• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parallel Comparison of the Northern Winter Stratospheric Circulation in Reanalysis and in CMIP5 Models

    2015-05-22 07:57:39RAOJianRENRongcaiandYANGYang
    Advances in Atmospheric Sciences 2015年7期

    RAO Jian,REN Rongcai,and YANG Yang

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    Parallel Comparison of the Northern Winter Stratospheric Circulation in Reanalysis and in CMIP5 Models

    RAO Jian1,2,REN Rongcai?1,and YANG Yang1,2

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029

    2University of Chinese Academy of Sciences,Beijing 100049

    A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5(Coupled Model Intercomparison Project Phase 5)models.The results reveal thattheNCEP/NCAR,NECP/DOE,ERA40,ERA-InterimandJRA25reanalyses arequiteconsistent indescribing the climatology and annual cycle of the stratospheric circulation.The 20CR reanalysis,however,exhibits a remarkable“cold pole”bias accompanied by a much stronger stratospheric polar jet,similar as in some CMIP5 models.Compared to the 1–2 month seasonal drift in most coupled general circulation models(GCMs),the seasonal cycle of the stratospheric zonal wind in most earth system models(ESMs)agrees very well with reanalysis.Similar to the climatology,the amplitude of Polar Vortex Oscillation(PVO)events also varies among CMIP5 models.The PVO amplitude in most GCMs is relatively weaker than in reanalysis,while that in most of the ESMs is more realistic.In relation to the“cold pole”bias and the weaker oscillation in some CMIP5 GCMs,the frequency of PVO events is signif i cantly underestimated by CMIP5 GCMs;while in most ESMs,it is comparable to that in reanalysis.The PVO events in reanalysis(except in 20CR)mainly occur from mid-winter to early spring(January–March);but in some of the CMIP5 models,a 1–2 month delay exists,especially in most of the CMIP5 GCMs.The long-term trend of the PVO time series does not correspond to long-term changes in the frequency of PVO events in most of the CMIP5 models.

    CMIP5,northern winter stratospheric circulation,Polar Vortex Oscillation

    1.Introduction

    Themainvariabilityofthestratosphericcirculationlies in the northern winter season,which can be represented by the leading oscillation of the stratospheric polar vortex between a strong(cold)and weak(warm)state of the vortex.This leading and recurrent oscillation mode is known as the Polar Vortex Oscillation(PVO)(Ren and Cai,2006,2007;Cai and Ren,2006,2007),or the Northern Annular Mode in the stratosphere(NAM)(Thompsonand Wallace,1998).Associated with the occurrence of PVO or NAM events,downward propagation of circulation anomalies exists(Kodera et al., 1990;Baldwin and Dunkerton,1999),as well as simultaneous poleward propagation in the stratosphere synchronized with equatorward propagation of circulation anomalies in the troposphere between the tropics and the polar region (Cai and Ren,2006,2007;Ren and Cai,2007).Due to the intimate coupling of changes between the stratosphere and troposphere,as well as the much longer timescale exhibited by the stratospheric circulation,circulation changes in the stratosphere have been indicated to have signif i cant implications for weather and climate prediction in the troposphere(Thompson and Wallace,1998;Baldwin and Dunkerton,2001;Thompson et al.,2002;Cai,2003;Ren and Cai, 2007).

    However,application of the stratospheric effects in weather and climate prediction is still quite limited due to insuff i cient knowledge on the dynamics of the stratosphere–tropospherecoupling.The limitedlengthof the observational data record currently available is an important factor affecting this limitation of understanding.Nevertheless,with improvements in the performance of numerical models in simulating the stratosphere in recent years,numerical models have begun to play an important role in further investigations of stratospheric dynamics and stratosphere–tropospherecoupling processes.An early comprehensive inter-model comparison of the performance of various stratosphere-resolving general circulation models(GCMs)revealed that most of the models generally showed a much stronger and colderstratospheric polar vortex and a less frequent occurrence of“stratospheric sudden warming”(SSW)events(or the negative phase of the PVO/NAM)(Charlton et al.,2007).Based on these results,the frequency of SSW events in observations is about six events per decade,while it is on average only about 1.0–2.6 events per decade in models.This“cold pole”problem has been shown to prevail in many other stratosphere-resolving GCMs(Pawson et al.,2000;Ren et al.,2009).Eyring et al.(2010)found that,for the ensemble means of several GCMs,the polar temperature biases become smaller(<5 K)and the SSW frequency(f i ve events per decade)becomes much closer to that in observations.Recently,the Coupled Model Intercomparison Project Phase 5 (CMIP5)for the IntergovernmentalPanel on Climate Change (IPCC)Fifth Assessment Report released long-term integration results from more than 50 models of various countries, and in a series of standard scenarios.This provides us with valuable long-term datasets for further studies on the stratosphere.Before adoption of these model datasets in stratospheric studies,systematic and objective assessments on the general performance of all the models in reproducing the climatology and changes of stratospheric circulation are obviously needed.Based on the multi-model results for the historical scenario of CMIP5,the current study systematically evaluates the models’performances in simulating the northern winter stratospheric circulation,including the wintertime climatology,the seasonal evolution,and the polar vortex oscillation process.

    The remainder of the paper is organized as follows.Section 2 gives a brief introductionto the CMIP5 models and the historical scenario experiments used in this study.Section 3 presents the reproducibility of the present climatology in the CMIP5 models.In section 4,the CMIP5 models are evaluated based on the annual cycle of the polar stratospheric circulation.Section 5 compares the CMIP5 models in simulating the PVO with reanalysis data.The f i nal section provides further discussion and conclusions.

    2.Description of the CMIP5 models and reanalysis datasets

    CMIP5 were carried out by 25 modeling groups representing more than 50 climate models with the aim of furthering understanding of past and future climate change in key areas of uncertainty(Taylor et al.,2012).The changing conditions prescribed in the experiments include atmospheric composition(including CO2)due to anthropogenic and volcanic forcing,solar forcing,concentrations of shortlived species,and natural and anthropogenicaerosols(Taylor et al.,2012).CMIP5 builds on the previous phase(CMIP3) of experiments in two main ways.First,more modeling centers and models are involved.Second,the models generally run at higher spatial resolution or with more comprehensive physical processes.The historical-run scenario denotes that the coupled atmosphere–ocean model simulations are forced by estimates of the changes in atmospheric composition from natural and anthropogenic sources,volcanoes,greenhouse gases(GHGs),and aerosols,as well as the changes in solar output and land cover during the industrial period(1850–2005).Only anthropogenicGHGs and aerosols are prescribed as common forcings in all models,and other forcings,such as changes of land use,may differ from model to model.For earth system models(ESMs),the carbon cycle and natural aerosols are also simulated by models,and therefore feature feedback processes.

    The historical-run outputs we used are from 24 fully coupled CMIP5 models,including 12 atmosphere–ocean coupled GCMs and 12 ESMs.Some of the models are further coupled with chemistry modules.Detailed descriptions of all of the adopted 24 models are listed in Table 1,including the countries they are from,the types,the horizontal resolutions, andthenumbersofverticallevelsofthemodels,aswellasthe related references.Most of the models have provided multiple ensemble members,but we only used the f i rst member to capture the temporal variability of the stratospheric circulation effectively.

    The reanalysis datasets used include the National Centers for Environmental Prediction–National Center for Atmospheric Research Reanalysis I(NCEP1)(Kalnay et al., 1996),the NCEP–U.S.Department of Energy Reanalysis II(NCEP2)(Kanamitsu et al.,2002),the European Centre for Medium-Range Weather Forecasts 40-Year Reanalysis(ERA40)(Uppala et al.,2005),the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I)(Dee et al.,2011),the Japanese 25-year Reanalysis(JRA25)(Onogi et al.,2007),and the Twentieth-Century Reanalysis Project,version 2(20CR)(Compo et al.,2011). Table 2 provides detailed information on these reanalysis datasets.The analysis methods used in this study include least-squares f i tting,linear regression,and empirical orthogonal function(EOF)analysis.

    3.Winter climatology

    Figure 1 shows the winter mean(December–February, DJF)zonal-mean air temperature(shading)and zonal-mean zonal wind(contours)in each reanalysis.It can be seen that, in the upper troposphere,all the six reanalysis datasets consistently show a subtropical westerly jet near 30°N.While in the stratosphere,the f i rst f i ve reanalysis datasets all show that the strength of the polar jet is~30 m s?1at 10 hPa,located at about 65°N,corresponding to the polar cold center of~200 K in the layer of 30–50 hPa.In contrast,20CR shows a much stronger polar jet(~55 m s?1)and a much colder(~185 K at 20–10 hPa)polar vortex.The poor performance of 20CR in describing the stratospheric circulation maybe relatedto the fact that the dataassimilation is onlyapplied on surface pressure,and the boundary forcing is from monthly-mean sea surface temperature and sea ice distributions(Compo et al.,2011).In this way,the 20CR dataset can provide relatively good estimations of the tropospheric variability,but with larges biases in the stratosphere,also notedin Compo et al.(2011).

    Table 1.CMIP5 models evaluated and their attributes.Model types are atmosphere–ocean coupled(GCM),atmosphere–ocean–chemistry coupled(ChmGCM),earth system model(ESM),and earth system model chemistry coupled(ChmESM).

    Table 2.Reanalysis datasets used in the evaluations.

    Comparing the zonal-mean zonal wind patterns in each CMIP5 model with that in the f i rst f i ve reanalyses,it is seen that,generally,mostof the CMIP5 modelscanreproducereasonably well the strength and the vertical and meridional position of the uppertroposphericsubtropicaljet in the northern winter(Figs.1b–e).However,thereproducibilityofthemodels for the winter stratospheric polar jet and the polar temperature varies substantially from model to model,in terms of their magnitudes and location of action centers relative to the climatology in reanalysis.

    To perform an objective evaluation of the performance of the CMIP5 models in reproducing the northern winter stratospheric circulation,several benchmarksare def i ned:the mean temperature in the tropical stratosphere(30°S–30°N, 70–10 hPa),in the midlatitude stratosphere(30°–60°N,100–10 hPa),in the upper polar stratosphere(60°–90°N,30–10 hPa),and in the lower polar stratosphere(60°–90°N,200–50 hPa);and the strength(averaged over 55°–75°N,70–10 hPa) and meridional location of the stratospheric polar jet(maxi-mum westerly).Below,we use box plots to present the distributions of these benchmarks in parallel for reanalysis and for the models.

    3.1.Temperature in the tropical and midlatitude stratosphere

    Figure 2 shows the benchmarks for the mass-weighted area mean temperature in the tropical stratosphere(Ttrp, 30°S–30°N,70–10 hPa,Figs.2a and b)and in the midlatitude stratosphere(Tmid,30°–60°N,100–10 hPa,Figs.2c and d),and for the reanalysis(Figs.2a and c)and for the CMIP5 models(Figs.2b and d).The mean values ofTtrpin NCEP1,NCEP2,ERA40,REA-I and JRA25 are quite consistent at around 211.8 K,but in 20CR it is higher(213.6 K,Fig.2a).As shown in Fig.2b,the CMIP5 models capture the tropical stratospheric temperature with varying degrees of success.The mean values ofTtrpin 20 of the 24 models (BCC-CSM1-1,BCC-CSM1-1-M,CCSM4,CNRM-CM5, FGOALS-s2,GFDL-CM3,HadCM3,INMCM4,IPSLCM5A-LR,IPSL-CM5A-MR,IPSL-CM5B-LR,MIROCESM,MIROC-ESM-CHEM,MIROC5,MRI-CGCM3,MPIESM-LR,MPI-ESM-MR,MPI-ESM-P,NorESM1-M and WACCM)exhibit a warm bias relative to the ensemble mean of the f i rst f i ve reanalysis datasets.The largest warm bias inTtrpis from GFDL-CM3(~216 K).The other four models exhibit a cold bias ofTtrp,with the largest cold bias from CSIRO-Mk3.6.0(~208 K).

    Similarly,the mean values ofTmidin NCEP1,NCEP2, ERA40,ERA-I,and JRA25 are also very consistent(~215 K),but 20CR again shows a large positive departure (~217.5 K).The mean values ofTmidin 17 of the 24 models(CSIRO-Mk3.6.0,BCC-CSM1-1,BCC-CSM1-1-M,CCSM4,FGOALS-s2,GFDL-CM3,HadCM3,INMCM4,IPSL-CM5A-LR,IPSL-CM5A-MR,IPSL-CM5B-LR,MIROC-ESM,MIROC-ESM-CHEM,MPI-ESM-MR, MRI-CGCM3,NorESM1-M and WACCM)are also overestimated relative to the f i rst f i ve reanalyses.The largest warm bias in Tmidis again from GFDL-CM3(~218 K),and the othersevenmodelsexhibita coldbiasofTmid,withthelargest cold bias being from FGOALS-g2(~211.5 K).

    3.2.Temperature in the upper and lower polar stratosphere

    The benchmarksof the mass-weightedarea meantemperature in the upper(Tpl,up,60°–90°N,30–10 hPa,Figs.3a and b)and lower(Tpl,lw,60°–90°N,200–50 hPa,Figs.3c and d) polar stratosphere are shown in Fig.3,including the distributions of Tpl,upand Tpl,lwfor both the reanalysis(Figs.3a and c)and the CMIP5 models(Figs.3b and d).Note that the valuesof Tpl,upandTpl,lwcan def i nethe intensity of thestratospheric polar vortex.The mean values of Tpl,upand Tpl,lware~211.5 K and~214 K,respectively—fairly consistent among the f i rst f i ve reanalyses(NCEP1,NCEP2,ERA40, ERA-I,and JRA25).The mean values of Tpl,up(~198K)and Tpl,lw(~207.5 K)in 20CR are both much smaller.The“cold pole”problem,especially for the lower polar stratosphere, also prevails in most of the CMIP5 models.For example,the mean values of Tpl,upand Tpl,lwin some models(e.g.,BCCCSM1-1,BCC-CSM1-M,CCSM4,CNRM-CM5,FGOALS-g2)areas lowas~205Kand~210K,respectively,botheven exceedingthe lower interquartilerange ofthe ensemblemean of the f i rst f i ve reanalysis datasets.The much larger cold deviation of Tpl,upand Tpl,lwin FGOALS-g2 might be related to the systematic cold biases of the model,because all the mean values of Ttrp,Tmid,Tpl,up,and Tpl,lwexhibit considerable cold biases.In contrast,although the“cold pole”problem alsoexists in most of the ESMs,the cold biases of Tpl,upand Tpl,lwin some of the ESMs and ChmESMs(MIROC-ESM, MIROC-ESM-CHEM,MPI-ESM-LR,MPI-ESM-MR,MPIESM-P and WACCM)are relatively much smaller than those in most of the GCMs.

    3.3.Strength and the central latitudinal location of the polar jet

    The strength of the polar night jet is def i ned as the mass-weighted area mean zonal wind over(55°–75°N,70–10 hPa).The mean value of Upnis~20 m s?1in NCEP1, NCEP2,ERA40,ERA-I,and JRA25(Fig.4a).Consistent with the positive(negative)deviation of temperature in the midlatitude(polar)stratosphere in 20CR,the mean value of Upnin 20CR(~37 m s?1)is nearly double that in the other reanalysis datasets.Similarly,the overestimated (much stronger)polar jet also prevails in most of the CMIP5 models(e.g.,BCC-CSM1-1,BCC-CSM1-1-M,CCSM4, FGOALS-s2,GFDL-CM3,MRI-CGCM3);while across the ESMs(IPSL-CM5A-LR,IPSL-CM5A-MR,IPSL-CM5BLR,MIROC-ESM,MIROC-ESM-CHEM,MPI-ESM-LR, MPI-ESM-LR,MPI-ESM-P,NorESM1-M and WACCM), the meanUpnis relativelyclose to that in reanalysis(Fig.4b).

    The mean central latitude of the polar jet in NCEP1 is around 65°N,consistent with all the other reanalysis datasets,including 20CR,despite 20CR showing a much stronger polar jet(Fig.4c).The polar jet in most of the models(BCC-CSM1-1,BCC-CSM1-1-m,CCSM4,FGOALS-s2,GFDL-CM3,INMCM4,MIROC-ESM,MIROC-ESMCHEM,MIROC5,MPI-ESM-LR,MPI-ESM-MR,MPIESM-P,MRI-CGCM3,NorESM1-M and WACCM)is located at a similar central latitudinal position,with a mean value falling in the interquartile range of the reanalysis ensemble(20CR excluded);while in some other models (CNRM-CM5,CSIRO-Mk-3.6.0,FGOALS-g2,GISS-E2-H and GISS-E2-R,HadCM3 and IPSL-CM5A-MR),the polar jet tends to lie further equatorward(Fig.4d).

    4.Annual cycle

    Figure 5 shows the annual cycle of the stratospheric zonal-mean zonal wind at 10 hPa.The extratropical zonal wind at 10 hPa clearly exhibits an annual cycle from a summer easterly to a winter westerly,which is quite consistent among NCEP1,NCEP2,ERA40,ERA-I,and JRA25,particularly the maximum tropical easterly in late January,the maximum polar westerly in early December,and the transitions between westerlies and easterlies in the extratropics. Unlike in these reanalyses,the polar jet in 20CR peaks until late January,exhibiting a seasonal drift of 1–2 months.In other words,not only the strength of the polar jet is overestimated,but there also exists a temporal delay of the winter westerly center in 20CR.Meanwhile,an elusive zonal-mean westerly exists over the equatorthroughoutthe year in 20CR.

    The CMIP5 models capture the seasonal variation of stratospheric zonal-mean zonal wind with varying degrees of success.The simulated annual cycle in most of the CMIP5 models is quite similar to that in the f i rst f i ve reanalyses,including the transition between the wintertime westerly and the summertime easterly in the extratropics in both the southern and northern hemispheres.However,the strength of the northern polar jet,the easterly in the subtropics,and the seasonal timing of the maximum circumpolar westerly vary from model to model.For example,a common problem seems to exist in some of the GCMs(CCSM4,CNRM-CM5, CSIRO-Mk3.6.0,FGOALS-g2,FGOALS-s2,GFDL-CM3, MIROC5,and MRI-CGCM3)and some of the ESMs(MPIESM-LR,MPI-ESM-MR,MPI-ESM-P and NorESM1-M)in that the simulated polar night jet also peaks 1–2 months later relative to that in the reanalysis data.

    Figure 6 further shows a quantitative measure of the performance of the CMIP5 models in reproducing the annual cycle of the extratropical zonal wind and the polar temperature relative to the f i rst f i ve reanalysis datasets.Figure 6a is a Taylor diagram for the simulated mass-weighted zonal wind in the circumpolar region(55°–75°N,70–10 hPa),and Fig. 6b is the same but for the polar temperature(75°–90°N,100–20 hPa).The correlation coeff i cient of the mass-weighted zonal-wind/temperaturebetween each CMIP5 model and the reanalysis ensemble(except 20CR)is denoted by the cosine of the azimuth angle,and the ratio of the correspondingstandard deviation in every CMIP5 model to that in the reanalysis ensemble is represented by the radial distance.The radial distance of each model indicates that the seasonal variation of the circumpolar zonal wind and the polar temperature in some models(e.g.,BCC-CSM1-1,BCC-CSM1-1-M,CCSM4,FGOALS-s2,GFDL-CM3,IPSL-CM5B-LR) are obviously stronger than that in the reanalysis ensem-ble(REF in Fig.6);while in some other GCMs(e.g., CSIROC-Mk3.6.0,GISS-E2-H,GISS-E2-R,HadCM3 and INMCM4),they are relatively much weaker.In contrast,the annual cycles of polar stratospheric circulation in most of the ESMs(e.g.,IPSL-CM5A-LR,IPSL-CM5A-MR,MIROCESM,MIROC-ESM-CHEM,MPI-ESM-LR,MPI-ESM-MR, MPI-ESM-P,NorESM1-M and WACCM)are reproduced much more realistically.The normalized standard deviations in theseESMs arecloser tothat ofthe 20CR-excludedreanalysis ensemble(REF in Fig.6).In general,the correlation coeff i cientsofthezonalwindbetweenallmodelsandthe20CR-excluded reanalysis ensemble can reach 0.9(Fig.6a),which is also true for the polar temperature(Fig.6b),indicating a well-reproduced transition of the stratospheric circulation in the polar region between summertime and wintertime.

    5.Polar Vortex Oscillation events

    The leading oscillation process,the NAM or PVO(Cai andRen,2007;RenandCai,2006),is alwaysrelatedtoanoscillation between a stronger and a weaker stratospheric polar vortex accompanied with radical changes of the circumpolar jet between a stronger and a weaker westerly(or even easterly)state.Here,we perform EOF analysis on the monthly zonal-mean zonal wind anomalies north of 20°N for each of the reanalyses and each of the model historical runs.Following Ren and Yang(2012)and Liu et al.(2012),we name the leading mode as the PVO mode.Rather than def i ning PVO events based on the standard deviations(STDs)of the PVO time series as in their studies,we identify PVO events based on a criterion that represents the average oscillation changes of the stratospheric zonal wind for unit STD of the PVO intensities in the reanalysis datasets,which is obtained by regressing the spatial pattern of the PVO mode against the standardized PVO time series.As a result,the threshold for PVO events in reanalysis is unit STD,which on average corresponds to a central intensity of 8–9 m s?1for the leading zonal-mean zonal wind oscillation(i.e.,PVO time series multiplied by the leading PVO mode).And the PVO events in models are identif i ed only when the central intensity of the leadingzonal wind oscillation in the extratropicsachieves ±10 m s?1,±15 m s?1,or±20 m s?1.In this way,the def initions of PVO events are uniform in terms of their intensity among the reanalyses and the CMIP5 models.

    5.1.Spatial pattern and intensity of the leadingoscillation mode

    TheregressedspatialpatternoftheDJF zonal-meanzonal wind anomalies against the PVO time series is shown in Fig. 7 for the reanalyses and the CMIP5 models.It can be seen that the dipole pattern,or the out-of-phase relationship of the zonal wind anomalies between the subtropics and the circumpolar region,are largely consistent among the reanalysis datasets.This is also true for the oscillation amplitudes, as indicated by the comparable action centers in the panels of Fig.7(a).The oscillation center lies north of 67.5°N, close to the climatological location of the DJF polar jet,and the oscillation amplitudes are all~8 m s?1in the reanalysis datasets,including 20CR.Specif i cally,the maximum zonalmean zonal wind anomalies for unit PVO STD are 7.8,8.0, 8.7,8.2,8.5,and 9.0 m s?1in NCEP1,NCEP2,ERA40, ERA-I,JRA25,and 20CR,respectively.It can be seen from Figs.7b–e that the oscillation amplitudes are reproduced with varying degrees of success in the CMIP5 models.The PVO intensity in some of the GCMs is much weaker,with the central value of the zonal-wind oscillation for unit STD of the leading time series being only 1.6 m s?1in CSIROMk3.6.0,2.5 m s?1in MIROC5,6.9 m s?1in CCSM4,6.4 m s?1in CNRM-CM5,6.8 m s?1in FGOALS-g2,7.5 m s?1in GFDL-CM3,5.5 m s?1in GISS-E2-H,5.6 m s?1in GISS-E2-R,4.7 m s?1in HadCM3,and 5.7 m s?1in INMCM4.Relatively,the oscillation amplitudes are more realistic in most of the ESMs(e.g.,BCC-CSM1-1,BCC-CSM1-1-M,ISPL-CM5A-LR,ISPL-CM5A-MR,IPSL-CM5B-LR, MIROC-ESM,MIROC-ESM-CHEM,MPI-ESM-LR,MPIESM-MR,MPI-ESM-P,NorESM1-M and WACCM).The central value of the zonal-wind oscillation for unit STD of the leading time series is around 8–9 m s?1in these ESMs.

    5.2.Frequencies of PVO events

    Based on the results of Cai and Ren(2006,2007),PVO events occurs 1–2 times in each winter season in the NCEP2 reanalysis.Table 3 shows the average frequency of positive/negative PVOs in each reanalysis dataset and in each CMIP5 model based on the different thresholds(10,15 and 20 m s?1)for PVO events.When 10 m s?1is chosen as the threshold for PVO events,there are on average about 7–8 PVO events in one decade in NCEP1,NCEP2,ERA-I,and JRA25.In 20CR,however,there are only 4–5 PVO events in one decade.

    The reproducibility of the PVO frequency varies among CMIP5 models(Table 3).Specif i cally,whether a higher (20 m s?1)or a lower(10 m s?1)threshold is used,not even one PVO event can be identif i ed in CSIRO-Mk3.6.0 and MIROC5,again indicating that the zonal-wind oscillation intensity in these models is relatively very weak(Fig. 7).Similar problems also exist in some other GCMs.For the thresholds of 10,15 or 20 m s?1,the frequency of positive/negative PVO events in the reanalysis ensemble(20CR excluded)is about 6.8/7.6,3.4/4.2,and 1.5/2.7 per decade, respectively,and it is only about 4.9/5.6,2.2/3.2,and 0.9/1.8 per decade,respectively,in the model ensemble.This seems to indicate that the polar vortex oscillation in most of the CMIP5 models,particularly the CMIP5 GCMs,is generally much weaker and can barely reach the observed PVO intensity.In other words,aside from the common problem of the cooler or stronger stratospheric polar vortex,the underestimated frequency of positive/negative PVO events is another challenge for the CMIP5 models,especially the CMIP5GCMs.Incontrast,thefrequencyofpositive/negative PVO events that reach the thresholds in most of the ESMs (e.g.,BCC-CSM1-1-m,IPSL-CM5A-LR,IPSL-CM5A-MR, MIROC-ESM,MIROC-ESM-CHEM,MPI-ESM-LR,MPIESM-MR,MPI-ESM-P and WACCM)is comparable with the observation(Table 3).

    Next,we compare the seasonal distributions of PVO events among each reanalysis dataset and each CMIP5 model.To do this,the month-by-month distributions of the average numbers of PVO events in each reanalysis dataset (Fig.8a)and each CMIP5 model(Figs.8b–e)are shownin Fig.8.Positive/negative PVO events are denoted with dark/light gray bars.From the distribution of PVO events in NCEP1,NCEP2,ERA40,ERA-I,and JRA25,it can be seen that,typically,most PVO events occur during mid-winter to early spring(January–March),with only a few PVOs occurring in November and April.The seasonal distributions of PVO events in NCEP1,NCEP2,ERA40,ERA-I,and JRA25areratherconsistent,especiallyamongNCEP2,ERAI,and JRA25,and between NCEP1 and ERA40.Whereas, in 20CR,the PVO events occur mainly in March–May(Fig. 8a).This seasonal drift problem for the occurrence of PVO events is also common in the CMIP5 GCMs(e.g.,CCSM4, CNRM-CM5,FGOALS-g2,FGOALS-s2,GFDL-CM3 and MRI-CGCM3),and even in several of the ESMs(e.g.,BCCCSM1-1,BCC-CSM1-1-m and IPSL-CM5A-LR,Figs.8b– 8e).This seasonaldriftmayberelatedto the1–2monthdelay of the winter extratropical westerly center in these models relative to the reanalysis datasets(Fig.5).In contrast,the PVO frequency and its seasonal distribution in most of the ESMs(e.g.,IPSL-CM5A-MR,IPSL-CM5B-LR,MIROCESM,MIROC-ESM-CHEM,MPI-ESM-LR,MPI-ESM-MR, MPI-ESM-P,NorESM1-M and WACCM)are well reproduced.

    Table 3.Frequencies of positive and negative PVO events in each reanalysis dataset and each CMIP5 model,based on different intensity thresholds of the leading oscillation of zonal-mean zonal wind anomalies.Reanalysis ensemble(20CR excluded)and model ensemble results are also listed in the last two rows.

    5.3.Long-term changes of PVO

    It is known that the global troposphere and the surface have become substantially warmer due to the increase in greenhouse gases(GHGs)in recent decades.Meanwhile, the stratosphere has become steadily cooler,and the northern winter stratospheric polar vortex has become stronger(Randel et al.,1999;Ramaswamy et al.,2001;Langematz et al., 2003;Manzini et al.,2003;Ramaswamy et al.,2006).The strengthening of the polar vortex and the cooling of the polar stratosphere are intimately related to the long-term changes in the low-frequencyvariability in the troposphere,including the AO or the NAM.Next,we turn our attention to the performanceofthe CMIP5 modelsinreproducingthis long-term trend,particularly the long-term trend and the changes in frequency of the stratospheric oscillation events in the CMIP5 models.

    Figure 9 shows the existence of a long-term trend of the PVO time series(asterisks)during 1900–2005 in each CMIP5 model,and the corresponding changes in frequency of the PVO events based on the 10 m s?1intensity threshold explained above.It can be seen that some of the models can reproduce a signif i cant positive trend of the PVO time series(e.g.,BCC-CSM1-1-m,CNRM-CM5,CSIROMk3.6.0,FGOALS-s2,HadCM3,MIROC-ESM,MIROCESM-CHEM,MIROC5,MPI-ESM-P,MRI-CGCM3 and NorESM1-M),but exhibit an insignif i cant increase in the frequency of positive PVO events from 1900–50 to 1951–2005. MRI-CGCM3 evenshows a decrease in frequencyof positive PVO events when there is a positive trend of the PVO time series(Fig.9a).Meanwhile,there are some models which show a decrease in frequency of negative PVO events(e.g., CCSM4,FGOALS-s2,MRI-CGCM3,CNRM-CM5,BCCCSM1-1,BCC-CSM1-1-m,NorESM1-M,MIROC-ESMCHEM,MPI-ESM-P,and WACCM),though also insigni ficant.Other models even show an insigni fi cant increase in the frequency of negative PVO events(Fig.9b).As a result,a signi fi cantpositivetrendofthePVOtimeseries canbeidentifi ed in the model ensemble,but accompaniedby insigni fi cant changes in the average frequency of either the positive(Fig. 9a)or the negative(Fig.9b)PVO events.Further diagnosis of the poleward eddy heat fl ux(60°N,50 hPa)by planetarywave activity in winter shows that nearly all the models,except GISS-E2-R[?3.6 K m s?1(10 yr)?1,95%con fi dence level]reproduce insigni fi cant changes in the northward eddy heat fl ux during 1900–2005(not shown).These results basically con fi rm the results from one single model(FGOALS-s2)in Ren and Yang(2012),i.e.that the long-term trend of the polar cooling in recent decades(or the positive trend of the PVO time series)is not related to the decrease in dynamic forcingby planetary-waveactivity(or the occurrenceof PVO events),but rather to the long-term thermodynamic forcing due to the increase in GHGs.

    6.Summary

    Based on six reanalysis datasets and the historical scenario simulations from 24 CMIP5 models,the northern wintertime stratospheric circulation is diagnosed and systematically assessed.The results indicate that NCEP1,NECP2, ERA40,ERA-I,and JRA25 are quite consistent in describing the general features of the circulation climatology from the stratosphere to the troposphere in the Northern Hemisphere winter,particularlythezonal-meanpatternsof thezonal wind and temperature.The annual cycle of the stratospheric zonalmean zonal wind is also highly consistent among those f i ve reanalysis datasets.As one of the most common problems in the 20CR reanalysis andin some ofthe CMIP5 models(especially the GCMs,e.g.,CCSM4,FGOALS-g2,FGOALS-s2, MRI-CGCM3,and CNRM-CM5),a much stronger polar jet is reproduced,accompanied by a much cooler polar stratosphere.Most of the GCMs show a serious seasonal drift of the zonal-mean zonal wind with a 1–2 month delay of the maximum westerly in the circumpolar region.The simulated seasonal cycle of the stratospheric zonal-mean zonal wind in most of the ESMs agrees very well with the f i rst f i ve reanalyses.The observed PVO,def i ned as the leading mode of the extratropical(20°–90°N)zonal-mean zonal wind in reanalysis,is characterized by a dipole pattern of the zonal-mean zonal wind between the subtropics and the circumpolar region.The amplitude of the circumpolar westerly wind oscillation is reproduced with varying degrees of success in the CMIP5 models.It is generally weaker in some of the GCMs than that in the reanalysis ensemble(excluding 20CR),while it is reproducedmuchmore realistically in most of the ESMs. The frequencyof the PVO events in most of the CMIP5 models is also underestimated,especially in most of the GCMs. Specif i cally,there are on average 6.8/7.6,3.4/4.2,and 1.5/2.7 positive/negative PVO events in one decade in the reanalysis ensemble(excluding 20CR)when an oscillation intensity threshold of 10,15,and 20 m s?1is applied,respectively. The correspondingaverage number of positive/negativePVO events is only 4.9/5.6,2.2/3.2,and 0.9/1.8 in one decade,respectively,in the model ensemble.

    In addition,PVO events in NCEP1,NCEP2,ERA40, ERA-I,and JRA25 consistently take place mainly during mid-winter to early spring(January–March),while the peak frequency of PVO events in 20CR and in most GCMs appears 1–2 months later in February–April.The seasonal drift in PVO frequency is consistent with the similar 1–2 months delay,relative to the reanalysis,of the appearance of the strongest winter extratropical westerly center.By contrast, the seasonal drift of the peak frequency of PVO in most of the ESMs is relatively insignif i cant.

    The model ensemble shows a positive trend of the PVO time series,accompanied by less signif i cant changes in PVO frequency from 1900–50 to 1951–2005.This verif i es the results from one single model(Ren and Yang,2012),which showed that the long-term trend of the polar cooling in recent decades(or the positive trend of the PVO time series)is not related to the decrease in dynamic forcing by planetarywave activity(or the occurrenceof PVO events),but rather to the long-term thermodynamic forcing due to the increase in GHGs.

    Ingeneral,the parallelcomparisonoftheclimatologyand variability of the stratospheric circulation between CIMP5 models and the currently available reanalysis datasets can help model users to understand the model uncertainties in stratospheric processes in CMIP5,and also provide useful information for future model improvements on model ability in describing stratospheric dynamics.The inclusion of the carbon cycle and natural aerosols as well as stratosphereresolved processes may help to signif i cantly improve model performance in simulating the polar stratosphere.Nevertheless,more detailed or specif i c analyses are still needed to further understand the uncertainties in any specif i c stratosphericprocess in each of the CMIP5 models.

    Acknowledgements.This work was jointly supported by the National Basic Research Program of China(Grant Nos. 2010CB950400 and 2010CB428603).The authors thank the reviewers and editors for their helpful comments and suggestions. We acknowledge the World Climate Research Program’s Working Group responsible for the Coupled Model Intercomparison Project.

    REFERENCES

    Baldwin,M.P.,and T.J.Dunkerton,1999:Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J.Geophys.Res.,104,30937–30946,doi:10.1029/1999jd 900445.

    Baldwin,M.P.,and T.J.Dunkerton,2001:Stratospheric harbingers of anomalous weather regimes.Science,294,581–584.

    Bao,Q.,and Coauthors,2013:The Flexible Global Ocean-Atmosphere-Landsystemmodel,SpectralVersion2: FGOALS-s2.Adv.Atmos.Sci.,30,561–576,doi:10.1007/ s00376-012-2113-9.

    Bentsen,M.,and Coauthors,2013:The Norwegian Earth System Model,NorESM1-M—Part 1:Description and basic evaluation of the physical climate.Geoscientif i c Model Development,6,687–720.

    Cai,M.,2003:Potential vorticity intrusion index and climate variability of surface temperature.Geophys.Res.Lett.,30,1119, doi:10.1029/2002GL015926.

    Cai,M.,and R.C.Ren,2006:40–70 day meridional propagation of global circulation anomalies.Geophys.Res.Lett.,33, L06818,doi:10.1029/2005GL025024.

    Cai,M.,and R.C.Ren,2007:Meridional and downward propagation of atmospheric circulation anomalies.Part I:Northern Hemisphere cold season variability.J.Atmos.Sci.,64,1880–1901.

    Charlton,A.J.,and Coauthors,2007:A new look at stratospheric sudden warmings.Part II:Evaluation of numerical model simulations.J.Climate,20,470–488.

    Collins,M.,S.F.B.Tett,and C.Cooper,2001:The internal climate variability of HadCM3,a version of the Hadley Centre coupled model without f l ux adjustments.Climate Dyn.,17, 61–81.

    Compo,G.P.,and Coauthors,2011:The twentieth century reanalysis project.Quart.J.Roy.Meteor.Soc.,137,1–28.

    Dee,D.P.,and Coauthors,2011:The ERA-Interim reanalysis: conf i guration and performance of the data assimilation system.Quart.J.Roy.Meteor.Soc.,137,553–597.

    Donner,L.J.,and Coauthors,2011:The dynamical core,physical parameterizations,and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3.J.Climate,24,3484–3519.

    Dufresne,J.L.,and Coauthors,2013:Climate change projections using the IPSL-CM5 Earth System Model:from CMIP3 to CMIP5.Climate Dyn.,40,2123–2165.

    Eyring,V.,T.G.Shepherd,andD.W.Waugh,2010:SPARCreport on the evaluation of chemistry-climate models.SPARCreport No.5,WCRP-132,WMO/TD-No.1526.[Available online at http://www.atmosp.physics.utoronto.ca/SPARC.]

    Gent,P.R.,and Coauthors,2011:TheCommunity ClimateSystem Model Version 4.J.Climate,24,4973–4991.

    Giorgetta,M.A.,and Coauthors,2013:Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5.Journal of Advances in Modeling Earth Systems,5,572–597.

    Kalnay,E.,and Coauthors,1996:The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77,437–471.

    Kanamitsu,M.,W.Ebisuzaki,J.Woollen,S.-K.Yang,J.J.Hnilo, M.Fiorino,and G.L.Potter,2002:NCEP–DOE AMIP-II Reanalysis(R-2).Bull.Amer.Meteor.Soc.,83,1631–1643.

    Kim,D.,and Coauthors,2012:The tropical subseasonal variability simulated in the NASA GISS general circulation model.J. Climate,25,4641–4659.

    Kodera,K.,K.Yamazaki,M.Chiba,and K.Shibata,1990:Downwardpropagation ofupper stratospheric meanzonal windperturbation to the troposphere.Geophys.Res.Lett.,17,1263–1266,doi:10.1029/Gl017i009p01263.

    Langematz,U.,M.Kunze,K.Kr¨uger,K.Labitzke,and G.L.Roff, 2003:Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes.J.Geophys.Res.,108(D1),4027,doi:10.1029/2002JD002069.

    Li,L.J.,and Coauthors,2013:The Flexible Global Ocean-Atmosphere-Land system model,Grid-point Version 2: FGOALS-g2.Adv.Atmos.Sci.,30,543–560,doi:10.1007/ s00376-012-2140-6.

    Liu,Y.Z.,R.C.Ren,and B.He,2012:Comparison of SAMIL and BCC AGCM simulations of the polar vortex oscillation in the northern hemisphere winter.Chinese J.Atmos.Sci.,36, 1191–1206.(in Chinese)

    Manzini,E.,B.Steil,C.Bruhl,M.A.Giorgetta,and K.Kruger, 2003:A new interactive chemistry-climate model:2.Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling.J.Geophys.Res.,108,4429,doi:10.1029/ 2002JD002977.

    Marsh,D.R.,M.J.Mills,D.E.Kinnison,J.F.Lamarque,N. Calvo,and L.M.Polvani,2013:Climatechange from1850 to 2005 simulated in CESM1(WACCM).J.Climate,26,7372–7391.

    Onogi,K.,and Coauthors,2007:The JRA-25 reanalysis.J.Meteor.Soc.Japan,85,369–432.

    Pawson,S.,and Coauthors,2000:The GCM-Reality Intercomparison Project for SPARC(GRIPS):Scientif i c issues and initial results.Bull.Amer.Meteor.Soc.,81,781–796.

    Ramaswamy,V.,M.D.Schwarzkopf,W.J.Randel,B.D.Santer,B.J.Soden,and G.L.Stenchikov,2006:Anthropogenic and natural inf l uences in the evolution of lower stratospheric cooling.Science,311,1138–1141.

    Ramaswamy,V.,and Coauthors,2001:Stratospheric temperature trends:Observations and model simulations.Rev.Geophys., 39,71–122,doi:10.1029/1999rg000065.

    Randel,W.J.,F.Wu,J.M.Russell,and J.Waters,1999:Spacetime patterns of trends in stratospheric constituents derived from UARS measurements.J.Geophys.Res.,104,3711–3727,doi:10.1029/1998jd100044.

    Ren,R.C.,and M.Cai,2006:Polar vortex oscillation viewed in an isentropic potential vorticity coordinate.Adv.Atmos.Sci., 23,884–900,doi:10.1007/s00376-006-0884-6.

    Ren,R.C.,and M.Cai,2007:Meridional and vertical out-ofphase relationships of temperature anomalies associated with the Northern Annular Mode variability.Geophys.Res.Lett., 34,L07704,doi:10.1029/2006GL028729.

    Ren,R.C.,and Y.Yang,2012:Changes in winter stratospheric cir-culation in CMIP5 scenarios simulated by the climate system model FGOALS-s2.Adv.Atmos.Sci.,29,1374–1389,doi: 10.1007/s00376-012-1184-y.

    Ren,R.C.,G.X.Wu,C.Ming,and J.J.Yu,2009:Winter season stratospheric circulation in the SAMIL/LASG general circulation model.Adv.Atmos.Sci.,26,451–464,doi: 10.1007/s00376-009-0451-z.

    Rotstayn,L.D.,M.A.Collier,M.R.Dix,F.Yan,H.B.Gordon,S. P.O’farrell,I.N.Smith,and J.Syktus,2009:Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment.Int.J.Climatol.,30,1067–1088.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor. Soc.,93,485–498.

    Thompson,D.W.J.,and J.M.Wallace,1998:The Arctic Oscillation signature in the wintertime geopotential height and temperature f i elds.Geophys.Res.Lett.,25,1297–1300,doi: 10.1029/98gl00950.

    Thompson,D.W.J.,M.P.Baldwin,and J.M.Wallace,2002: Stratospheric connection to Northern Hemisphere wintertime weather:Implications for prediction.J.Climate,15,1421–1428.

    Uppala,S.M.,and Coauthors,2005:The ERA-40 re-analysis. Quart.J.Roy.Meteor.Soc.,131,2961–3012.

    Voldoire,A.,and Coauthors,2013:The CNRM-CM5.1 global climate model:Description and basic evaluation.Climate Dyn., 40,2091–2121.

    Volodin,E.M.,N.A.Dianskii,and A.V.Gusev,2010:Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations.Izvestiya, Atmospheric and Oceanic Physics,46,414–431.

    Watanabe,M.,and Coauthors,2010:Improved climate simulation by MIROC5:Mean states,variability,and climate sensitivity. J.Climate,23,6312–335.

    Wu,T.W.,and Coauthors,2013:Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century.J.Geophys.Res.,118,4326–4347,doi: 10.1002/jgrd.50320.

    Xin,X.,T.Wu,and J.Zhang,2013:Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center.Advances in Climate Change Research, 4,41–9.

    Yukimoto,S.,and Coauthors,2012:A new global climate model of the meteorological research institute:MRI-CGCM3, model description and basic performance.J.Meteor.Soc. Japan,90A,23–64.

    :Rao,J.,R.C.Ren,and Y.Yang,2015:Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models.Adv.Atmos.Sci.,32(7),952–966,

    10.1007/s00376-014-4192-2.

    (Received 26 August 2014;revised 7 November 2014;accepted 10 December 2014)

    ?Corresponding author:REN Rongcai Email:rrc@lasg.iap.ac.cn

    ?Institute of Atmospheric Physics/Chinese Academy of Sciences,and Science Press and Springer-Verlag Berlin Heidelberg 2015

    18禁黄网站禁片午夜丰满| 国产在线精品亚洲第一网站| 草草在线视频免费看| 不卡av一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 国产真实乱freesex| 免费看美女性在线毛片视频| 国产真人三级小视频在线观看| 精品国产亚洲在线| netflix在线观看网站| 午夜成年电影在线免费观看| 99在线视频只有这里精品首页| 亚洲av电影在线进入| 日本精品一区二区三区蜜桃| 亚洲美女黄片视频| 精品少妇一区二区三区视频日本电影| 国产精品电影一区二区三区| 91国产中文字幕| 国产欧美日韩精品亚洲av| 亚洲av美国av| 亚洲国产看品久久| 亚洲午夜精品一区,二区,三区| 99热这里只有精品一区 | 亚洲九九香蕉| 日韩成人在线观看一区二区三区| 国产黄片美女视频| 国产在线精品亚洲第一网站| 久久久精品国产亚洲av高清涩受| 亚洲人成77777在线视频| 久久国产乱子伦精品免费另类| 国产精品一区二区精品视频观看| 亚洲欧洲精品一区二区精品久久久| 国产av又大| 国产精品自产拍在线观看55亚洲| 国产精品久久久人人做人人爽| 三级国产精品欧美在线观看 | 欧美成人性av电影在线观看| 99在线人妻在线中文字幕| 日本精品一区二区三区蜜桃| 一区福利在线观看| 色综合亚洲欧美另类图片| 亚洲国产精品999在线| 波多野结衣高清无吗| 亚洲专区国产一区二区| 久久久久久久久中文| 久久久久久久久免费视频了| 国产单亲对白刺激| 中文字幕精品亚洲无线码一区| 禁无遮挡网站| 午夜精品久久久久久毛片777| 国产成人影院久久av| 搡老妇女老女人老熟妇| 母亲3免费完整高清在线观看| 麻豆成人午夜福利视频| 国产精品永久免费网站| 国产69精品久久久久777片 | 日日干狠狠操夜夜爽| 亚洲精品久久国产高清桃花| 国产高清有码在线观看视频 | 村上凉子中文字幕在线| 欧美乱色亚洲激情| 午夜精品一区二区三区免费看| 一级片免费观看大全| 床上黄色一级片| 国产91精品成人一区二区三区| 男女午夜视频在线观看| 欧美乱码精品一区二区三区| 久久国产精品人妻蜜桃| 国产精品久久电影中文字幕| 亚洲成a人片在线一区二区| 1024视频免费在线观看| 90打野战视频偷拍视频| 国产av一区二区精品久久| 少妇被粗大的猛进出69影院| 国产成人系列免费观看| 亚洲中文字幕一区二区三区有码在线看 | 国内少妇人妻偷人精品xxx网站 | 久久婷婷成人综合色麻豆| 中文亚洲av片在线观看爽| 久久久久久久久中文| 天堂影院成人在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美一级毛片孕妇| 日本撒尿小便嘘嘘汇集6| 国产成人影院久久av| 99久久精品国产亚洲精品| 老司机午夜福利在线观看视频| 最新美女视频免费是黄的| 脱女人内裤的视频| 在线观看日韩欧美| 俺也久久电影网| 国产成人影院久久av| av超薄肉色丝袜交足视频| 18禁裸乳无遮挡免费网站照片| tocl精华| 欧美中文综合在线视频| 精品午夜福利视频在线观看一区| 久久久久久国产a免费观看| 亚洲av五月六月丁香网| 在线国产一区二区在线| 欧美日韩国产亚洲二区| 免费无遮挡裸体视频| 亚洲精品在线美女| 嫩草影视91久久| 黄色女人牲交| 亚洲av成人av| 国产成人精品无人区| 香蕉国产在线看| 欧美3d第一页| 欧美极品一区二区三区四区| 中文字幕最新亚洲高清| 久久这里只有精品19| 国产精品久久电影中文字幕| 国产又黄又爽又无遮挡在线| 久久久久久久久免费视频了| 看免费av毛片| 可以在线观看毛片的网站| 国产成人精品久久二区二区免费| 熟妇人妻久久中文字幕3abv| 91国产中文字幕| 日韩大码丰满熟妇| 色播亚洲综合网| 久久久久久久精品吃奶| 亚洲欧美一区二区三区黑人| 日韩欧美免费精品| 国产精品爽爽va在线观看网站| 久久精品综合一区二区三区| 十八禁网站免费在线| 在线免费观看的www视频| 久久精品国产清高在天天线| 色综合亚洲欧美另类图片| 在线永久观看黄色视频| 欧美黑人精品巨大| 久久这里只有精品中国| 一区福利在线观看| 国产一区在线观看成人免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美+亚洲+日韩+国产| 老熟妇仑乱视频hdxx| 精品电影一区二区在线| 国产爱豆传媒在线观看 | 少妇裸体淫交视频免费看高清 | 精品熟女少妇八av免费久了| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看免费日韩欧美大片| 一本一本综合久久| av福利片在线| 99精品久久久久人妻精品| 在线观看日韩欧美| 狂野欧美白嫩少妇大欣赏| 黄色片一级片一级黄色片| 久久久久久亚洲精品国产蜜桃av| 又爽又黄无遮挡网站| 成熟少妇高潮喷水视频| 正在播放国产对白刺激| 国产亚洲精品一区二区www| 一边摸一边做爽爽视频免费| 18禁观看日本| 男人舔女人下体高潮全视频| 国产91精品成人一区二区三区| 国产午夜精品久久久久久| 国产精品av久久久久免费| 99国产精品一区二区蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 三级毛片av免费| 精品欧美一区二区三区在线| 亚洲av电影不卡..在线观看| 国内久久婷婷六月综合欲色啪| 丁香六月欧美| 欧美精品啪啪一区二区三区| 国产视频一区二区在线看| 亚洲欧美日韩无卡精品| a级毛片a级免费在线| 一本久久中文字幕| 无人区码免费观看不卡| 成年女人毛片免费观看观看9| 很黄的视频免费| 亚洲av电影不卡..在线观看| 欧美大码av| 成人高潮视频无遮挡免费网站| 日本成人三级电影网站| 亚洲中文字幕一区二区三区有码在线看 | 日本一二三区视频观看| 久久久国产成人免费| 免费在线观看亚洲国产| 亚洲精品国产一区二区精华液| 久久人妻av系列| 国产亚洲精品综合一区在线观看 | videosex国产| 狠狠狠狠99中文字幕| 青草久久国产| www国产在线视频色| 欧美最黄视频在线播放免费| 特级一级黄色大片| 黑人巨大精品欧美一区二区mp4| 国产高清视频在线播放一区| 两个人免费观看高清视频| 亚洲精品国产精品久久久不卡| 国产亚洲av嫩草精品影院| 欧美中文综合在线视频| 国产精品亚洲美女久久久| 不卡av一区二区三区| 亚洲专区中文字幕在线| 国产主播在线观看一区二区| 我要搜黄色片| x7x7x7水蜜桃| 中文资源天堂在线| 亚洲专区中文字幕在线| 亚洲无线在线观看| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 国产三级中文精品| 男女床上黄色一级片免费看| a级毛片在线看网站| 中文字幕精品亚洲无线码一区| 伦理电影免费视频| 不卡av一区二区三区| 国产爱豆传媒在线观看 | 丝袜人妻中文字幕| 一本久久中文字幕| 免费在线观看黄色视频的| 国产视频一区二区在线看| 亚洲午夜精品一区,二区,三区| 在线观看免费视频日本深夜| 精品一区二区三区视频在线观看免费| 成人国产一区最新在线观看| 精品电影一区二区在线| 亚洲国产精品sss在线观看| 国产私拍福利视频在线观看| 十八禁网站免费在线| 99国产综合亚洲精品| 老鸭窝网址在线观看| 一本一本综合久久| 免费在线观看亚洲国产| 亚洲欧美精品综合久久99| 精品久久久久久久久久久久久| 淫妇啪啪啪对白视频| 免费观看精品视频网站| 在线国产一区二区在线| 欧美精品亚洲一区二区| 精品一区二区三区视频在线观看免费| 国内少妇人妻偷人精品xxx网站 | 每晚都被弄得嗷嗷叫到高潮| 国产精品影院久久| 欧美黑人精品巨大| 天堂动漫精品| а√天堂www在线а√下载| 又爽又黄无遮挡网站| 亚洲精品av麻豆狂野| 亚洲av五月六月丁香网| 伊人久久大香线蕉亚洲五| 精品国产美女av久久久久小说| 国产精品精品国产色婷婷| 久久久久性生活片| 级片在线观看| 777久久人妻少妇嫩草av网站| 亚洲乱码一区二区免费版| 日韩欧美三级三区| 两个人视频免费观看高清| 精品欧美一区二区三区在线| 国产精品乱码一区二三区的特点| 国产野战对白在线观看| 久久久久久久午夜电影| 亚洲欧美日韩高清专用| 久久久精品大字幕| 9191精品国产免费久久| 国产高清视频在线播放一区| 黄色视频不卡| 在线观看免费午夜福利视频| 国内精品久久久久精免费| 欧美三级亚洲精品| 亚洲精品色激情综合| 丝袜人妻中文字幕| 丁香六月欧美| 村上凉子中文字幕在线| 亚洲九九香蕉| 欧美成狂野欧美在线观看| 亚洲av电影不卡..在线观看| 欧美日韩瑟瑟在线播放| 亚洲成人精品中文字幕电影| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 精品一区二区三区视频在线观看免费| 18禁国产床啪视频网站| 少妇裸体淫交视频免费看高清 | 国产单亲对白刺激| 成人18禁高潮啪啪吃奶动态图| 91九色精品人成在线观看| 成人国产一区最新在线观看| 亚洲av美国av| 日本a在线网址| 国产69精品久久久久777片 | 国产99久久九九免费精品| 国产亚洲精品久久久久久毛片| 色噜噜av男人的天堂激情| av视频在线观看入口| 亚洲国产精品久久男人天堂| 成人国产综合亚洲| avwww免费| 久久久久久久精品吃奶| 国产视频内射| 成人精品一区二区免费| 757午夜福利合集在线观看| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 麻豆国产av国片精品| 中文在线观看免费www的网站 | 视频区欧美日本亚洲| 真人一进一出gif抽搐免费| svipshipincom国产片| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费成人在线视频| 老汉色av国产亚洲站长工具| 日韩高清综合在线| 99热这里只有精品一区 | 非洲黑人性xxxx精品又粗又长| 黑人欧美特级aaaaaa片| 国产乱人伦免费视频| 巨乳人妻的诱惑在线观看| 香蕉丝袜av| 亚洲欧美激情综合另类| 一级毛片女人18水好多| 亚洲中文字幕一区二区三区有码在线看 | 99久久精品国产亚洲精品| 一级毛片精品| 每晚都被弄得嗷嗷叫到高潮| 叶爱在线成人免费视频播放| 色av中文字幕| 亚洲 欧美 日韩 在线 免费| 日韩精品免费视频一区二区三区| 18美女黄网站色大片免费观看| 91大片在线观看| 亚洲精品中文字幕在线视频| 嫩草影院精品99| a在线观看视频网站| 一级毛片精品| 少妇人妻一区二区三区视频| 国产成人精品久久二区二区91| 亚洲第一电影网av| 在线观看www视频免费| 亚洲男人天堂网一区| 91国产中文字幕| 窝窝影院91人妻| 国产亚洲精品第一综合不卡| 我要搜黄色片| 成年女人毛片免费观看观看9| 欧美不卡视频在线免费观看 | 97超级碰碰碰精品色视频在线观看| 91在线观看av| 国产男靠女视频免费网站| 免费观看人在逋| 精品久久蜜臀av无| 夜夜看夜夜爽夜夜摸| 亚洲av成人av| 成人av在线播放网站| 国产精品电影一区二区三区| 国产三级在线视频| 夜夜爽天天搞| 黄色丝袜av网址大全| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 久久久国产成人精品二区| 欧美日韩瑟瑟在线播放| 97人妻精品一区二区三区麻豆| 制服丝袜大香蕉在线| svipshipincom国产片| 中文亚洲av片在线观看爽| 18禁国产床啪视频网站| av福利片在线| 搞女人的毛片| 日韩欧美一区二区三区在线观看| 成人手机av| 窝窝影院91人妻| 国产三级在线视频| 国产高清有码在线观看视频 | 国产精品亚洲美女久久久| 国内揄拍国产精品人妻在线| 俺也久久电影网| 久久 成人 亚洲| 18禁观看日本| 精品久久久久久久毛片微露脸| 欧美色欧美亚洲另类二区| 免费无遮挡裸体视频| 欧美午夜高清在线| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频| 男女午夜视频在线观看| 丝袜人妻中文字幕| 亚洲av成人一区二区三| 又粗又爽又猛毛片免费看| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 白带黄色成豆腐渣| 宅男免费午夜| tocl精华| 中文字幕av在线有码专区| 亚洲真实伦在线观看| 欧美日韩乱码在线| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 亚洲18禁久久av| 免费在线观看黄色视频的| 黑人操中国人逼视频| 一级a爱片免费观看的视频| 一级片免费观看大全| 久久热在线av| 精品电影一区二区在线| 亚洲aⅴ乱码一区二区在线播放 | 丁香欧美五月| 欧美日韩亚洲综合一区二区三区_| 欧美中文日本在线观看视频| 欧美性长视频在线观看| 亚洲精品久久成人aⅴ小说| 高清毛片免费观看视频网站| 精品国产乱子伦一区二区三区| 国内少妇人妻偷人精品xxx网站 | 变态另类丝袜制服| 亚洲免费av在线视频| 亚洲欧美精品综合一区二区三区| 亚洲无线在线观看| 亚洲精品国产一区二区精华液| 亚洲电影在线观看av| 久久久精品欧美日韩精品| 丰满人妻熟妇乱又伦精品不卡| 大型黄色视频在线免费观看| 黄色片一级片一级黄色片| videosex国产| 女人被狂操c到高潮| 亚洲成人久久性| 叶爱在线成人免费视频播放| 国产精品 欧美亚洲| 伊人久久大香线蕉亚洲五| 欧美zozozo另类| 99热这里只有是精品50| 午夜福利在线在线| 亚洲精品久久国产高清桃花| 免费一级毛片在线播放高清视频| 一级a爱片免费观看的视频| 久久九九热精品免费| 中文资源天堂在线| 五月玫瑰六月丁香| 成熟少妇高潮喷水视频| 999精品在线视频| 51午夜福利影视在线观看| 一本精品99久久精品77| 天天躁夜夜躁狠狠躁躁| 欧美在线一区亚洲| 夜夜躁狠狠躁天天躁| 免费看a级黄色片| www.www免费av| 麻豆一二三区av精品| 色尼玛亚洲综合影院| 一级黄色大片毛片| 美女高潮喷水抽搐中文字幕| 免费在线观看成人毛片| 婷婷精品国产亚洲av| 日本a在线网址| 中文字幕高清在线视频| 国产精品一区二区三区四区久久| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 99热6这里只有精品| 亚洲午夜精品一区,二区,三区| 天堂动漫精品| 国产单亲对白刺激| 国产午夜福利久久久久久| 久久人妻福利社区极品人妻图片| 午夜精品一区二区三区免费看| 在线视频色国产色| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 两个人视频免费观看高清| 麻豆一二三区av精品| 一进一出好大好爽视频| 国产69精品久久久久777片 | 国产午夜精品论理片| 日本精品一区二区三区蜜桃| 久久精品国产99精品国产亚洲性色| 亚洲精品中文字幕在线视频| 欧美zozozo另类| 久久久久久久久中文| 99热只有精品国产| 欧美黄色淫秽网站| 亚洲成人久久性| 久久天躁狠狠躁夜夜2o2o| 9191精品国产免费久久| 十八禁网站免费在线| 91麻豆av在线| 好男人电影高清在线观看| 舔av片在线| 人妻丰满熟妇av一区二区三区| 一区福利在线观看| 久久精品国产99精品国产亚洲性色| 久久精品人妻少妇| 俺也久久电影网| 白带黄色成豆腐渣| 国产精品精品国产色婷婷| 精品久久久久久久久久免费视频| 亚洲国产精品999在线| 非洲黑人性xxxx精品又粗又长| 精品少妇一区二区三区视频日本电影| 精品久久久久久久毛片微露脸| 两个人看的免费小视频| 国产真人三级小视频在线观看| 久99久视频精品免费| 女同久久另类99精品国产91| 少妇裸体淫交视频免费看高清 | 久久精品亚洲精品国产色婷小说| 五月玫瑰六月丁香| 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 欧美乱妇无乱码| 免费无遮挡裸体视频| 最近视频中文字幕2019在线8| 午夜久久久久精精品| 成人三级黄色视频| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 亚洲人成77777在线视频| 国产在线精品亚洲第一网站| 中文字幕人成人乱码亚洲影| 国产成人一区二区三区免费视频网站| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 人妻久久中文字幕网| 人人妻人人澡欧美一区二区| 后天国语完整版免费观看| 中文亚洲av片在线观看爽| 男女视频在线观看网站免费 | 床上黄色一级片| 欧美久久黑人一区二区| 啦啦啦免费观看视频1| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 国产欧美日韩一区二区精品| 日韩欧美 国产精品| 青草久久国产| 在线a可以看的网站| 免费人成视频x8x8入口观看| 搞女人的毛片| 搡老妇女老女人老熟妇| 成人永久免费在线观看视频| 嫩草影院精品99| 丁香六月欧美| 床上黄色一级片| 淫妇啪啪啪对白视频| 91麻豆精品激情在线观看国产| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| √禁漫天堂资源中文www| 午夜福利欧美成人| www国产在线视频色| 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 男人舔女人的私密视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久九九精品二区国产 | 国产乱人伦免费视频| 人成视频在线观看免费观看| 手机成人av网站| 国产高清有码在线观看视频 | 久久精品人妻少妇| 热99re8久久精品国产| 午夜福利高清视频| 欧美人与性动交α欧美精品济南到| 亚洲电影在线观看av| 毛片女人毛片| 身体一侧抽搐| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 久久香蕉激情| 亚洲专区中文字幕在线| x7x7x7水蜜桃| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 午夜免费成人在线视频| 桃色一区二区三区在线观看| 亚洲真实伦在线观看| 亚洲免费av在线视频| 国产成人系列免费观看| 精品日产1卡2卡| 国产精品久久久av美女十八| 精品欧美一区二区三区在线| 美女午夜性视频免费| 欧美中文综合在线视频| 一进一出好大好爽视频| 最新美女视频免费是黄的| 久久久水蜜桃国产精品网| 中文字幕av在线有码专区| 嫩草影院精品99| 日本熟妇午夜| 免费看十八禁软件| 日本黄大片高清| 亚洲欧美激情综合另类| 五月伊人婷婷丁香| 天堂影院成人在线观看| 亚洲av成人av| 高清在线国产一区| 亚洲精品久久成人aⅴ小说| xxx96com| 久久久久久久午夜电影| 国产激情偷乱视频一区二区| or卡值多少钱| 日韩精品中文字幕看吧| 精品欧美国产一区二区三| 欧美+亚洲+日韩+国产| 国产97色在线日韩免费| 一级a爱片免费观看的视频| 欧美另类亚洲清纯唯美| 国产精品一及| 脱女人内裤的视频| 久久久久久大精品|