, China

    2 Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, China

    Qingchun Mu and Pengfei Liu contributed equally to this work.

    Among the various treatment methods for stroke, increasing attention has been paid to traditional Chinese medicines.Buyang Huanwudecoction is a commonly used traditional Chinese medicine for the treatment of stroke. This paper summarizes the active components of the Chinese herb, which is composed ofHuangqi(Radix Astragali seu Hedysari),Danggui(Radix Angelica sinensis),Chishao(Radix Paeoniae Rubra),Chuanxiong(Rhizoma Ligustici Chuanxiong),Honghua(Flos Carthami),Taoren(Semen Persicae) andDilong(Pheretima), and identi fi es the therapeutic targets and underlying mechanisms that contribute to the neuroprotective properties ofBuyang Huanwudecoction.

    nerve regeneration; Buyang Huanwu decoction; traditional Chinese medicine; cerebral ischemia; clinical application; neuroprotection; review; neural regeneration

    Funding:This work was supported by grants from Health and Family Planning Commission of Heilongjiang Province Research Projects, No. 2014-195 and Science and Technology Research Projects of Mudanjiang Medical University, No. ZS201305.

    Mu QC, Liu PF, Hu XT, Gao HJ, Zheng X, Huang HY. Neuroprotective effects of Buyang Huanwu decoction on cerebral ischemia-induced neuronal damage. Neural Regen Res. 2014;9(17):1621-1627.

    Introduction

    Cerebrovascular diseases are ranked as the third leading cause of death and disability after cancer and heart disease (Feigin et al., 2003; Pandya et al., 2011). Both ischemia and hemorrhage are pathologic causes of cerebrovascular disease, with ischemic injury contributing to approximately 85% of all cases. Until recently, tissue plasminogen activator (t-PA) is the only FDA authorized drug that can promote vessel rebuilding after ischemic injury and facilitate neural recovery (Jaffer et al., 2011). However, several disadvantageous limit its clinical application (Bambauer et al., 2006). The therapeutic window is limited to the fi rst 4.5 hours after the indication of symptoms. Only 3-8.5% of patients are treated with t-PA because of its potential to cause hemorrhage and second injury (Bambauer et al., 2006). Moreover, the diffusion of t-PA into the brain parenchyma increases vascular permeability (Yepes et al., 2003) and can cause neurotoxicity (Goto et al., 2007). Therefore, a toxin-free therapeutic method is urgently needed for the treatment of cerebral ischemic injury.

    Recent studies have confirmed the beneficial effects of traditional Chinese medicine (TCM) in the treatment of cerebral ischemic injury (Yang et al., 2011a; Zhao et al., 2012a). Among the investigated TCM prescriptions,Buyang Huanwudecoction (BHD) is a well-known Chinese herb prescription which is functionally characterized byQisupplement, and blood and meridian circulation (Fan et al., 2014). This TCM prescription originated from the old recordYi Lin Gai Cuo(corrections on the errors of medical works), which was compiled by Qingren Wang, a famous doctor in the Qing dynasty. BHD is composed of seven kinds of Chinese herbs, includingHuangqi(Radix Astragali seu Hedysari),Danggui(Radix Angelica sinensis),Chishao(Radix Paeoniae Rubra),Chuanxiong(Rhizoma Ligustici Chuanxiong),Honghua(Flos Carthami),Taoren(Semen Persicae), andDilong(Pheretima). Because of drug-like properties of each herb, BHD is the primary prescription for the treatment of symptoms for hemiplegia and paraplegia (Wang and Jiang, 2009). In particular, BHD has been extensively used for the treatment of cerebral ischemic injury (Sun et al., 2007a), with accumulating experimental evidence indicating that BHD can improve recovery of behavioral scores, reduce the rate and area of infarction, and decrease ischemia-reperfusion injury (Yang et al., 2011a; Zhao et al., 2012a). Additionally, BHD has the ability to promote neurogenesis, increase vascular endothelial growth factor (VEGF) expression (Cai et al., 2007) and neural growth and differentiation, and inhibit apoptosis (Chen et al., 2008; Wang and Jiang, 2009). Although the neuroprotective properties of BHD are known, a systematic review of the mechanisms underlying this neuroprotective effect is still lacking. Here, the active components, the therapeutic targets, the clinical application, and the mechanisms underlying the neuroprotective properties of BHD in stroke are reviewed.

    Active components in BHD and their therapeutic targets

    Figure 1 The seven active compounds inBuyang HuangwuDecoction and the possible mechanisms involved in its neuroprotective effect against cerebral ischemic injury.

    BHD is a combination of several Chinese herbs and each herb has their own bioactive components. Although the effect of the active components of BHD in other diseases has been widely reported (Chun-sheng et al., 1978; Grdisa et al., 2001; Fang et al., 2002; Cheng et al., 2006, 2007; Ren et al., 2006; Chen et al., 2008; Chi et al., 2009; Wei et al., 2009; Chang et al., 2011; Li et al., 2012; Liu et al., 2012; Tang et al., 2012; Zhang et al., 2012, 2014a, b; Zhao et al., 2012b; Jin et al., 2013; Li et al., 2013; Gong et al., 2014; Kim et al., 2014; Koushki et al., 2014; Qi et al., 2014; Yan et al., 2014; Yang et al., 2014; Zeng et al., 2014), systematic research regarding the effective components of BHD in the treatment of cerebral ischemic injury is still lacking. The major active components are listed in Figure 1. More than one hundred compounds exist inHuangqi(Zhao et al., 2012b), and these compounds can be separated into saponins, fl avonoids, polysaccharides and amino acids according to their structural properties. Astragalus polysaccharide has anti-oxidative (Li et al., 2012), anti-in fl ammatory and neuroprotective properties (Zhang et al., 2012).

    Attenuating glutamate-induced excitotoxicity is one strategy to fi ght against cerebral ischemic injury (Jin et al., 2013). Interestingly, astragalus polysaccharide can reduce the accumulation of excitatory amino acids (Zhang et al., 2012). The permeability changes to the brain-blood barrier possibly lead to vasogenic brain edema and causes detrimental chronic injury (Chi et al., 2009). Accordingly, astragaloside A was reported to ameliorate edema in cerebral ischemia-reperfusion injury through regulating matrix metalloproteinase-9 and aquaporin 4 expression (Li et al., 2013).

    Chuanxionghas been used for the treatment of cardiac-cerebral vascular disease, and Chuanxiongzine is one of the active components of BHD (Chun-sheng et al., 1978). The experimental evidence suggests that Chuanxiongzine exerts neuroprotective effects possibly through inhibiting calcium overload and inhibiting the anti-inflammatory response (Gong et al., 2014; Kim et al., 2014; Koushki et al., 2014; Yang et al., 2014; Zhang et al., 2014a; Zhang et al., 2014b). There is also evidence indicating that the neuroprotection afforded by Chuanxiongzine is because of inhibition of Bcl-2 and caspase-dependent apoptosis, as observed in PC12 cells subjected to oxidative stress (Cheng et al., 2007) and in animal models of cerebral ischemic injury (Cheng et al., 2006).

    Pheretima aspergillum (PA) is one type ofDilongand stroke treatment with PA has been confirmed previously (Fang et al., 2002; Ren et al., 2006). Wei et al. (2009) reported that PA possesses pharmacological activity to promote regeneration of the peripheral nervous system after injury. Several studies have demonstrated that PA has anticoagulant and antioxidative properties (Grdisa et al., 2001) and promotes the growth of Schwann cells (Chang et al., 2011). Liu et al. (2012) reported that oral application of PA could ameliorate cerebral ischemic injury through decreasing the expression of glial fibrillary acidic protein (GFAP) and S-100B. Additionally, ferulic acid inDanggui(Zeng et al., 2014), hydroxysafflor yellow A inHonghua(Qi et al., 2014), benzoic acid inChishao(Tang et al., 2012), and amygdalin inTaoren(Yan et al., 2014) also have beneficial effects on cerebral ischemic injury. Although the active compounds in BHD are not completely known, the active components already identi fi ed contribute to the multiple therapeutic targets of BHD against cerebral ischemic injury. This multi-targeted therapy most likely enhances the ef fi cacy of BHD in fi ghting against cerebral ischemic injury.

    Clinical application of BHD in cerebral ischemic stroke

    BHD has been used for the treatment of several diseases, especially paralysis (Wang and Jiang, 2009) and stroke (Sun et al., 2007a) for many years because the formula was formed in the Qing dynasty (approximately 400 years ago). Based on the theory of TCM, BHD has advantages in invigorating the body, blood circulation,Qisupplement, and bloodand meridian activation (Liu and Zhou, 1993; Zhang et al., 2010a; Ren et al., 2011). The hundreds of years of clinical experience, as well as modern experimental research, indicates the neuroprotective activity of BHD (Zhao et al., 2012a). In a clinical study, Cai and Lui (2010) found that BHD could promote functional recovery, enhance serum VEGF content, and ameliorate patient’s quality of life during the recovery period after stroke. BHD was also effective in treating coronary disease and syndrome ofQide fi ciency and blood stasis by decreasing blood viscosity and plasma fibrinogen. For example, Wang et al. (2011b) reported that BHD ameliorated coronary disease through increasing blood circulation and energy metabolism. Zhang et al. (2010a) verified that BHD could inhibit C-reactive protein and cluster of differentiation 40 (CD40L) in white blood cells to treat coronary disease. In addition, BHD also has the ability to maintain blood glucose levels (Wang et al., 2011b).

    BHD inhibits excitotoxicity following cerebral ischemic injury

    Excitatory amino acids are up-regulated in blood serum and cerebrospinal fl uid after ischemic injury, which suggests that inhibiting excitotoxicity may be an effective strategy to inhibit neurological deficits after stroke (Castillo et al., 1996; Oja and Saransaari, 2013). Glutamate is the most important excitatory amino acid, performing critical roles in sustaining neuronal function. However, excitotoxicity due to over-release of glutamate is one of the pathological mechanisms of stroke (Eweka et al., 2010). Under normal physiological conditions, intracellular glutamate is at a resting state (Danbolt, 2001). However, following over-release, a large amount of glutamate is released outside the cell and binds to its receptors to cause depolarization and cell death during ischemic injury (Bonde et al., 2005). In a rat model of middle cerebral artery occlusion (MCAO), Wang et al. (2013) measured the content of excitatory amino acids in cerebrospinal fl uid using microdialysis-high performance liquid chromatography- fl uorescence detection. They showed that glutamate and aspartic acid were released 40 minutes post ischemia and peaked at 120 and 80 minutes after ischemia, respectively. Glycine, taurine and γ-aminobutyric acid also increased after ischemia and peaked at 120 minutes. By contrast, BHD application could decrease the levels of these excitatory amino acids and increase inhibitory amino acids to neutralize excitotoxicity. Consistently, Zhao et al. (2012a) also found that BHD inhibited ischemic injury-induced elevations of excitatory amino acids. Additionally, BHD also neutralized the increase of metabotropic glutamic acid receptor-1 (m-GluR1) expression in a rat MCAO model (Zhao et al., 2012a). Importantly, the inhibition was related to neurological recovery and a decrease in infarct area. This evidence suggests that inhibition of excitotoxicity is one of the mechanisms involved in the neuroprotective effect of BHD against cerebral ischemic injury.

    BHD promotes angiogenesis after cerebral ischemic injury

    Induction of angiogenesis, especially in the ischemic boundary area, enhances oxygen and nutrient supply to the infarcted tissue (Wei et al., 2001). Generation of new blood vessels facilitates highly coupled neurorestorative processes including neurogenesis and synaptogenesis, which in turn leads to improved functional recovery (Chen and Chopp, 2006; Beck and Plate, 2009). Therefore, promoting angiogenesis represents an effective way to facilitate neurological functional recovery. Although angiogenesis is not sufficient to satisfy the requirement of new blood vessels in an MCAO model, BHD administration before modeling not only elevates Ang-1 expression, but also extends the expression period (Shen et al., 2014). The changes in Ang-1 levels following BHD administration increase blood vessel density, which contribute to the decrease in infarct area and recovery of the nervous system. Hence, angiogenesis is a mechanism underlying the effect of BHD on neurological recovery after ischemic injury. Consistently, BHD administration also increases the expression of angiogenesis-related proteins (ARP), such as VEGF and its receptor and F1K1 at later recovery phases after ischemic injury (Cai et al., 2007). Although there was a report indicating that in the early phase after injury, BHD restricts the expression of angiogenesis-related proteins (Wang et al., 2011a), further studies on how BHD regulates these proteins is required. The up-regulation of ARPs provides a basis for new blood vessel generation at later recovery phases. The increase in expression of VEGF at the early phase after ischemic injury increases the permeability of the blood-brain barrier and elicits secondary damage (Vandenbroucke et al., 2008). Based on these results, we infer that like VGA1155 (Chiba et al., 2008), an antagonist of VEGF, BHD may also restrict ARP expression to avoid secondary damage following cerebral ischemic injury.

    BHD promotes migration of neural precursor cells (NPCs) to the infract zone

    NPCs, located in the subventricular zone (SVZ) and subgranular zone (SGZ), have the potential to renew and differentiate into various types of neuronal cells in adult animals (Gage, 2000; Ma et al., 2009). After ischemic injury, endogenous NPCs proliferate, migrate to the ischemic zone and differentiate into neurons (Nakatomi et al., 2002). This process appears to be a means of neurological functional recovery after ischemic injury because newborn neurons replace the damaged cells. However, the newborn neurons are insufficient to facilitate recovery of the injured tissue. Interestingly, advanced studies indicate that proliferation, migration and differentiation of neural precursors can be up-regulated by exogenous interference, which promotes neurological recovery following ischemic injury (Bonde et al., 2005; Nakano-Doi et al., 2010; Osman et al., 2011; Sejersted et al., 2011; Zhuang et al., 2012; Ara and De Montpellier, 2013). In an MCAO model, Kong et al. (2014) verified that BHD could promote proliferation of neural precursors in the SVZ, SGZ and corpus striatum of the infarcted brain. Additionally, expression of migration-related proteins such as stromal cell-derived factor 1 and chemokine receptor type 4 were also up-regulated after BHD administration. These data provide evidence that BHD may exert its neuroprotective effect partially by promoting NPC migration to ischemic brain areas.

    BHD facilitates the proliferation and differentiation of NPCs

    BHD may facilitate NPC proliferation in a mouse ischemic model (Cai et al., 2007). Cellular calcium concentration is critical for neuronal proliferation and differentiation (Catterall, 2000). Although calcium overload could lead to cell death following cerebral ischemic injury, a low calcium concentration by contrast is bene fi cial for axon growth (Sun et al., 2007a). With the assistance of serum pharmacological method, the effects of BHD on the growth of hippocampal NPCs was investigated (Sun et al., 2007a, b). Compared with controls, BHD could clearly increase the length of axons, and the expression of neuro fi lament and GFAP. Consistently, calcium concentrations decreased after application of BHD-containing serum. Extracellular signal regulated kinase 2 (ERK2) is an important component of the MAPK signaling pathway. The ERK2-mediated signaling pathway is known to regulate neural regeneration, neural growth, and differentiation and restoration after neurological injury (Nishimoto and Nishida, 2006; Berwick et al., 2009; Huang et al., 2011; Duan et al., 2013; Ishii et al., 2013). For example, Jinglong et al. (2013) verified that chronic BHD treatment for 30 days could activate ERK2 expression and promote neuronal growth and differentiation in the ischemic area. Based on these results, inhibition of calcium concentrations, as well as activation of ERK2 expression may underlie the effects of BHD on growth and differentiation of NPCs. Additionally, Wang et al. (2011a) employed gene set enrichment analysis and con fi rmed that BHD enhanced the expression of neural regeneration-related genes (Dcx, Fgfr3, Cttnbp2, Rorb, Abi2 and Miat) and neural development-related genes (Ptprf, Ift172 and N fi b). Hence, promoting NPC regeneration is a potential mechanism underlying the neuroprotective effects of BHD against cerebral ischemic injury.

    BHD inhibits infammation in cerebral ischemic injury

    Diapedesis and proinflammatory cytokine release in the ischemic region elicits an inflammatory reaction, which leads to early functional defects to the blood-brain barrier (Jin et al., 2010). Transcription factors, such as nuclear factor-kappaB play critical roles in regulating the post-ischemic inflammatory reaction (Nurmi et al., 2004; Zhang et al., 2005). The up-regulation of related in fl ammatory cytokines determines neuronal fate. BHD application effectively inhibits cerebral ischemic injury-activated TLR4 expression (Wang et al., 2011a). Additionally, gene expression-mediated diapedesis is signi fi cantly attenuated after BHD administration. This evidence suggests that BHD not only antagonizes the in fl ammation-related signaling pathway, but also inhibits the diapedesis-regulated inflammatory reaction in the cerebral ischemic region, thus preventing cell death.

    BHD inhibits apoptosis in ischemia injury

    Apoptosis has been reported to contribute to cell death following cerebral ischemic injury (Chen et al., 1998; Lee et al., 2000; Zeng and Xu, 2000; Sugawara et al., 2002). Caspases are a family of cysteine proteases that play an important role in apoptosis, particularly the “initiator” (caspase-9) and “effector” (caspase-3) caspases (Hengartner, 2000). Caspase 3 is the “effector” protease in apoptosis (Deshmukh et al., 1996; Schulz et al., 1996) and is activated during nutrient de fi ciency, potassium loss and glutamate elicited excitotoxicity (Chen et al., 1998; Sugawara et al., 2002). Accordingly, regulation of caspase 3 though gene deletion or antagonists decreases ischemic injury-induced cell death.

    In a rat model of transient ischemic injury produced by the four-vessel occlusion method, neurological function de fi cits were coupled with damage to neurons and cell loss (Li et al., 2003). Additionally, transferase-mediated biotin-dUTP nick-end labeling identified apoptotic cells in the model group (Gavrieli et al., 1992; Chen et al., 1997). Interestingly, BHD administration post-ischemia markedly reversed the extent of apoptosis and rescued neural function deficits. Concomitantly, ischemic injury-induced caspase-3 activation was attenuated by BHD administration. Therefore, the blockade effect of BHD on ischemic injury-induced apoptosis is an effective way to rescue neuronal deficits. Using genome-wide transcriptome analysis, Wang et al. (2011a) screened 15 genes that may be involved in the protective effect of BHD on ischemic injury-induced apoptosis.

    Conclusion

    The protective effects of BHD on ischemic injury were confi rmed by various experimental models (Zhang et al., 2001, 2007, 2010b, 2011; Deng et al., 2002; Lai et al., 2002; Shao et al., 2003; Liao et al., 2004; Qu et al., 2004, 2014; Fan et al., 2006; Tan et al., 2006; Tang et al., 2006; Tong et al., 2007; Wu et al., 2008, 2011, 2012; Zhou et al., 2008, 2011, 2012; Wang and Jiang, 2009; Yi et al., 2010; Zhao et al., 2010; Ren et al., 2011; Yang et al., 2011a; Gu et al., 2013; Wang et al., 2013; Kong et al., 2014). Most investigators preferred the SD rat model of MCAO. The effect of time after BHD administration and the dose of BHD administered were also studied (Zhao et al., 2012a). A dose of 40 mg/kg BHD had a greater effect than 20 mg/kg BHD. Additionally, the therapeutic window was also important, as application of BHD 2 hours after injury had a more prominent effect than application at 4 or 6 hours. Therefore, the therapeutic window of BHD administration is critical for effective treatment. Due to the limited number of studies on BHD, further research related to the time and dose of BHD required for the treatment of ischemic injury is required.

    Based on literature, BHD has a therapeutic effect on ischemic injury, primarily through ameliorating blood circulation, reducing calcium overload, promoting neural precursor migration, increasing growth of NPCs, reducing the in fl ammatory response and inhibiting neuronal apoptosis. In addition to the above mechanisms, BHD has also been reported to ameliorate ischemic injury in cardiac tissue, the spinal cord and the peripheral nervous system via its antioxidant properties (Fan et al., 2006; Yang et al., 2011b). To the best of our knowledge, there have been no studies regarding the anti-oxidation of BHD in cerebral ischemia injury. Additionally, an in-depthinvestigation on blood circulation after BHD application is required to further clarify its vessel rebuilding properties.

    Author contributions:Huang HY, Hu XT, Gao HJ and Zheng X helped in reviewing the study and experimental data. Mu QC and Liu PF wrote the paper. All authors approved the final version of this paper.

    Conficts of interest:None declared.

    Ara J, De Montpellier S (2013) Hypoxic-preconditioning enhances the regenerative capacity of neural stem/progenitors in subventricular zone of newborn piglet brain. Stem Cell Res 11:669-686.

    Bambauer KZ, Johnston SC, Bambauer DE, Zivin JA (2006) Reasons why few patients with acute stroke receive tissue plasminogen activator. Arch Neurol 63:661-664.

    Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117:481-496.

    Berwick DC, Calissano M, Corness JD, Cook SJ, Latchman DS (2009) Regulation of Brn-3a N-terminal transcriptional activity by MEK1/2-ERK1/2 signalling in neural differentiation. Brain Res 1256:8-18.

    Bonde C, Noraberg J, Noer H, Zimmer J (2005) Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures. Neuroscience 136:779-794.

    Cai G, Liu B, Liu W, Tan X, Rong J, Chen X, Tong L, Shen J (2007) Buyang Huanwu Decoction can improve recovery of neurological function, reduce infarction volume, stimulate neural proliferation and modulate VEGF and Flk1 expressions in transient focal cerebral ischaemic rat brains. J Ethnopharmacol 113:292-299.

    Cai GX, Liu BY (2010) Effect of ultra-micronized Buyang Huanwu decoction on neurological function, quality of life, and serum vascular endothelial growth factor in patients convalescent from cerebral infarction. Zhongguo Weizhong Bing Jijiu Yixue 22:591-594.

    Castillo J, Davalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27:1060-1065.

    Catterall WA (2000) Structure and regulation of voltage-gated Ca2+channels. Annu Rev Cell Dev Biol 2000;16:521-555.

    Chang YM, Kuo WH, Lai TY, Shih YT, Tsai FJ, Tsai CH, Shu WT, Chen YY, Chen YS, Kuo WW, Huang CY (2011) RSC96 schwann cell proliferation and survival induced by Dilong through PI3K/Akt signaling mediated by IGF-I. Evid Based Complement Alternat Med 2011:216148.

    Chen A, Wang H, Zhang J, Wu X, Liao J, Li H, Cai W, Luo X, Ju G (2008) BYHWD rescues axotomized neurons and promotes functional recovery after spinal cord injury in rats. J Ethnopharmacol 117:451-456.

    Chen J, Chopp M (2006) Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx 3:466-473.

    Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP (1997) Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem 69:232-245.

    Chen J, Nagayama T, Jin K, Stetler RA, Zhu RL, Graham SH, Simon RP (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia. J Neurosci 18:4914-4928.

    Cheng CY, Sue YM, Chen CH, Hou CC, Chan P, Chu YL, Chen TH, Hsu YH (2006) Tetramethylpyrazine attenuates adriamycin-induced apoptotic injury in rat renal tubular cells NRK-52E. Planta Med 72:888-893.

    Cheng XR, Zhang L, Hu JJ, Sun L, Du GH (2007) Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells. Cell Biol Int 31:438-443.

    Chi OZ, Hunter C, Liu X, Weiss HR (2009) Effects of exogenous excitatory amino acid neurotransmitters on blood-brain barrier disruption in focal cerebral ischemia. Neurochem Res 34:1249-1254.

    Chiba Y, Sasayama T, Miyake S, Koyama J, Kondoh T, Hosoda K, Kohmura E (2008) Anti-VEGF receptor antagonist (VGA1155) reduces infarction in rat permanent focal brain ischemia. Kobe J Med Sci 54:E136-146.

    Chun-sheng L, Hsiao-meng Y, Yun-hsiang H, Chun P, Chi-fen S (1978) Radix salviae miltiorrhizae and Rhizoma ligustici wallichii in coronary heart disease. Chin Med J (Engl) 4:43-46.

    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1-105.

    Deng CQ, Wang M, He FY (2002) Effect of buyang huanwu decoction and its active regions combination on brain heat shock protein 70 expression in gerbils after cerebral ischemia/reperfusion. Zhongguo Zhongxiyi Jiehe Zazhi 22:193-195, 210.

    Deshmukh M, Vasilakos J, Deckwerth TL, Lampe PA, Shivers BD, Johnson EM Jr. (1996) Genetic and metabolic status of NGF-deprived sympathetic neurons saved by an inhibitor of ICE family proteases. J Cell Biol 135:1341-1354.

    Duan Z, Zhang X, Zhu GX, Gao Y, Xue X (2013) Activation of mGluR4 promotes proliferation of rat neural progenitor cells while mediating activation of ERK1/2 signaling pathway. Cell Mol Biol (Noisy-legrand) 59 Suppl:OL1809-1817.

    Eweka AO, Eweka A, Om’iniabohs FA (2010) Histological studies of the effects of monosodium glutamate of the fallopian tubes of adult female Wistar rats. N Am J Med Sci 2:146-149.

    Fan L, Wang K, Cheng B (2006) Effects of buyang huanwu decoction on apoptosis of nervous cells and expressions of Bcl-2 and bax in the spinal cord of ischemia-reperfusion injury in rabbits. J Tradit Chin Med 26:153-156.

    Fan XH, Shi WZ, Cheng YX, Yang XF (2014) Effects of Buyang Huanwu Decoction on antioxidant and drug-metabolizing enzymes in rat liver. Chin J Nat Med 12:449-454.

    Fang T, Yang C, Su W (2002) Study on TLC pro fi le of Pheretima aspergillum and Pheretima (Dilong) injection. Zhong Yao Cai 25:813-815.

    Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43-53.

    Gage FH (2000) Mammalian neural stem cells. Science 287:1433-1438.

    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via speci fi c labeling of nuclear DNA fragmentation. J Cell Biol 119:493-501.

    Gong X, Ivanov VN, Davidson MM, Hei TK (2014) Tetramethylpyrazine (TMP) protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, mitochondrial dysfunction, pro-infl ammatory signaling pathways and programed cell death. Arch Toxicol [Epub ahead of print].

    Goto H, Fujisawa H, Oka F, Nomura S, Kajiwara K, Kato S, Fujii M, Maekawa T, Suzuki M (2007) Neurotoxic effects of exogenous recombinant tissue-type plasminogen activator on the normal rat brain. J Neurotrauma 24:745-752.

    Grdisa M, Popovic M, Hrzenjak T (2001) Glycolipoprotein extract (G-90) from earthworm Eisenia foetida exerts some antioxidative activity. Comp Biochem Physiol A Mol Integr Physiol 128:821-825.

    Gu YP, Liao YL, Zhang C, Guo W, Wei HC, Lu R (2013) Effects of buyang huanwu decoction on the sarcoplasmic reticulum calcium uptake in abdominal aortic constriction induced myocardial hypertrophic rats. Zhongguo Zhongxiyi Jiehe Zazhi 33:627-631.

    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770-776.

    Huang X, Zhu LL, Zhao T, Wu LY, Wu KW, Schachner M, Xiao ZC, Fan M (2011) CHL1 negatively regulates the proliferation and neuronal differentiation of neural progenitor cells through activation of the ERK1/2 MAPK pathway. Mol Cell Neurosci 46:296-307.

    Ishii A, Furusho M, Bansal R (2013) Sustained activation of ERK1/2 MAPK in oligodendrocytes and schwann cells enhances myelin growth and stimulates oligodendrocyte progenitor expansion. J Neurosci 33:175-186.

    Jaffer H, Morris VB, Stewart D, Labhasetwar V (2011) Advances in stroke therapy. Drug Deliv Transl Res 1:409-419.

    Jin AY, Tuor UI, Rushforth D, Kaur J, Muller RN, Petterson JL, Boutry S, Barber PA (2010) Reduced blood brain barrier breakdown in P-selectin de fi cient mice following transient ischemic stroke: a future therapeutic target for treatment of stroke. BMC Neurosci 11:12.

    Jin M, Huang Q, Zhao K, Shang P (2013) Biological activities and potential health bene fi t effects of polysaccharides isolated from Lycium barbarum L. Int J Biol Macromol 54:16-23.

    Jinglong T, Weijuan G, Jun L, Tao Q, Hongbo Z, Shasha L (2013) The molecular and electrophysiological mechanism of buyanghuanwu decoction in learning and memory ability of vascular dementia rats. Brain Res Bull 99:13-18.

    Kim M, Kim SO, Lee M, Lee JH, Jung WS, Moon SK, Kim YS, Cho KH, Ko CN, Lee EH (2014) Tetramethylpyrazine, a natural alkaloid, attenuates pro-inflammatory mediators induced by amyloid beta and interferon-gamma in rat brain microglia. Eur J Pharmacol pii: S0014-2999(14)00488-9.

    Kong X, Su X, Zhu J, Wang J, Wan H, Zhong M, Li L, Lin N (2014) Neuroprotective effect of buyang huanwu decoction on rat ischemic/ reperfusion brain damage by promoting migration of neural precursor cells. Rejuvenation Res 17:264-275.

    Koushki D, Latifi S, Javidan AN, Matin M (2014) Efficacy of some non-conventional herbal medications (sulforaphane, tanshinone IIA, and tetramethylpyrazine) in inducing neuroprotection in comparison with interleukin-10 after spinal cord injury: A meta-analysis. J Spinal Cord Med [Epub ahead of print].

    Lai Z, Wang SY, Geng XY, Deng CQ, Zhang RZ (2002) Effects of bu yang huan wu decoction on astrocytes after cerebral ischemia and reperfusion. Zhongguo Zhongyao Zazhi 27:763-765.

    Lee JM, Grabb MC, Zipfel GJ, Choi DW (2000) Brain tissue responses to ischemia. J Clin Invest 106:723-731.

    Li M, Ma RN, Li LH, Qu YZ, Gao GD (2013) Astragaloside IV reduces cerebral edema post-ischemia/reperfusion correlating the suppression of MMP-9 and AQP4. Eur J Pharmacol 715:189-195.

    Li XM, Bai XC, Qin LN, Huang H, Xiao ZJ, Gao TM (2003) Neuroprotective effects of Buyang Huanwu Decoction on neuronal injury in hippocampus after transient forebrain ischemia in rats. Neurosci Lett 346:29-32.

    Li XT, Zhang YK, Kuang HX, Jin FX, Liu DW, Gao MB, Liu Z, Xin XJ (2012) Mitochondrial protection and anti-aging activity of Astragalus polysaccharides and their potential mechanism. Int J Mol Sci 13:1747-1761.

    Liao CL, Tong L, Chen YY (2004) Effect of Buyanghuanwu decoction on neuronal nitric oxide synthase expression after permanent focal cerebral ischemia in rats. Di Yi Jun Yi Da Xue Xue Bao 24:864-868, 891.

    Liu CH, Lin YW, Tang NY, Liu HJ, Huang CY, Hsieh CL (2012) Effect of oral administration of Pheretima aspergillum (earthworm) in rats with cerebral infarction induced by middle-cerebral artery occlusion. Afr J Tradit Complement Altern Med 10:66-82.

    Liu H, Zhou JF (1993) Xianbai buyang Huanwu decoction used for treating hypertension with kidney qi deficiency and blood stasis. Zhongguo Zhongxiyi Jiehe Zazhi 13:714-717, 707.

    Ma DK, Bonaguidi MA, Ming GL, Song H (2009) Adult neural stem cells in the mammalian central nervous system. Cell Res 19:672-682.

    Nakano-Doi A, Nakagomi T, Fujikawa M, Nakagomi N, Kubo S, Lu S, Yoshikawa H, Soma T, Taguchi A, Matsuyama T (2010) Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction. Stem Cells 28:1292-1302.

    Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429-441.

    Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782-786.

    Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, Weih F, Frank N, Schwaninger M, Koistinaho J (2004) Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 35:987-991.

    Oja SS, Saransaari P (2013) Ischemia induces release of endogenous amino acids from the cerebral cortex and cerebellum of developing and adult mice. J Amino Acids 2013:839036.

    Osman AM, Porritt MJ, Nilsson M, Kuhn HG (2011) Long-term stimulation of neural progenitor cell migration after cortical ischemia in mice. Stroke 42:3559-3565.

    Pandya RS, Mao L, Zhou H, Zhou S, Zeng J, Popp AJ, Wang X (2011) Central nervous system agents for ischemic stroke: neuroprotection mechanisms. Cent Nerv Syst Agents Med Chem 11:81-97.

    Qi Z, Yan F, Shi W, Zhang C, Dong W, Zhao Y, Shen J, Ji X, Liu KJ, Luo Y (2014) AKT-related autophagy contributes to the neuroprotective efficacy of hydroxysafflor yellow a against ischemic stroke in rats. Transl Stroke Res 5:501-509.

    Qu HD, Tong L, Shen JG (2004) Effect of buyang huanwu decoction drug serum on expression of p53 and p21 genes in cultured rat’s cerebral cortical neuron after hypoxia in vitro. Zhongguo Zhongxiyi Jiehe Zazhi 24:133-135.

    Qu TB, Yu TH, Liu ZT, Li L, Chu LS (2014) Effect of Buyang Huanwu Decoction and its disassembled recipes on rats’ neurogenesis after focal cerebral ischemia. Zhongguo Zhongxiyi Jiehe Zazhi 34:342-347.

    Ren J, Lin C, Liu J, Xu L, Wang M (2011) Experimental study on Qi defi ciency and blood stasis induced by muti-factor stimulation in rats. Zhongguo Zhongyao Zazhi 36:72-76.

    Ren Y, Houghton P, Hider RC (2006) Relevant activities of extracts and constituents of animals used in traditional Chinese medicine for central nervous system effects associated with Alzheimer’s disease. J Pharm Pharmacol 58:989-996.

    Schulz JB, Weller M, Klockgether T (1996) Potassium deprivation-induced apoptosis of cerebellar granule neurons: a sequential requirement for new mRNA and protein synthesis, ICE-like protease activity, and reactive oxygen species. J Neurosci 16:4696-4706.

    Sejersted Y, Hildrestrand GA, Kunke D, Rolseth V, Krokeide SZ, Neurauter CG, Suganthan R, Atneosen-Asegg M, Fleming AM, Saugstad OD, Burrows CJ, Luna L, Bjoras M (2011) Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proc Natl Acad Sci U S A 108:18802-18807.

    Shao SJ, Shan BZ, Jiang J, Yan ZG (2003) Comparative experimental study on treatment of rat’s injured sciatic nerve with electroacupuncture and Buyang Huanwu Decoction. Zhong Xi Yi Jie He Xue Bao 1:54-56.

    Shen J, Zhu Y, Yu H, Fan ZX, Xiao F, Wu P, Zhang QH, Xiong XX, Pan JW, Zhan RY (2014) Buyang Huanwu decoction increases angiopoietin-1 expression and promotes angiogenesis and functional outcome after focal cerebral ischemia. J Zhejiang Univ Sci B 15:272-280.

    Sugawara T, Noshita N, Lewen A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci 22:209-217.

    Sun J, Bi Y, Guo L, Qi X, Zhang J, Li G, Tian G, Ren F, Li Z (2007a) Buyang Huanwu Decoction promotes growth and differentiation of neural progenitor cells: using a serum pharmacological method. J Ethnopharmacol 113:199-203.

    Sun JH, Gao YM, Yang L, Wang X, Bao LH, Liu WJ, Yew D (2007b) Effects of Buyang Huanwu Decoction on neurite outgrowth and differentiation of neuroepithelial stem cells. Zhongguo Shenglixue Zazhi 50:151-156.

    Tan XH, Qu HD, Peng K, Chen YY, Tong L, Shen JG, Zhu CW (2006) Effects of Buyanghuanwu decoction on nerve proliferation in rats with sequelae of ischemic stroke. Nan Fang Yi Ke Da Xue Xue Bao 26:189-192.

    Tang YH, Li H, Chen BY (2006) Effect of active fraction of buyang huanwu decoction on caspase expression in rats after focal cerebral ischemic reperfusion. Zhongguo Zhongxiyi Jiehe Zazhi 26:533-537.

    Tang YP, Huang MY, Zhang YH (2012) Comparison of in vitro anti-oxidative activities among Siwu Decoction Serial Recipes, their composed crude herbs, and main aromatic acids, as well as their dose-effect correlation. Zhongguo Zhongxiyi Jiehe Zazhi 32:64-67.

    Tong L, Tan XH, Shen JG (2007) Comparative study of Buyang Huanwu Decoction and the different combinations of its ingredients on neurogenesis following ischemic stroke in rats. Zhongguo Zhongxiyi Jiehe Zazhi 27:519-522.

    Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial junctional permeability. Ann N Y Acad Sci 1123:134-145.

    Wang HW, Liou KT, Wang YH, Lu CK, Lin YL, Lee IJ, Huang ST, Tsai YH, Cheng YC, Lin HJ, Shen YC (2011a) Deciphering the neuroprotective mechanisms of Bu-yang Huan-wu decoction by an integrative neurofunctional and genomic approach in ischemic stroke mice. J Ethnopharmacol 138:22-33.

    Wang L, Jiang DM (2009) Neuroprotective effect of Buyang Huanwu Decoction on spinal ischemia/reperfusion injury in rats. J Ethnopharmacol 124:219-223.

    Wang L, Huang Y, Wu J, Lv G, Zhou L, Jia J (2013) Effect of Buyang Huanwu decoction on amino acid content in cerebrospinal fluid of rats during ischemic/reperfusion injury. J Pharm Biomed Anal 86:143-150.

    Wang WR, Lin R, Zhang H, Lin QQ, Yang LN, Zhang KF, Ren F (2011b) The effects of Buyang Huanwu Decoction on hemorheological disorders and energy metabolism in rats with coronary heart disease. J Ethnopharmacol 137:214-220.

    Wei L, Erinjeri JP, Rovainen CM, Woolsey TA (2001) Collateral growth and angiogenesis around cortical stroke. Stroke 32:2179-2184.

    Wei S, Yin X, Kou Y, Jiang B (2009) Lumbricus extract promotes the regeneration of injured peripheral nerve in rats. J Ethnopharmacol 123:51-54.

    Wu L, Zhang W, Li H, Zhang GM, Chen BY, Tang YH, Deng CQ (2008) Effects of Buyang Huanwu Decoction and its alkaloids and glycosides on aortic intimal hyperplasia and expression of proliferating cell nuclear antigen in rats with aortic intimal injuries. Zhong Xi Yi Jie He Xue Bao 6:836-842.

    Yan T, Fu Q, Wang J, Ma S (2014) UPLC-MS/MS determination of ephedrine, methylephedrine, amygdalin and glycyrrhizic acid in Beagle plasma and its application to a pharmacokinetic study after oral administration of Ma Huang Tang. Drug Test Anal doi: 10.1002/ dta.1635.

    Yang G, Fang Z, Liu Y, Zhang H, Shi X, Ji Q, Lin Q, Lin R (2011a) Protective effects of Chinese traditional medicine buyang huanwu decoction on myocardial injury. Evid Based Complement Alternat Med 2011:930324.

    Yang S, Gao Q, Xing S, Feng X, Peng L, Dong H, Bao L, Zhang J, Hu Y, Li G, Song T, Li Z, Sun J (2011b) Neuroprotective effects of Buyang Huanwu decoction against hydrogen peroxide induced oxidative injury in Schwann cells. J Ethnopharmacol 137:1095-1101.

    Yang Y, Li ZH, Liu H, Shi WD, Zhang J (2014) Inhibitory effect of tetramethylpyrazine preconditioning on overload training-induced myocardial apoptosis in rats. Chin J Integr Med [Epub ahead of print].

    Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J Clin Invest 112:1533-1540.

    Yi J, Huang X, Yu Y, Cai GX, Liu BY (2010) Effect of Buyang Huanwu decoction on interleukin-1beta and tumor necrosis factor-alpha expression in rats after cerebral infarction. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 22:599-601.

    Zeng M, Zhang J, Yang Y, Jin Y, Xiao W, Wang Z, Ding G, Yan R (2014) An automated dual-gradient liquid chromatography-MS/MS method for the simultaneous determination of ferulic acid, ligustrazine and ligustilide in rat plasma and its application to a pharmacokinetic study. J Pharm Biomed Anal 88:354-363.

    Zeng YS, Xu ZC (2000) Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci Res 37:113-125.

    Zhang H, Wang WR, Lin R, Zhang JY, Ji QL, Lin QQ, Yang LN (2010a) Buyang Huanwu decoction ameliorates coronary heart disease with Qi de fi ciency and blood stasis syndrome by reducing CRP and CD40 in rats. J Ethnopharmacol 130:98-102.

    Zhang H, Pan N, Xiong S, Zou S, Li H, Xiao L, Cao Z, Tunnacliffe A, Huang Z (2012) Inhibition of polyglutamine-mediated proteotoxicity by Astragalus membranaceus polysaccharide through the DAF-16/FOXO transcription factor in Caenorhabditis elegans. Biochem J 441:417-424.

    Zhang J, Li C, Guo X, Wang G (2001) Effect of buyang huanwu decoction on platelet activating factor content in arterial blood pre- and post-arterial thrombosis in rats. J Tradit Chin Med 21:299-302.

    Zhang M, Gao F, Teng F, Zhang C (2014a) Tetramethylpyrazine promotes the proliferation and migration of brain endothelial cells. Mol Med Rep 10:29-32.

    Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T (2005) Edaravone reduces early accumulation of oxidative products and sequential in fl ammatory responses after transient focal ischemia in mice brain. Stroke 36:2220-2225.

    Zhang P, Guo CF, Luo N, Wang B, Liu JH, Xu XN (2011) Effect of Buyang Huanwut decoction on apoptosis of splenocytes in rats with sepsis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 23:486-489.

    Zhang X, Zhang F, Kong D, Wu X, Lian N, Chen L, Lu Y, Zheng S (2014b) Tetramethylpyrazine inhibits angiotensin II-induced activation of hepatic stellate cells associated with interference of platelet-derived growth factor beta receptor pathways. FEBS J 281:2754-2768.

    Zhang YK, Han XY, Che ZY (2010b) Effects of buyang huanwu tang combined with bone marrow mesenchymal stem cell transplantation on the expression of VEGF and Ki-67 in the brain tissue of the cerebral ischemia-reperfusion model rat. J Tradit Chin Med 30:278-282.

    Zhang ZQ, Tang T, Luo JK, Huang JF, Yang QD, Li XQ, Jin YQ, Qi Y, Guo CJ, Zhang HX, Xing ZH, Shen DZ (2007) Effect of qi-tonifying and stasis-eliminating therapy on expression of vascular endothelial growth factor and its receptors Flt-1, Flk-1 in the brain of intracerebral hemorrhagic rats. Chin J Integr Med 13:285-290.

    Zhao LD, Wang JH, Jin GR, Zhao Y, Zhang HJ (2012a) Neuroprotective effect of Buyang Huanwu decoction against focal cerebral ischemia/ reperfusion injury in rats--time window and mechanism. J Ethnopharmacol 140:339-344.

    Zhao M, Zhang ZF, Ding Y, Wang JB, Li Y (2012b) Astragalus polysaccharide improves palmitate-induced insulin resistance by inhibiting PTP1B and NF-kappaB in C2C12 myotubes. Molecules 17:7083-7092.

    Zhao YN, Wu XG, Li JM, Chen CX, Rao YZ, Li SX (2010) Effect of BuYangHuanWu recipe on cerebral microcirculation in gerbils with ischemia-reperfusion. Sichuan Da Xue Xue Bao Yi Xue Ban 41:53-56.

    Zhou HJ, Tang T, Zhong JH (2008) Effect of buyang huanwu decoction on expressions of angiopoietin-1 and its receptor mRNA in brain of rat after intracerebral hemorrhage. Zhongguo Zhongxiyi Jiehe Zazhi 28:343-347.

    Zhou L, Mei XY, Wu HX, Xie H, Tang XM, Sun HL (2011) Experimental study on Buyang Huanwu decoction ([Chinese characters: see text]) for promoting functional recovery of crushed common peroneal nerve in rats. Zhongguo Gu Shang 24:249-252.

    Zhou YC, Liu B, Li YJ, Jing LL, Wen G, Tang J, Xu X, Lv ZP, Sun XG (2012) Effects of buyang huanwu decoction on ventricular remodeling and differential protein profile in a rat model of myocardial infarction. Evid Based Complement Alternat Med 2012:385247.

    Zhuang P, Zhang Y, Cui G, Bian Y, Zhang M, Zhang J, Liu Y, Yang X, Isaiah AO, Lin Y, Jiang Y (2012) Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PLoS One 7:e35636.

    Copyedited by Diwakarla S, Robert J, Li CH, Song LP, Zhao M

    Haiyan Huang, M.D., Ph.D., First Hospital of Bethune, Jilin University, Changchun 130021, Jilin Province, China, Huanghy@jlu.edu.cn.

    10.4103/1673-5374.141791

    http://www.nrronline.org/

    Accepted: 2014-08-04

    久久99一区二区三区| 亚洲国产毛片av蜜桃av| 老熟女久久久| 久久久a久久爽久久v久久| 在线观看一区二区三区激情| 少妇的逼水好多| 人人妻人人爽人人添夜夜欢视频| 免费看不卡的av| 日韩欧美一区视频在线观看| 国产色婷婷99| 青春草视频在线免费观看| 精品视频人人做人人爽| 久久久欧美国产精品| 国产伦理片在线播放av一区| 成年人免费黄色播放视频| 最近中文字幕2019免费版| 男女免费视频国产| av网站免费在线观看视频| 久久99蜜桃精品久久| 看非洲黑人一级黄片| 七月丁香在线播放| 国产亚洲欧美精品永久| 啦啦啦中文免费视频观看日本| 美女cb高潮喷水在线观看| 一区二区三区乱码不卡18| 麻豆精品久久久久久蜜桃| 如何舔出高潮| 韩国av在线不卡| 亚洲精品第二区| 飞空精品影院首页| 国产一区二区三区综合在线观看 | 十分钟在线观看高清视频www| 国产成人免费无遮挡视频| 亚洲国产欧美日韩在线播放| 欧美+日韩+精品| 免费高清在线观看视频在线观看| 国产精品女同一区二区软件| 超碰97精品在线观看| 熟女av电影| 日韩av在线免费看完整版不卡| 亚洲内射少妇av| 五月天丁香电影| 国产成人精品一,二区| 全区人妻精品视频| 久久久国产一区二区| 免费日韩欧美在线观看| 国产精品国产av在线观看| 日韩人妻高清精品专区| 丰满迷人的少妇在线观看| 久久精品国产亚洲网站| 免费看光身美女| 欧美人与性动交α欧美精品济南到 | 亚洲在久久综合| 大话2 男鬼变身卡| 久久ye,这里只有精品| 欧美xxxx性猛交bbbb| 成人综合一区亚洲| 视频在线观看一区二区三区| 日韩成人av中文字幕在线观看| 国产精品一二三区在线看| a级片在线免费高清观看视频| 视频在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 欧美日韩亚洲高清精品| 99国产综合亚洲精品| 女人精品久久久久毛片| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 国产精品国产三级专区第一集| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区国产| 亚洲av.av天堂| av在线播放精品| 亚洲av不卡在线观看| 国产在线免费精品| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 免费黄频网站在线观看国产| 亚洲精品自拍成人| 黄片播放在线免费| 久久精品国产亚洲av天美| 久久女婷五月综合色啪小说| 日韩三级伦理在线观看| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 亚洲精品乱久久久久久| 亚洲av免费高清在线观看| 黄色欧美视频在线观看| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图 | 人成视频在线观看免费观看| 人人澡人人妻人| 香蕉精品网在线| www.av在线官网国产| 人人妻人人澡人人看| 大片免费播放器 马上看| 中文字幕人妻熟人妻熟丝袜美| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 91国产中文字幕| 天堂8中文在线网| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 亚洲精品色激情综合| a级毛片黄视频| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 热re99久久国产66热| 久久精品国产亚洲av天美| 免费高清在线观看日韩| 国产精品国产三级专区第一集| 精品酒店卫生间| 国产成人a∨麻豆精品| 亚洲综合精品二区| 欧美丝袜亚洲另类| 精品人妻一区二区三区麻豆| 伊人久久精品亚洲午夜| 母亲3免费完整高清在线观看 | 国产精品久久久久久精品电影小说| 久久久久久人妻| 久久亚洲国产成人精品v| 大话2 男鬼变身卡| 少妇人妻 视频| av天堂久久9| 国产黄色视频一区二区在线观看| 久久精品人人爽人人爽视色| 有码 亚洲区| 啦啦啦啦在线视频资源| 色网站视频免费| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产精品成人久久小说| 人妻制服诱惑在线中文字幕| 97超视频在线观看视频| 欧美丝袜亚洲另类| 亚洲欧美精品自产自拍| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 亚州av有码| 亚洲欧美一区二区三区国产| .国产精品久久| 国产欧美另类精品又又久久亚洲欧美| 一本一本综合久久| 黄色配什么色好看| 日韩av免费高清视频| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 99热网站在线观看| a 毛片基地| 欧美激情 高清一区二区三区| 婷婷色综合大香蕉| 国产精品久久久久久精品电影小说| 日日摸夜夜添夜夜添av毛片| 精品国产乱码久久久久久小说| 日韩欧美精品免费久久| 尾随美女入室| 一本色道久久久久久精品综合| 午夜激情av网站| 高清视频免费观看一区二区| 大码成人一级视频| 特大巨黑吊av在线直播| 久久免费观看电影| 人妻人人澡人人爽人人| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区www在线观看| 人人妻人人爽人人添夜夜欢视频| 少妇人妻久久综合中文| 久久精品久久久久久久性| 久久久国产精品麻豆| 大码成人一级视频| 蜜桃久久精品国产亚洲av| 满18在线观看网站| 国产免费视频播放在线视频| 两个人免费观看高清视频| 国产一区二区在线观看日韩| 国产精品99久久99久久久不卡 | 日本欧美国产在线视频| 黄色配什么色好看| 亚洲欧洲精品一区二区精品久久久 | 少妇的逼水好多| 最黄视频免费看| 中文字幕精品免费在线观看视频 | 大香蕉久久成人网| 国产精品熟女久久久久浪| 人人妻人人爽人人添夜夜欢视频| 少妇的逼好多水| 蜜桃国产av成人99| 91午夜精品亚洲一区二区三区| 亚洲精品av麻豆狂野| 亚洲第一av免费看| 日韩一本色道免费dvd| 黄色毛片三级朝国网站| 国产成人午夜福利电影在线观看| 精品国产一区二区久久| 韩国av在线不卡| 亚洲成人av在线免费| 一级毛片电影观看| 免费黄频网站在线观看国产| 又大又黄又爽视频免费| 在线观看www视频免费| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 免费高清在线观看视频在线观看| 久久青草综合色| tube8黄色片| 国产精品无大码| 亚洲四区av| 一个人看视频在线观看www免费| 一本色道久久久久久精品综合| 建设人人有责人人尽责人人享有的| 欧美日韩综合久久久久久| 成人影院久久| 蜜桃久久精品国产亚洲av| 边亲边吃奶的免费视频| 亚洲精品国产av成人精品| 人妻一区二区av| 免费不卡的大黄色大毛片视频在线观看| a级毛色黄片| 全区人妻精品视频| 国产精品久久久久久av不卡| 欧美人与善性xxx| 亚洲一级一片aⅴ在线观看| 热re99久久精品国产66热6| 成年美女黄网站色视频大全免费 | 国产精品一区二区在线观看99| 男女国产视频网站| 少妇精品久久久久久久| 欧美人与性动交α欧美精品济南到 | 国产高清不卡午夜福利| 久久99热这里只频精品6学生| 精品亚洲成a人片在线观看| av播播在线观看一区| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 一区二区三区免费毛片| 一个人看视频在线观看www免费| 自拍欧美九色日韩亚洲蝌蚪91| 特大巨黑吊av在线直播| 久久99精品国语久久久| 51国产日韩欧美| 亚洲人成77777在线视频| 成人18禁高潮啪啪吃奶动态图 | 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 内地一区二区视频在线| 男女无遮挡免费网站观看| 亚洲av不卡在线观看| 伦精品一区二区三区| 少妇丰满av| 久久国内精品自在自线图片| kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产最新在线播放| 国产av一区二区精品久久| 69精品国产乱码久久久| 日本av手机在线免费观看| 免费黄网站久久成人精品| 不卡视频在线观看欧美| 日本vs欧美在线观看视频| 久久国内精品自在自线图片| 大又大粗又爽又黄少妇毛片口| 欧美xxⅹ黑人| 日韩av免费高清视频| 熟女人妻精品中文字幕| 18+在线观看网站| 欧美精品一区二区免费开放| 毛片一级片免费看久久久久| 久久久a久久爽久久v久久| 边亲边吃奶的免费视频| 制服人妻中文乱码| 国产精品蜜桃在线观看| 国产男女超爽视频在线观看| 亚洲一级一片aⅴ在线观看| 下体分泌物呈黄色| 一个人看视频在线观看www免费| 日本vs欧美在线观看视频| 成年人午夜在线观看视频| 久久毛片免费看一区二区三区| 我的女老师完整版在线观看| 丝瓜视频免费看黄片| 91国产中文字幕| 精品人妻熟女av久视频| 人成视频在线观看免费观看| 女性被躁到高潮视频| 色94色欧美一区二区| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 亚洲怡红院男人天堂| 国产无遮挡羞羞视频在线观看| 国产精品 国内视频| 99久久精品国产国产毛片| 久久久国产精品麻豆| 色视频在线一区二区三区| av专区在线播放| 黑人高潮一二区| 高清毛片免费看| 欧美日韩视频精品一区| 韩国av在线不卡| 中文天堂在线官网| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站| 性色avwww在线观看| 人妻制服诱惑在线中文字幕| av在线播放精品| 尾随美女入室| 黄片播放在线免费| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 伦精品一区二区三区| 亚洲精品国产色婷婷电影| 日韩电影二区| 一级a做视频免费观看| 国产一区有黄有色的免费视频| 国产一区二区在线观看av| 如何舔出高潮| 3wmmmm亚洲av在线观看| 三上悠亚av全集在线观看| 制服诱惑二区| 香蕉精品网在线| 国产精品成人在线| 蜜桃国产av成人99| 日本午夜av视频| 妹子高潮喷水视频| 成人黄色视频免费在线看| 久久久精品区二区三区| 国产精品无大码| 一边摸一边做爽爽视频免费| 蜜臀久久99精品久久宅男| 欧美日韩av久久| 国产成人精品无人区| 午夜福利影视在线免费观看| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 国产在线免费精品| 久久韩国三级中文字幕| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜爱| 亚洲国产日韩一区二区| 中文字幕av电影在线播放| 欧美人与善性xxx| 日韩av免费高清视频| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影小说| 狠狠精品人妻久久久久久综合| 高清午夜精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品美女久久av网站| 少妇的逼好多水| 精品人妻一区二区三区麻豆| 久久99精品国语久久久| 久久久久网色| av有码第一页| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 日韩不卡一区二区三区视频在线| 午夜激情av网站| 国产在线一区二区三区精| 亚洲一区二区三区欧美精品| 亚洲婷婷狠狠爱综合网| 午夜免费男女啪啪视频观看| 一区二区av电影网| 麻豆成人av视频| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影小说| 伦精品一区二区三区| 国产男女内射视频| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 久久97久久精品| a级片在线免费高清观看视频| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区大全| 精品少妇内射三级| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 天堂俺去俺来也www色官网| 国产免费一级a男人的天堂| 99久久综合免费| 欧美+日韩+精品| 国产精品国产三级国产av玫瑰| 久久久久久久国产电影| freevideosex欧美| 国产成人aa在线观看| 永久网站在线| 久久午夜福利片| 人人妻人人爽人人添夜夜欢视频| 啦啦啦在线观看免费高清www| 亚洲美女搞黄在线观看| 日韩一本色道免费dvd| 99久久综合免费| 亚洲久久久国产精品| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 男人操女人黄网站| 一本一本综合久久| 少妇高潮的动态图| 久久ye,这里只有精品| 日本欧美视频一区| 亚洲欧洲国产日韩| 人妻系列 视频| 人成视频在线观看免费观看| 激情五月婷婷亚洲| av在线老鸭窝| 亚洲av男天堂| 中文字幕制服av| 婷婷色麻豆天堂久久| 午夜老司机福利剧场| 国产在线视频一区二区| av天堂久久9| 国产欧美日韩一区二区三区在线 | 成人无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 只有这里有精品99| 亚洲四区av| 性高湖久久久久久久久免费观看| 精品久久久久久久久av| 麻豆乱淫一区二区| 亚洲精品久久久久久婷婷小说| 热re99久久国产66热| 国产av一区二区精品久久| 日本vs欧美在线观看视频| 国产欧美日韩一区二区三区在线 | a级毛片黄视频| 寂寞人妻少妇视频99o| 天美传媒精品一区二区| av专区在线播放| 在线观看三级黄色| 伊人久久国产一区二区| 久久久亚洲精品成人影院| 如日韩欧美国产精品一区二区三区 | 交换朋友夫妻互换小说| 美女福利国产在线| 免费大片黄手机在线观看| 国产成人av激情在线播放 | 2022亚洲国产成人精品| 18禁在线无遮挡免费观看视频| 久久久久久久久久成人| 只有这里有精品99| 少妇 在线观看| 亚洲欧美精品自产自拍| 日本欧美国产在线视频| 国产免费福利视频在线观看| 最近手机中文字幕大全| 在线天堂最新版资源| 亚洲高清免费不卡视频| 亚洲av二区三区四区| 亚洲高清免费不卡视频| 九九在线视频观看精品| 一级毛片我不卡| 久久久久久久久久人人人人人人| 美女福利国产在线| 中文字幕久久专区| 午夜激情久久久久久久| 精品一品国产午夜福利视频| 国产男人的电影天堂91| 天天影视国产精品| 十分钟在线观看高清视频www| 久久久久久久大尺度免费视频| 婷婷色综合大香蕉| 熟妇人妻不卡中文字幕| 成人国产麻豆网| 十八禁高潮呻吟视频| 久久久久久久久大av| 丁香六月天网| 99久久中文字幕三级久久日本| 高清在线视频一区二区三区| 日本色播在线视频| 嘟嘟电影网在线观看| 国产 一区精品| 亚洲成人一二三区av| 亚洲激情五月婷婷啪啪| 久久久久网色| 国产在线免费精品| 中文字幕最新亚洲高清| av专区在线播放| 日韩制服骚丝袜av| 久久精品国产亚洲网站| 高清午夜精品一区二区三区| 99九九在线精品视频| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| av.在线天堂| 精品国产国语对白av| videosex国产| 国产成人a∨麻豆精品| 国产男女超爽视频在线观看| 欧美性感艳星| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 亚洲欧美一区二区三区国产| 久久久久久久久久人人人人人人| 欧美性感艳星| 大又大粗又爽又黄少妇毛片口| 亚洲怡红院男人天堂| 国产一级毛片在线| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久成人av| 日韩,欧美,国产一区二区三区| 97在线视频观看| 一个人免费看片子| 婷婷色综合大香蕉| 麻豆乱淫一区二区| 人妻夜夜爽99麻豆av| 王馨瑶露胸无遮挡在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 蜜臀久久99精品久久宅男| 一级毛片我不卡| 国产成人精品福利久久| 美女xxoo啪啪120秒动态图| 久久久a久久爽久久v久久| 啦啦啦啦在线视频资源| 熟女电影av网| 免费观看无遮挡的男女| a级片在线免费高清观看视频| 国产男人的电影天堂91| 亚洲精品乱码久久久v下载方式| 日本午夜av视频| 另类精品久久| 久久热精品热| 国产在视频线精品| 久久久国产精品麻豆| 观看美女的网站| 热99久久久久精品小说推荐| 日韩三级伦理在线观看| 亚洲不卡免费看| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 男女边摸边吃奶| 在现免费观看毛片| 人体艺术视频欧美日本| 高清不卡的av网站| 日韩成人伦理影院| 日韩av免费高清视频| 日本91视频免费播放| 亚洲伊人久久精品综合| 欧美 日韩 精品 国产| 亚洲精品视频女| 亚洲国产色片| 国产熟女欧美一区二区| 91久久精品国产一区二区成人| 久久久久久久久久成人| 成人影院久久| 日韩一区二区视频免费看| 亚洲av.av天堂| 自线自在国产av| 日韩中字成人| 免费看av在线观看网站| 最新的欧美精品一区二区| 黄色视频在线播放观看不卡| 午夜福利在线观看免费完整高清在| 毛片一级片免费看久久久久| 国产欧美亚洲国产| 久久韩国三级中文字幕| 全区人妻精品视频| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 亚洲精品中文字幕在线视频| 制服诱惑二区| 中文字幕制服av| 精品久久久久久久久亚洲| 天堂俺去俺来也www色官网| 国产黄色免费在线视频| 秋霞在线观看毛片| 男人操女人黄网站| 老熟女久久久| 桃花免费在线播放| 国产精品麻豆人妻色哟哟久久| 97在线视频观看| 亚洲精品美女久久av网站| 国产av国产精品国产| 国产欧美亚洲国产| 高清欧美精品videossex| 亚洲精品视频女| 午夜精品国产一区二区电影| 各种免费的搞黄视频| 国产色婷婷99| 久久综合国产亚洲精品| 免费av不卡在线播放| 色婷婷久久久亚洲欧美| 亚洲av国产av综合av卡| 日本黄色片子视频| 女人精品久久久久毛片| 午夜视频国产福利| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 大香蕉久久成人网| 亚洲国产欧美日韩在线播放| 日韩制服骚丝袜av| 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡 | 久久久久久久久久久久大奶| 少妇人妻精品综合一区二区| 超色免费av| 妹子高潮喷水视频| 五月伊人婷婷丁香| 亚洲国产成人一精品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免| 免费大片18禁| 熟女电影av网| 一边摸一边做爽爽视频免费| 五月伊人婷婷丁香| 涩涩av久久男人的天堂| 亚洲欧洲日产国产| 亚洲久久久国产精品| av国产久精品久网站免费入址| 两个人的视频大全免费| 建设人人有责人人尽责人人享有的| 观看av在线不卡|