• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proof of the Monotonicity of Grid Size and Its Application in Grid-Size Selection for Mesoscale Models

    2015-05-22 07:57:39WANGChengxinGAOShoutingRANLingkunandLIANGLi
    Advances in Atmospheric Sciences 2015年7期

    WANG Chengxin,GAO Shouting,RAN Lingkun,and LIANG Li

    1Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    3State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100049

    4Public Weather Service Center,China Meteorological Administration,Beijing 100081

    5National Meteorological Center,China Meteorological Administration,Beijing 100081

    Proof of the Monotonicity of Grid Size and Its Application in Grid-Size Selection for Mesoscale Models

    WANG Chengxin?1,2,GAO Shouting1,3,RAN Lingkun1,and LIANG Li4,5

    1Laboratory of Cloud-Precipitation Physics and Severe Storms,Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    3State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,Beijing 100049

    4Public Weather Service Center,China Meteorological Administration,Beijing 100081

    5National Meteorological Center,China Meteorological Administration,Beijing 100081

    Terrain characteristics can be accurately represented in spectrum space.Terrain spectra can quantitatively ref l ect the effect of topographic dynamic forcing on the atmosphere.In wavelength space,topographic spectral energy decreases with decreasing wavelength,in spite of several departures.This relationship is approximated by an exponential function.A power law relationship between the terrain height spectra and wavelength is f i tted by the least-squares method,and the f i tting slope is associated with grid-size selection for mesoscale models.The monotonicity of grid size is investigated,and it is strictly proved that grid size increases with increasing f i tting exponent,indicating that the universal grid size is determined by the minimum f i tting exponent.An example of landslide-prone areas in western Sichuan is given,and the universal grid spacing of 4.1 km is shown to be a requirement to resolve 90%of terrain height variance for mesoscale models,without resorting to the parameterization of subgrid-scale terrain variance.Comparison among results of different simulations shows that the simulations estimate the observed precipitation well when using a resolution of 4.1 km or f i ner.Although the main f l ow patterns are similar,f i ner grids produce more complex patterns that show divergence zones,convergence zones and vortices. Horizontal grid size signif i cantly affects the vertical structure of the convective boundary layer.Stronger vertical wind components are simulated for f i ner grid resolutions.In particular,noticeable sinking airf l ows over mountains are captured for those model conf i gurations.

    terrain spectra,monotonically increasing function,f i tting exponent,the universal grid size,model sensitivity

    1.Introduction

    The distribution of terrain height variance with waveength is important for determining the required horizontal grid spacing for mesoscale models(Bretherton,1969;Young nd Pielke,1983;Srinivasan and Ramanathan,1994;Ramanathan and Srinivasan,1995;Salvador et al.,1999).Terain height variance plays a key role in the simulation of mesoscale atmospheric f l ows.The ability to simulate local irculation and rainfall accurately relies heavily on resolving he important terrain features over the area of focus.Howver,the gridresolutionis veryoftenselected withoutconsidring its optimum value(Salvador et al.,1999).Thus,analysis of the terrainheight varianceis a necessary(althoughnot suff i cient)step in the processofestablishingthe requiredhorizontal grid size for a mesoscale model application(Pielke, 1984).The spectral analysis of terrain height variance gives an idea about the dominant wavelengths(λ)of terrain variance,which are used to specify the horizontal grid spacing required to resolve topographic perturbations without resorting to the parameterization of subgrid-scale terrain variance in mesoscale models.

    Results of previous studies of terrain spectra have varied considerably,depending on the geomorphology of the study region because terrain variances vary between different landscapes(Bretherton,1969;Young and Pielke,1983; Young et al.,1984;Salvador et al.,1999;Denis et al.,2002; Wang and Wang,2004;Perron et al.,2008;Booth et al., 2009).For example,Young and Pielke(1983)found a linear λ-dependence for three different cross sections of Colorado, and an upperboundof 0.1 km formesoscale models based onone-dimensional terrain spectra.Srinivasan and Ramanathan (1994)found terrain height variances proportional toλ2for threecrosssectionsofthePuneregion,anddeterminedaminimum horizontal grid spacing of 4 km to resolve 87%of the terrain variance.Salvador et al.(1999)obtained a mean exponent of 1.77 for four sections of Castellon,and determined a grid size of 2 km for mesoscale models of the region.Since the optimum horizontal grid spacing varies among different regions,the grid size for each region must be individually determined in mesoscale models.Analysis of many terrain cross sections to obtain accurate f i tting exponents and computed grid sizes for each region is highly desirable.The minimum grid size can be selected for mesoscale models of this region because it is f i t for the study of any case,though not the optimum size for many cases.Thus,for every case study in the area of focus,the minimum grid size is a suff i cient (although not necessary)condition to resolve the majority of terrain height variance.

    It is computationallytime-consuming to calculate the optimum grid size through trial and error of many different grid sizes.Finding a mathematical relationship between the grid size and the exponent greatly decreases the computational effort.The aim of this paper is to investigate the mathematical relationship between the grid size and the exponent. Estimation of the universal grid size for mesoscale models of the landslide-prone areas in western Sichuan is used as an example.The landslide-prone areas cover Wenchuan County and neighboring areas are situated in the steep hills north of Sichuan’s provincial capital,Chengdu.Earthquakes in Wenchuan result in f i ssures,loosening of the geological structure and the formation of a slippage surface,apt to form a landslide when heavy rain occurs.Studies of rainfall in landslide-prone areas,where topographic-scale forcing has an important effect on mesoscale atmospheric f l ows and therefore on the distribution of precipitation,are essential.Additionally,in choosing the universal grid size for mesoscale models of landslide-prone areas,it is also important to assess model sensitivity to different grid resolutions (Salvador et al.,1999;Kain et al.,2008;Roberts and Lean, 2008;Schwartz et al.,2009).Thus,several simulations using different grid resolutions for the mesoscale numerical model are undertaken to illustrate the inf l uence of grid size.

    2.Data and methods

    2.1.Topography data

    For simulations in landslide-prone areas,a domain of nested grids with a 1-km topographicresolution is often used in mesoscale models.To study f i ne terrain detail,the topographic resolution is increased.This allows the study of atmospheric f l ows,and a more detailed distribution of precipitation for the landslide forecast.The latest SRTM 90 m digital elevation database,originally produced by National Aeronautics and Space Administration(NASA),is used as the basic dataset for spectral analysis.The landslide-prone studyregioninwesternSichuanis shownin Fig.1.Thestudy region covers(30.52°–31.72°N,102.86°–104.16°E),with a near constant zonal distance of 123.6 km and a meridional distance of 133.6 km,corresponding to the zonal and meridional grid points of 1561 and 1441,respectively.The actual topographic resolutions in the zonal and meridional directions are 79.2 m and 92.8 m,respectively.The terrain elevations are calculated along seven adjacent zonal cross sections and seven meridionalcross sections,both with a regular interval of 0.2°.

    2.2.Spectral analysis

    Spectral analysis has been used for several years for diagnostic purposes(Boer and Shepherd,1983;Trenberth and Solomon,1993).Fourier transformation is used to analyze and separate the spectral signal to provide information on spectral characteristics(Rayner,1972;Hanley,1977;Ricard et al.,1987;Ansoult,1989;Hough,1989;Goff and Tucholke,1997).Topographic data are discrete,so a Discrete Fourier Transform(DFT)is used to retrieve the spectral distributions in frequency space.For the landslide-prone areas, the one-dimensional terrain height variance spectra are computed separately for each of the terrain height cross sections. For each cross section,a linear trend is f i rst calculated by a least-squares f i t and then subtracted from the terrain height series.The DFT routine is applied over the resulting height values,and the resulting spectra depict the distribution of terrain height variances in either wavenumber(k)or wavelength (λ=1/k).A power law relationship between the terrain height spectra(S)andλwith the form S=aλbis f i tted using the least-squares method.The coeff i cient a represents the intensity of topographic forcing,and the exponent b ref l ects the terrain smoothness and is used to discuss the selection of horizontal grid spacing for mesoscale models.

    A two-dimensionalspectrumanalysis canbe achievedusing a two-dimensional fast Fourier transform(2DFFT).If a percentage of the maximum spectral energy is required for atopographic effect,an average wavelength meeting that condition can be found by averaging the spectral energy along the angles def i ned by the horizontal wavenumber(kx)and the vertical wavenumber(ky).The angle is the arc-tangent of the ratio of kxandand the one-dimensional spatial wavenum-However,this method is computationally intensive,and is thus an inconvenient and uneconomical method for obtaining optimum model grid spacing. YoungandPielke(1983)and Younget al.(1984)verif i edthat spatial spectral analysis of a two-dimensional topographic prof i le can be replaced by a one-dimensional prof i le in the following manner.Since then,the one-dimensional algorithmalongseveraladjacentcross sectionsof terrainhas been widely used for the convenience of calculation(Young et al., 1984;Srinivasan and Ramanathan,1994;Ramanathan and Srinivasan,1995;Hsu et al.,2006).

    2.3.Model and experiment design

    The Advanced Regional Prediction System(ARPS,version 5.3.0),initially developed at the Center for Analysis and Prediction of Storms(CAPS)at the University of Oklahoma, is used to simulate a rainstorm process that occurred in the landslide-proneareas from 9–10July 2013.The latest SRTM 90m digital elevationdatabasereplaces theold terraindata in the ARPS.Nesting capabilities are not considered,to avoid in fl uences on the model results other than those caused by horizontalgrid spacing.In the vertical direction,53 unevenly spaced full sigma levels are established.The initial conditions and boundary data are from the European Centre for Medium-Range Weather Forecasts(ECMWF)global data, which have a horizontal resolution of 0.5°×0.5°.The model physics packages include the Lin Ice microphysics scheme (Zhao and Xue,2009),the Kain–Fritsch cumulus parameterization scheme(Kain and Fritsch,1990),the NASA atmosphericradiationtransferparameterization,andsurface fl uxes calculated from constant drag coef fi cients for surface layer parameterization.The experiment is performed for 24 hours starting at 0000 UTC 9 July 2013.Four different model confi gurations of horizontal grid size(9.2,6.6,4.1,and 1.9 km) are tested.The observed precipitation consists of conventional surface station data from the National Meteorological Center(NMC)of the China Meteorological Administration (CMA).

    3.Results and discussion

    3.1.The terrain spectra of different cross sections

    The zonal distributions of terrain height variance spectra versus wavenumber(km?1)along 30.72°N and 31.32°N are shown in Fig.2.The discrete nature of the terrain data means that the smallest resolvable wavelength(maximum wavenumber)measuredin terrainspectrumspace is twice the grid resolution of terrain.In Fig.2a,the minimum resolvable wavelength is 0.16 km(wavenumber 6.3 km?1),though the spectral energy for wavenumbers larger than 1 km?1(λ<1 km)is close to zero,as shown in Fig.2b.Terrain height variance spectra reveal the effect of topographic dynamic forcing on the atmosphere,and the greater the spectral energy then the stronger the topographic dynamic forcing(Pielke, 1984).In Fig.2a,the maximum topographic spectral energy is 11.8×106m2km,indicating undulation of terrain and maximum topographic dynamic forcing.The dominant wavelength(DW)corresponding to the maximum spectral energy is 61.8 km,under which the spectral energy declines with decreasingλ,implying that the topographic dynamic forcing weakens with the gentleness of the topographic relief.Nevertheless,a sudden increase of spectral energy exists at a wavelength of 20.6 km for the complex terrain,though it does not affect the overall downward trend.Similarly in Fig.2b,the DW is 41.2 km,corresponding to the maximum spectral energy of 12.3×106m2km,larger than the value for the cross section along 30.72°N.It indicates that the undulation of terrain along 31.32°N is more pronounced than along 30.72°N,implying stronger topographicdynamic forcing along 31.32°N.Whenλ<DW,the forcingweakens with decreasingλ,though there are sporadic departures from this trend.

    The distributions of meridional terrain height variance spectra for the cross sections along 103.86°E and 104.06°E are shown in Fig.3.In Fig.3a,the DW is 66.8 km,corresponding to the maximum spectral energy of 8.5×106m2km;the secondary wavelength is 16.7 km,corresponding to a spectral energy of 2.0×106m2km.The relatively large spectral energies here both show strong topographicdynamic forcing.Forthecrosssectionalong104.06°E,thespectralenergy takes the dominating peak value,less than the value of 8.5×106m2km,whichindicatesthatthetopographicforcing along 104.06°E is weaker than along 103.86°E.Also,from the zonal(Fig.2)and meridional(Fig.3)terrain spectra,the maximum topographic spectral energy in the zonal direction is largerthaninthe meridionaldirection,implyingthattheeffect of topographic dynamic forcing on the atmospheric systemoverterrainis zonallystrongerthanthatin themeridional direction.In addition,the longer wavelength corresponds to a more prominent topographic relief,and therefore the larger spectral energy,and the shorterwavelength,shows a less pronouncedterrainheightvarianceanda smaller spectralenergy. There is a downward topographic spectral energy trend with decreasingλ,in spite of several departures,and this decreasing trend has an approximately exponential form.Thus,a power law relationship between the terrain height spectra(S) and variableλin the form ofS=aλbis fi tted by the leastsquares method.In this equation,the coef fi cientarepresents the intensity of topographic forcing,and the exponentbrefl ects the terrain smoothness:greater values ofbcorrespond to more jagged terrain.

    3.2.The relationship between the grid size and the exponent b

    For the purpose of mesoscale modeling,terrain height variations can be divided into two ranges:those with wavelengths greater than 2?x(?xis the grid size for mesoscale models)resolved by the model,and those with wavelengths less than 2?x;the subgrid-scale terrain variations not resolvable(Pielke,1981).As the effect of the parameterization is uncertain in mesoscale models,it is necessary to choose a value of?xsmall enough so that the effect of subgrid-scale terrain variations is negligible.An upper bound of?xis determined by integrating the area under terrain height spectra andrequiringa specif i ed percentageof theterrainheightvariance to be at wavelengths greater than that minimum(Young and Pielke,1983).As mentioned above,the relationship between the terrain height spectra and variableλhas the form ofS=aλb,and the ratio of subgrid-scale terrain height variance to model resolved terrain height variance(r)is

    wherekis wavenumber,2δxis the shortest wavelength in the measured spectra,2?xis the shortest wavelength that can be resolved by the model,andn?xis the model domain length. Equation(1)integrates to

    SettingL=n?x/2,we have the expression forr:

    The percentage ofris specif i ed in advance and is kept constant for a f i xed region.Generally,resolving 90%of the terrain variance is suff i cient to consider the topographic forcing without a subgrid-scale parameterization.Thus,we obtain an expression for?xin three variables,L,δxandb:

    For the study region,the domain is divided into several adjacent cross sections of terrain both in the zonal and meridional directions.As the latitudes(or the longitudes)corresponding to different cross sections vary little,the domain length (2L)is nearly invariable.The grid resolution of terrain,δx, remains unchanged for selected topographic data.That is, the change of?xdepends only on the variableb.Settingx=b?1,y=?x,Eq.(4)can be written in the form:

    Taking the derivative with respect tox,an expression fory′is found:

    If we can prove thaty′>0,thenyis monotonic with respect tox.Asy>0 andx2(rLx+δxx)>0,the required relation is:

    Dividingboth sides of the inequality[Eq.(7)]by(δx)xtransforms the inequality to the form

    AsL/δx>1,t=(L/δx)x>1.Also,it is easy to prove thatZ′is a monotonically increasing function with respect tot. Thus,Z′(t)>Z′(1)=0,indicating a monotonically increasing function ofZwith respect tot.So,

    The inequality[Eq.(10)]shows thatyincreases with increasingx,andtherefore?x(b)is amonotonicallyincreasingfunction.This indicates that the minimum grid size is determined by the minimumb.

    3.3.The selection of grid size for mesoscale models of the landslide-prone areas

    Since?xis a monotonically increasing function with respect tob,it is easy to determine the universal grid size for mesoscale models of the landslide-prone areas.The terrain height variance spectra(S)are plotted as a function of wavelength(λ)or wavenumber(k)on a logarithmic scale and f i tted to retrieveaandb.Table 1 displays the values ofaandbfor each of the 14 cross sections.Several zonal and meridional distributions of terrain height variance spectra versus wavenumbers(km?1)in log–logspace arerepresentedinFig. 4 and Fig.5.Using theF-criterion with a signi fi cance level of 0.05,exponentbis signi fi cant.From Table 1,the coef fi cientavaries considerably among these cross sections, because of differing geographic coverage.The exponentbvaries from 1.84 to 3.12 and provides a quantitative measure of terrain smoothness,since the terrain height and the con fi guration are dissimilar.

    As shown in Table 1,the minimumbis 1.84 amongseven zonal cross sections of terrain.For terrain height variance spectra of the formS=aλ1.84,the ratio of subgrid-scale ter-

    For a mesoscale model of the landslide-prone areas with a zonal domain length of 123.6 km andδxof 0.079 km,a zonal grid spacing of 4.1 km or f i ner is required to resolve 90%of terrain variances without a subgrid-scale parameterization.Similarly,inthemeridionaldirection,a minimumbof 2.09is obtainedamongsevencrosssections.Forameridionaldomainlengthof 133.6kmandδxof 0.093km,the gridresolution of 8.1 km is likely to be the maximum allowable value to resolve adequately the terrain effects.The upper bound of grid spacing in the zonal direction is smaller than that in the meridional direction.Thus,for every case study the horizontal grid spacing of 4.1 km is suf fi cient to resolve 90%of terrain height variance.The value of the percentage of resolved terrain height variance,based on the spectra presented in previous fi gures and for several model grid sizes,is given in Table 2.Assuming that inclusion of 90%of the terrain variance is suf fi cient to correctly consider the topographical forcing,the grid size required for the landslide-proneareas is 4.1 km.

    Table 1.Parameters of the least-squares best f i t relationS=aλb, for 14 terrain height variance spectra for the landslide-prone areas.

    Although it is assumed that resolving 90%of the terrain variance is suf fi cient to correctly consider the topographical forcing,it does not ensure that all atmospheric phenomena are simulated correctly,but rather that 90%of the terrain infl uenceonatmospheric fl owsis captured.Thespectralenergy of the unresolved topography(10%)is relatively small,indicatingtheinconspicuousundulationofterrainandweaktopographic dynamic forcing.Thus,the effect of the unresolved topography on the atmosphere is ignored.Subgrid-scale terrain variations cannot be completely resolved in the model. It is hard to ascertain whether 90%is suf fi cient for a given application.However,this method allows the calculation of terrain variance(Salvador et al.,1999).

    3.4.Model sensitivity to grid resolutions

    To show the effect of differing grid sizes on a mesoscale model and better illustrate the results obtainedby the spectral method,several simulations using the ARPS with differentgrid resolutions(Table 2)are performed.Synoptic conditions for the selected days,9–10 July 2013,show a favorable large-scale circulation environment for the occurrence of the rainstorm in western Sichuan(f i gure not shown).During the rainstorm,the atmosphereof West China is controlled by the trough between the Iranian High and the western Pacif i c subtropical high(WPSH);the Sichuan Basin is just at the edge of the WPSH.The steady WPSH keeps the upper trough from moving eastward.Thus,the upper trough stabilizes over West China during the rainstorm,which is conducive to the southeastward movement of the northwestern cold air.The WPSH further causes the southwest low-level jet(SLLJ)to carry warm and moist air into the basin.Subsequently,the southwesterly f l ow transforms itself into an easterly f l ow in the Sichuan Basin,and interacts with the Tibetan Plateau terrain in western Sichuan.In addition,low pressure systemsoriginatingfromtheTibetanPlateauconstantlymove to western Sichuan,leading to rainfall in the west region of Sichuan.

    Table 2.The resolved terrain height variance for model resolution and the ratios of unresolved/resolved topography(r)in the mesoscale model.

    3.4.1.The comparison of precipitation

    The simulated 1-h accumulated precipitation at 1800 UTC and 2100 UTC from the four different model conf i gurations,T-9.2,T-6.6,T-4.1 and T-1.9,which correspond respectively to 80%,85%,90%,and 95%of resolved terrain variance,is selected for the comparison with the observed rainfall.As shown in Fig.6a,the precipitation with a northeast–southwest orientation mainly concentrates in the area from 30.8°N to 31.5°N,with three main centers at(30.8°N,103.1°E),(31.1°N,103.3°E)and(31.2°N, 103.5°E),with values of 22,23 and 25 mm,respectively.In model run T-9.2(Fig.6b),two of the three rainstorm centers are reproduced,although the rain rates are slightly underestimated.Nevertheless,the extent and rain rates around (30.6°N,102.9°E)are highly overestimated.In the T-6.6 run (Fig.6c),the zoneof relativelyheavyprecipitationis approximately 0.2°east of its observed location.A similar overestimation is also simulated around(30.6°N,102.9°E).In T-4.1 (Fig.6d),the simulated result appropriately reproduces the major features of the spatial distributionof precipitation(Fig. 6a).In fact,the simulated zones of maximum precipitation are almost perfectly reproduced,despite a slight disparity inrange compared to the observed precipitation centers.In addition,the maximum precipitation also shows values much closer to the observed maximum.However,the precipitation at some locations is overestimated compared to the observed precipitation(e.g.30.8°N,103.4°E).The model result in T-1.9 is improved only slightly in terms of the spatial distribution of precipitation(Fig.6e)compared to the resolution of T-4.1(Fig.6d).However,the maximum precipitation has heavier values than in T-4.1.

    To further demonstrate the simulation’s performance,1-h accumulatedprecipitationat 2100UTCis analyzed.Thesimulated results are shown in Fig.7,and indicate that the simulations of T-4.1(Fig.7d)and T-1.9(Fig.7e)reproduce similar areas of precipitation and maximum precipitation,though with some subtle differences(Fig.7a).In model run T-9.2 (Fig.7b),the shapes of the simulated precipitation areas and zones of maximum precipitation are inconsistent with those of the observed precipitation.The simulation of T-6.6(Fig. 7c)produces more detailed precipitation than that of T-9.2, although slight deviations exist in terms of the location and intensity of the main centers compared to the observed precipitation.

    Based ontheanalysis above,the numericalsimulationsof T-4.1andT-1.9appearto performsuff i cientlywell inestimating the observed precipitation.As the grid size decreases,the model captures more features of the observed rainfall distribution in terms of location and intensity.When the grid size is on the order of 4.1 km or less,the model improves only slightly in terms of the spatial distribution of precipitation compared to T-4.1.This is understandable because decreasing grid spacing corresponds to an increase in the percentage of model resolved terrain height variance.This indicates that the topographic dynamic forcing on the atmosphere becomes stronger and therefore yields more detailed precipitation in the landslide-prone areas.When the model resolved terrain height variance reaches a certain proportion(in this paper, 90%),the topographic forcing improves only slightly as the proportion increases,and therefore the model provides an almost identical value of precipitation.

    3.4.2.Horizontal pattern of atmospheric f l ow

    Figure 8 presents ARPS-simulated wind streamline plots for four different model conf i gurations.Because of the effect of topography,the atmospheric f l ow at 500 hPa is selected. These representations emphasize regions of convergenceand divergence.As shown in Fig.8,although the main f l ow patterns are similar for the four runs,some regions of f l ow divergence and convergence appear at different locations. Simulations T-9.2(Fig.8a)and T-6.6(Fig.8b)fail to simulate the divergence zone around(31.0°N,103.2°E),which is accurately reproduced by the other two runs[T-4.1(Fig.8c) and T-1.9(Fig.8d)].The divergence zone around(30.75°N, 103.35°E)is only simulated by the f i ner resolution grid runs, and this is probably related to the terrain resolution.Furthermore,the divergence zone around(30.75°N,103.05°E) is noticeable in simulations T-9.2,T-4.1,and T-1.9,though T-4.1 and T-1.9 have more complex streamline patterns.Besides this,from the comparison between T-4.1 and T-1.9, some features of the f l ow induced by topographyappear only in the f i ner resolution grid run(Fig.8d),though the majority of the f l ow patterns are almost identical for the two runs.These features include the vortices around(30.9°N,103.1°E)and(30.9°N,103.4°E)and the convergence zone around(31.5°N,103.7°E),also not simulated in the T-9.2 or T-6.6 runs.In general,as grid size decreases,the model producesmorecomplexf l owpatternsthatshowsomedivergence and convergencezones,and vortices.

    3.4.3.Vertical pattern of atmospheric f l ow

    The simulated vertical motions are quite sensitive to the horizontal grid size used in the model.The vertical structure oftheconvectiveboundarylayer,simulatedbythefourmodel conf i gurations,shows signif i cant differences.Figure 9 shows the combined east–west wind component and vertical wind component plotted on the cross section along 31.3°N at 1800 UTC 9 July 2013.The section spans across the mountains with the most evident terrain undulation.The easterly f l ow followsthemountainsurfacesandgeneratesup-slopeandupvalley wind systems,thus inducing convergenceand updrafts nearthe peaks.These cross sections show that f i ner gridsizes correspond to higher and more intense vertical updrafts.The maximumvertical wind componentsin the convergencezone over 103.35°E are 0.4 m s?1on the coarser grid(9.2 km), 0.8 m s?1using the 6.6 km grid,and 1.2 m s?1on the f i ner grids(4.1 km and 1.9 km).Generally,the inclusion of a f i ner gridincreasestheabilityofmeteorologicalmodelstoproduce larger vertical motion,since small-scale horizontal temperature gradients and velocities are resolved(Poulos and Pielke, 1994).Vertical updrafts trigger cloud development,and correspond to peak precipitation periods:different updraft rates result in different hydrometeors and therefore different precipitation(Fig.6).In addition,although there is a tendency for convection within the boundary layer in all simulations, the T-9.2 and T-6.6 model runs yield different and more simple patterns than the f i ner-scale runs.For example,vertical currents over 103.6°E appear in all tests;however,the vortex return f l ow hardly appears in the coarser runs(9.2 km and 6.6 km),and is only simulated by the T-4.1 and T-1.9 model runs at about 500 hPa.Furthermore,when using grid sizes of 4.1 km and 1.9 km,noticeable sinking airf l ows over mountains are captured approximately over 103.8°E,103.5°E and 103°E.These downward motions are not simulated by the T-9.2 and T-6.6 model runs.

    4.Conclusion

    The distributions of the terrain height variance spectra in wavenumber(k)spaceorinwavelength(λ)spacecanbeused to determine the spatial scales of a given terrain.Taking the landslide-prone areas in western Sichuan as an example,the maximum topographic spectral energy shows the most evident undulation of terrain and the maximum topographic dynamic forcing.The trend of the topographic spectral energy is downward with decreasingλ,and this decreasing trend is described by a power law relationship between the terrain height spectra(S)and variableλin the form of S=aλb. Fitted by the least-squares method,the spectral slope(?b) in log–log space is associated with grid-size selection for mesoscale models.As the domain length is nearly constant, and the minimum resolvable wavelength in terrain spectrum space remains unchanged for the selected topographic data, the change of?x depends only on the exponent b.Furthermore,the monotonicity of grid size is investigated,and it is proven that?x(b)is a monotonically increasing function.This indicates that the universal grid size selected for mesoscale models is determined by the minimum b.Using this mathematical relationship between?x and b,a universal horizontal grid spacing of 4.1 km is required to resolve 90% of the terrain height variance for mesoscale models,without resortingtotheparameterizationofsubgrid-scaleterrainvariance for the landslide-prone areas.

    The effect of horizontal grid size on model results is analyzed by four model conf i gurations.As the grid size decreases,the model captures more features of the observed rainfall distribution.When the grid size is on the order of 4.1 km or less,the model improves only slightly in terms of the spatial distribution of precipitation compared to T-4.1. Generally,f i nergridsproducemorecomplexpatternswithdivergence zones,convergence zones,and vortices.Horizontal grid size signif i cantly affects the vertical structure of the convective boundary layer.In particular,stronger vertical wind components are simulated for f i ner grid resolutions.Also, noticeable sinking airf l ows over mountains are captured for those model conf i gurations.

    Acknowledgements.This study was supported by the Key Research Program of the Chinese Academy of Sciences(Grant No. KZZD-EW-05-01)and the special grant(Grant No.41375052) from the National Natural Science Foundation of China.It was also funded by an open project of the State Key Laboratory of Severe Weather(Grant No.2013LASW-A06).The authors thank the anonymous reviewers for their suggestions,which helped to improve the manuscript.Thanks also go to HUANG Yongjie for his helpful comments.

    REFERENCES

    Ansoult,M.M.,1989:Circular sampling for fourier analysis of digital terrain data.Mathematical Geology,21,401–410,doi: 10.1007/BF00897325.

    Boer,G.J.,and T.G.Shepherd,1983:Large-scale twodimensionalturbulenceintheatmosphere.J.Atmos. Sci.,40,164–184,doi:10.1175/1520-0469(1983)040<0164: LSTDTI>2.0.CO;2.

    Booth,A.M.,J.J.Roering,and J.T.Perron,2009:Automated landslide mapping using spectral analysis and high-resolution topographic data:Puget Sound lowlands,Washington,and Portland Hills,Oregon.Geomorphology,109,132–147,doi: 10.1016/j.geomorph.2009.02.027.

    Bretherton,F.P.,1969:Momentum transport by gravity waves. Quart.J.Roy.Meteor.Soc.,95,213–243,doi:10.1002/qj. 49709540402.

    Denis,B.,J.C?ot′e,and R.Laprise,2002:Spectraldecomposition of two-dimensional atmospheric f i elds on limited-area domains using the Discrete Cosine Transform(DCT).Mon.Wea.Rev., 130,1812–1829,doi:10.1175/1520-0493(2002)130<1812: SDOTDA>2.0.CO;2.

    Goff,J.A.,and B.E.Tucholke,1997:Multiscale spectral analysis of bathymetry on the f l ank of the Mid-Atlantic Ridge:Modif i cation of the seaf l oor by mass wasting and sedimentation. J.Geophys.Res.,102,15 447–15 462,doi:10.1029/97JB 00723.

    Hanley,J.T.,1977:Fourier analysis of the Catawba Mountain knolls,Roanoke county,Virginia.Mathematical Geology,9, 159–163,doi:10.1007/BF02312510.

    Hough,S.E.,1989:Ontheuseof spectral methods for thedetermination of fractal dimension.Geophys.Res.Lett.,16,673–676, doi:10.1029/GL016i007p00673.

    Hsu,H.M.,M.W.Moncrieff,W.W.Tung,and C.H.Liu,2006: Multiscale temporal variability of warm-season precipitation over North America:Statistical analysis of radar measurements.J.Atmos.Sci.,63,2355–2368,doi:10.1175/JAS3752. 1.

    Kain,J.S.,and J.M.Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization.J.Atmos.Sci.,47,2784–2802.

    Kain,J.S.,and Coauthors,2008:Somepractical considerations regarding horizontal resolution in the f i rst generation of operational convection-allowing NWP.Wea.Forecasting,23,931–952.

    Perron,J.T.,J.W.Kirchner,and W.E.Dietrich,2008:Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes.J.Geophys.Res.,113,F04003,doi: 10.1029/2007JF000866.

    Pielke,R.A.,1981:Mesoscale numerical modeling.Advances in Geophysics,B.Saltzman,Ed.,Academic Press Inc.,New York,185–344.

    Pielke,R.A.,1984:Mesoscale Meteorological Modeling.Academic Press,San Diego,599 pp.

    Poulos,G.S.,and R.A.Pielke,1994:A numerical analysis of Los Angeles Basin pollution transport to the Grand Canyon under stably stratif i ed,southwest f l ow conditions.Atmos.Environ., 28,3329–3357.

    Ramanathan,N.,and K.Srinivasan,1995:An estimation of optimumgridsizeforKashmir Valleybyspectral method.J.Appl. Meteor.,34(12),2783–2786.

    Rayner,J.N.,1972:Theapplication of harmonic andspectral analysis to the study of terrain.Spatial Analysis in Geomorphology,R.J.Chorley,Ed.,Methuen,New York,283–302.

    Ricard,Y.,C.Froidevaux,and R.Simpson,1987:Spectral analysis of topography and gravity in the Basin and Range Province.Tectonophysics,133,175–179,183–187,doi:10.1016/0040-1951(87)90262-9.

    Roberts,N.M.,and H.W.Lean,2008:Scale-selective verif i cation of rainfall accumulations from high-resolution forecasts of convective events.Mon.Wea.Rev.,136,78–97.

    Salvador,R.,J.Calb′o,and M.M.Mill′an,1999:Horizontal grid size selection and its inf l uence on mesoscale model simulations.J.Appl.Meteor.,38,1311–1329,doi:10.1175/1520-0450(1999)038<1311:HGSSAI>2.0.CO;2.

    Schwartz,C.S.,and Coauthors,2009:Next-day convectionallowing WRF model guidance:A second look at 2-km versus 4-km grid spacing.Mon.Wea.Rev.,137,3351–3372.

    Srinivasan,K.,and N.Ramanathan,1994:Terrain variance spectra for Indian Western Ghats.Proceedings-Indian National Science Academy Part A,60A,133–138.

    Trenberth,K.E.,and A.Solomon,1993:Implications of global atmospheric spatial spectra for processing and displaying data. J.Climate,6,531–545,doi:10.1175/1520-0442(1993)006<0531:IOGASS>2.0.CO;2.

    Wang,W.T.,and Y.Wang,2004:A spectral analysis of satellite topographic prof i le:A coincident pattern between latitudinal topographic and westerly perturbation on the lee side of Qinghai-Tibet Plateau.Journal of Nanjing University,40(3), 304–317.(in Chinese)

    Young,G.S.,and R.A.Pielke,1983:Application of terrain height variance spectra to mesoscale modeling.J.Atmos.Sci.,40, 2555–2560.

    Young,G.S.,R.A.Pielke,and R.C.Kessler,1984:A comparison of the terrain height variance spectra of the Front Range with that of a hypothetical mountain.J.Atmos.Sci.,41(7),1249–1252,doi:10.1175/1520-0469(1984)041<1249:ACOTTH>2.0.CO;2.

    Zhao,K.,andM.Xue,2009:Assimilationof coastal Doppler radar data withtheARPS 3DVAR and cloud analysis for thepredictionof HurricaneIke(2008).Geophys.Res.Lett.,36,L12803, doi:10.1029/2009GL038658.

    :Wang,C.X.,S.T.Gao,L.K.Ran,and L.Liang,2015:Proof of the monotonicity of grid size and its application in grid-size selection for mesoscale models.Adv.Atmos.Sci.,32(7),1005–1015,

    10.1007/s00376-014-4091-6.

    (Received 28 April 2014;revised 6 November 2014;accepted 15 November 2014)

    WANG Chengxin Email:13429670011@163.com

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    一卡2卡三卡四卡精品乱码亚洲| 99久久无色码亚洲精品果冻| 欧美日韩福利视频一区二区| 色吧在线观看| 精品国产乱码久久久久久男人| 99精品久久久久人妻精品| 日韩欧美在线二视频| 特级一级黄色大片| 免费看a级黄色片| 亚洲18禁久久av| www.www免费av| 色av中文字幕| 国产毛片a区久久久久| 男人舔女人的私密视频| 成人特级av手机在线观看| 成年人黄色毛片网站| 成人18禁在线播放| 精品福利观看| 1024香蕉在线观看| 母亲3免费完整高清在线观看| 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 无限看片的www在线观看| 国语自产精品视频在线第100页| 婷婷亚洲欧美| 日韩欧美国产一区二区入口| 国产91精品成人一区二区三区| 亚洲精品美女久久av网站| 免费观看人在逋| 一边摸一边抽搐一进一小说| 99久久国产精品久久久| 久久伊人香网站| 日日摸夜夜添夜夜添小说| 亚洲自偷自拍图片 自拍| 91字幕亚洲| 1024香蕉在线观看| 一夜夜www| 亚洲av熟女| 国产成人影院久久av| 久久九九热精品免费| 俺也久久电影网| 午夜精品久久久久久毛片777| 成年免费大片在线观看| 国产精品久久电影中文字幕| 九色国产91popny在线| 国产1区2区3区精品| 欧美乱码精品一区二区三区| 亚洲国产精品合色在线| 国产99白浆流出| 女人高潮潮喷娇喘18禁视频| 亚洲成人精品中文字幕电影| 亚洲av美国av| 欧美日韩乱码在线| 黄频高清免费视频| 少妇的逼水好多| 久久精品亚洲精品国产色婷小说| 一区二区三区高清视频在线| 美女免费视频网站| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 午夜激情欧美在线| 日本一本二区三区精品| 搞女人的毛片| 两个人的视频大全免费| 少妇丰满av| 国产精品女同一区二区软件 | 亚洲精品国产精品久久久不卡| 极品教师在线免费播放| 最近最新免费中文字幕在线| bbb黄色大片| 校园春色视频在线观看| 九色国产91popny在线| 久久久久免费精品人妻一区二区| 国产精品1区2区在线观看.| 国产精品综合久久久久久久免费| 91av网一区二区| 亚洲熟妇中文字幕五十中出| 老鸭窝网址在线观看| 午夜福利成人在线免费观看| 日韩中文字幕欧美一区二区| 国产黄a三级三级三级人| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 观看美女的网站| www国产在线视频色| 日本熟妇午夜| 1024香蕉在线观看| 国产美女午夜福利| 欧美绝顶高潮抽搐喷水| 在线永久观看黄色视频| 国产成人影院久久av| 99热这里只有是精品50| 国产一级毛片七仙女欲春2| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 国产精品98久久久久久宅男小说| 波多野结衣高清作品| 久久久国产成人免费| 日本一本二区三区精品| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 99久久成人亚洲精品观看| 全区人妻精品视频| or卡值多少钱| 欧美极品一区二区三区四区| 国产99白浆流出| 国产精品日韩av在线免费观看| 很黄的视频免费| 特级一级黄色大片| 宅男免费午夜| 非洲黑人性xxxx精品又粗又长| 9191精品国产免费久久| 亚洲片人在线观看| 午夜福利视频1000在线观看| 在线观看舔阴道视频| 中文字幕人成人乱码亚洲影| 国产黄色小视频在线观看| 91久久精品国产一区二区成人 | 欧美一级a爱片免费观看看| 亚洲精品国产精品久久久不卡| 18禁美女被吸乳视频| 国产成人aa在线观看| 亚洲欧美精品综合久久99| 日韩欧美在线二视频| 日韩欧美在线乱码| 欧美日本亚洲视频在线播放| 中国美女看黄片| 日本一本二区三区精品| 日本与韩国留学比较| 欧美成人性av电影在线观看| 精品一区二区三区av网在线观看| 2021天堂中文幕一二区在线观| 岛国在线免费视频观看| 天堂网av新在线| 成人av一区二区三区在线看| 我要搜黄色片| 黄色丝袜av网址大全| 国产极品精品免费视频能看的| 麻豆国产97在线/欧美| 很黄的视频免费| 岛国在线观看网站| 国产精品九九99| av片东京热男人的天堂| 熟女电影av网| 一个人免费在线观看的高清视频| svipshipincom国产片| 中文亚洲av片在线观看爽| 九色成人免费人妻av| e午夜精品久久久久久久| www日本在线高清视频| 男女做爰动态图高潮gif福利片| 嫁个100分男人电影在线观看| 国产av一区在线观看免费| 欧美日韩综合久久久久久 | 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 变态另类丝袜制服| 欧美另类亚洲清纯唯美| 嫩草影视91久久| 国产成人精品久久二区二区91| xxx96com| 亚洲成人中文字幕在线播放| 免费看十八禁软件| 搡老熟女国产l中国老女人| 婷婷六月久久综合丁香| 久久这里只有精品19| 欧美精品啪啪一区二区三区| 99在线人妻在线中文字幕| 国产单亲对白刺激| 国内少妇人妻偷人精品xxx网站 | 日韩免费av在线播放| 男女之事视频高清在线观看| 一级毛片女人18水好多| 男女下面进入的视频免费午夜| 后天国语完整版免费观看| 亚洲一区二区三区不卡视频| 深夜精品福利| 人妻久久中文字幕网| 999久久久精品免费观看国产| 视频区欧美日本亚洲| 欧美色欧美亚洲另类二区| 老司机在亚洲福利影院| 久久久精品欧美日韩精品| 亚洲国产中文字幕在线视频| 又粗又爽又猛毛片免费看| 黄频高清免费视频| 日本一本二区三区精品| 欧美av亚洲av综合av国产av| 俺也久久电影网| 99久久99久久久精品蜜桃| avwww免费| 亚洲色图 男人天堂 中文字幕| 亚洲成av人片在线播放无| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 欧美在线黄色| 午夜激情欧美在线| 国产亚洲精品久久久久久毛片| 国产一区二区三区在线臀色熟女| 最近最新中文字幕大全电影3| 久久精品人妻少妇| 桃红色精品国产亚洲av| 亚洲自偷自拍图片 自拍| 88av欧美| 性欧美人与动物交配| 熟女电影av网| 免费大片18禁| 久久热在线av| avwww免费| 亚洲欧美日韩高清专用| 黄色成人免费大全| 成人特级av手机在线观看| 亚洲男人的天堂狠狠| 亚洲成人久久性| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| 亚洲片人在线观看| 欧美中文日本在线观看视频| 久久精品人妻少妇| 精品欧美国产一区二区三| www日本在线高清视频| 亚洲熟妇熟女久久| 两个人看的免费小视频| 18禁黄网站禁片免费观看直播| 99在线视频只有这里精品首页| 亚洲国产精品合色在线| 国产精品女同一区二区软件 | 极品教师在线免费播放| 一级毛片精品| 午夜免费观看网址| 欧美中文综合在线视频| 搡老岳熟女国产| 久9热在线精品视频| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 亚洲av中文字字幕乱码综合| 99热只有精品国产| 国产av一区在线观看免费| 国产男靠女视频免费网站| 久久九九热精品免费| 久久久久国产精品人妻aⅴ院| 国产一区二区激情短视频| 国产精品 欧美亚洲| 久久久久亚洲av毛片大全| 久久久久九九精品影院| 亚洲av五月六月丁香网| 18禁美女被吸乳视频| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 午夜福利成人在线免费观看| 亚洲国产精品sss在线观看| 亚洲人成电影免费在线| 国产午夜福利久久久久久| 成人午夜高清在线视频| 好看av亚洲va欧美ⅴa在| 长腿黑丝高跟| 男女那种视频在线观看| 国产高清激情床上av| 很黄的视频免费| 不卡一级毛片| 欧美成人一区二区免费高清观看 | 久久精品综合一区二区三区| 久久久久久久午夜电影| 国产一区二区三区在线臀色熟女| 欧美乱妇无乱码| 亚洲国产欧美网| 嫩草影院入口| 色综合欧美亚洲国产小说| 在线a可以看的网站| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| 美女被艹到高潮喷水动态| 最好的美女福利视频网| 亚洲国产色片| 亚洲电影在线观看av| 色播亚洲综合网| 好看av亚洲va欧美ⅴa在| 哪里可以看免费的av片| svipshipincom国产片| 亚洲欧美日韩无卡精品| xxxwww97欧美| 波多野结衣高清无吗| 真人一进一出gif抽搐免费| 在线观看66精品国产| 欧美成人性av电影在线观看| 一个人看视频在线观看www免费 | 日本 欧美在线| 国产伦在线观看视频一区| 亚洲精品国产精品久久久不卡| 国产aⅴ精品一区二区三区波| 精品人妻1区二区| 国产淫片久久久久久久久 | 中文在线观看免费www的网站| 99re在线观看精品视频| www国产在线视频色| 久久久久亚洲av毛片大全| 麻豆国产av国片精品| 九九在线视频观看精品| a级毛片在线看网站| 日韩国内少妇激情av| 亚洲无线在线观看| 一级毛片高清免费大全| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 国产成年人精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 久久久久性生活片| 国产男靠女视频免费网站| bbb黄色大片| 免费在线观看影片大全网站| 麻豆成人午夜福利视频| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 亚洲中文字幕日韩| 国产亚洲精品久久久com| 久久国产精品影院| 性色avwww在线观看| 成年版毛片免费区| 亚洲精华国产精华精| 曰老女人黄片| 老鸭窝网址在线观看| 国内精品一区二区在线观看| 欧美zozozo另类| 国产免费男女视频| 51午夜福利影视在线观看| 国产伦一二天堂av在线观看| 偷拍熟女少妇极品色| 欧美高清成人免费视频www| 国产黄a三级三级三级人| 久久久精品大字幕| 九色成人免费人妻av| 精品国产乱子伦一区二区三区| 宅男免费午夜| 久久久久久久久免费视频了| 十八禁网站免费在线| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 亚洲人成网站高清观看| АⅤ资源中文在线天堂| 国产欧美日韩精品一区二区| 国产三级黄色录像| 亚洲成av人片在线播放无| 午夜福利免费观看在线| 亚洲无线观看免费| 国产伦人伦偷精品视频| 日韩精品中文字幕看吧| a级毛片在线看网站| 国语自产精品视频在线第100页| cao死你这个sao货| 亚洲精品一卡2卡三卡4卡5卡| 免费搜索国产男女视频| 麻豆成人av在线观看| 免费搜索国产男女视频| 黑人巨大精品欧美一区二区mp4| 欧美黑人巨大hd| 国产精品一区二区精品视频观看| 久久天躁狠狠躁夜夜2o2o| 激情在线观看视频在线高清| 母亲3免费完整高清在线观看| 老司机在亚洲福利影院| 性色avwww在线观看| 女同久久另类99精品国产91| 一本久久中文字幕| 免费在线观看影片大全网站| 国产麻豆成人av免费视频| 男人舔奶头视频| 三级毛片av免费| 此物有八面人人有两片| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 亚洲在线观看片| 五月玫瑰六月丁香| 看片在线看免费视频| 亚洲精品粉嫩美女一区| 亚洲成av人片在线播放无| 俄罗斯特黄特色一大片| 欧美日韩瑟瑟在线播放| 国产精品久久视频播放| 国产99白浆流出| 久9热在线精品视频| ponron亚洲| 一级作爱视频免费观看| 午夜免费观看网址| 高潮久久久久久久久久久不卡| 亚洲18禁久久av| 脱女人内裤的视频| 午夜福利免费观看在线| 欧美日韩国产亚洲二区| 日本免费a在线| 亚洲无线观看免费| 亚洲国产精品成人综合色| 国产精品乱码一区二三区的特点| 色精品久久人妻99蜜桃| 国内精品美女久久久久久| 好男人在线观看高清免费视频| 欧美一区二区精品小视频在线| 国产成人aa在线观看| 午夜免费成人在线视频| 精品久久蜜臀av无| 久久精品夜夜夜夜夜久久蜜豆| svipshipincom国产片| 丁香欧美五月| 色尼玛亚洲综合影院| 欧美午夜高清在线| 一级毛片女人18水好多| 成在线人永久免费视频| 婷婷亚洲欧美| 美女cb高潮喷水在线观看 | 女警被强在线播放| 日韩欧美精品v在线| 校园春色视频在线观看| 国产精品免费一区二区三区在线| 中文字幕最新亚洲高清| 亚洲精品美女久久av网站| 中文字幕高清在线视频| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| 真人一进一出gif抽搐免费| 91字幕亚洲| 成人鲁丝片一二三区免费| 一a级毛片在线观看| 亚洲第一电影网av| 床上黄色一级片| netflix在线观看网站| 国产伦人伦偷精品视频| 久久国产精品影院| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| www.精华液| 岛国视频午夜一区免费看| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 九九在线视频观看精品| 狂野欧美白嫩少妇大欣赏| 村上凉子中文字幕在线| 国内久久婷婷六月综合欲色啪| 国产成年人精品一区二区| 99国产精品99久久久久| 51午夜福利影视在线观看| 免费av不卡在线播放| tocl精华| av天堂在线播放| 免费看日本二区| 在线永久观看黄色视频| 一级毛片精品| а√天堂www在线а√下载| 在线a可以看的网站| 久久久国产成人免费| 免费看a级黄色片| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 婷婷六月久久综合丁香| 九九久久精品国产亚洲av麻豆 | 真人做人爱边吃奶动态| 少妇人妻一区二区三区视频| 国产精品 国内视频| 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 国产视频内射| 精品国产超薄肉色丝袜足j| 国产精品一区二区三区四区久久| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 亚洲av免费在线观看| 国产人伦9x9x在线观看| 久久国产乱子伦精品免费另类| 国产美女午夜福利| 12—13女人毛片做爰片一| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 黄色女人牲交| 桃色一区二区三区在线观看| 99久久久亚洲精品蜜臀av| a级毛片a级免费在线| 日本三级黄在线观看| 国产野战对白在线观看| 后天国语完整版免费观看| 欧美+亚洲+日韩+国产| 亚洲精品456在线播放app | 99久久成人亚洲精品观看| 国产欧美日韩精品亚洲av| 国产伦一二天堂av在线观看| 性色avwww在线观看| 嫩草影视91久久| 欧美极品一区二区三区四区| 老汉色av国产亚洲站长工具| 不卡av一区二区三区| 国产精华一区二区三区| av中文乱码字幕在线| 99热这里只有精品一区 | 国产人伦9x9x在线观看| 久久久久久大精品| 亚洲色图av天堂| 亚洲欧美日韩高清专用| 一级a爱片免费观看的视频| xxx96com| 制服丝袜大香蕉在线| 国产精品久久久久久久电影 | 国产精品99久久久久久久久| 高清毛片免费观看视频网站| 国产精品久久久久久亚洲av鲁大| 国产精品久久电影中文字幕| 成年女人永久免费观看视频| 手机成人av网站| 最近在线观看免费完整版| 人人妻人人澡欧美一区二区| 日韩欧美国产在线观看| 国产精品自产拍在线观看55亚洲| 女同久久另类99精品国产91| aaaaa片日本免费| 日韩欧美一区二区三区在线观看| 看片在线看免费视频| 免费搜索国产男女视频| 好男人电影高清在线观看| 精品久久久久久成人av| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 在线视频色国产色| 亚洲在线观看片| 91在线精品国自产拍蜜月 | 国产91精品成人一区二区三区| 窝窝影院91人妻| а√天堂www在线а√下载| 日本黄大片高清| e午夜精品久久久久久久| 国产私拍福利视频在线观看| 欧美乱码精品一区二区三区| 亚洲av熟女| 一二三四在线观看免费中文在| 性色avwww在线观看| 999精品在线视频| 成人性生交大片免费视频hd| 女人高潮潮喷娇喘18禁视频| 国产成人欧美在线观看| 国产高清激情床上av| 制服人妻中文乱码| www.999成人在线观看| 可以在线观看毛片的网站| 久久久国产精品麻豆| 成人精品一区二区免费| 国产精品精品国产色婷婷| 又黄又粗又硬又大视频| 国产成人精品久久二区二区91| 国产精品99久久99久久久不卡| 久久久久国内视频| 国产极品精品免费视频能看的| 亚洲国产色片| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 五月玫瑰六月丁香| 国产激情偷乱视频一区二区| 欧美性猛交╳xxx乱大交人| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 久久香蕉精品热| 亚洲国产色片| 国产男靠女视频免费网站| 99久国产av精品| 久久精品国产亚洲av香蕉五月| xxx96com| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 天天躁日日操中文字幕| 全区人妻精品视频| 熟女人妻精品中文字幕| 国产野战对白在线观看| 99热这里只有精品一区 | 久久久色成人| 午夜福利在线在线| 99久久综合精品五月天人人| 黄色女人牲交| 国产探花在线观看一区二区| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 18美女黄网站色大片免费观看| 色哟哟哟哟哟哟| 国产精品久久电影中文字幕| 一个人免费在线观看的高清视频| h日本视频在线播放| 成年人黄色毛片网站| 亚洲 国产 在线| 成人三级做爰电影| 国产91精品成人一区二区三区| 中文字幕久久专区| 国产精品av久久久久免费| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 亚洲 欧美 日韩 在线 免费| 午夜免费激情av| 午夜视频精品福利| 色视频www国产| 最新中文字幕久久久久 | 黄色 视频免费看| 99久久精品国产亚洲精品| www日本黄色视频网| 最新美女视频免费是黄的| 亚洲精品美女久久av网站| 中文资源天堂在线| 亚洲欧美日韩卡通动漫| 亚洲成人免费电影在线观看| bbb黄色大片| 五月伊人婷婷丁香| 日韩欧美在线二视频| 亚洲国产欧洲综合997久久,| 91在线观看av|