• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    開(kāi)啟引力波天文物理高級(jí)探測(cè)器新紀(jì)元英

    2015-05-20 04:54:14AlbertLAZZARINI
    光學(xué)儀器 2015年2期
    關(guān)鍵詞:干涉儀

    Albert+LAZZARINI

    摘要: 激光干涉引力波觀察臺(tái)(LIGO)是世界卓越的干涉型引力波探測(cè)設(shè)備。最初的LIGO探測(cè)器已經(jīng)超出了設(shè)計(jì)的靈敏度,能夠用來(lái)探測(cè)相距大約40 Mpc的雙中子星的合并信號(hào),探測(cè)信噪比等于8。當(dāng)探測(cè)器還沒(méi)被建造時(shí),LIGO科研團(tuán)隊(duì)主要和Virgo團(tuán)隊(duì)合作,探究了大量天體物理學(xué)方面的上限。LIGO目前已經(jīng)步入了先進(jìn)探測(cè)的新領(lǐng)域,擁有升級(jí)版的先進(jìn)LIGO干涉型探測(cè)器。LIGO實(shí)驗(yàn)室也和眾多印度研究中心合作,在印度建立了一個(gè)先進(jìn)的LIGO干涉儀。從而LIGO探測(cè)網(wǎng)絡(luò)擴(kuò)展了,擁有3個(gè)遠(yuǎn)距分散的干涉儀在單一網(wǎng)絡(luò)中運(yùn)行。

    關(guān)鍵詞: 高級(jí)探測(cè)器; 第一代LIGO; 干涉儀; 天文物理

    中圖分類號(hào): P 159文獻(xiàn)標(biāo)志碼: Adoi: 10.3969/j.issn.10055630.2015.02.018

    Initiating the advanced detector era for gravitational wave astrophysics

    Albert LAZZARINI

    (California Institute of Technology, Pasadena, CA 91125)

    Abstract: The Laser Interferometric Gravitational Wave Observatory (LIGO) is the preeminent interferometric gravitational wave detector facility in the world. The initial LIGO detectors exceeded their design sensitivity and were able to search for signals from the coalescence and merger of compact neutron star binaries to a distance of ~40 Mpc (at SNR=8) for optimally oriented systems. While no detections were made, the LIGO Scientific Collaboration, mostly working jointly with the Virgo Collaboration, published a number of upper limits of astrophysical interest. LIGO is now poised to open the Era of Advanced Detectors with the commissioning of an upgraded Advanced LIGO interferometric detector. LIGO Laboratory is also collaborating with several Indian research centers to site an identical Advanced LIGO interferometer in that country, thereby expanding the LIGO detector network to three widely separated interferometers that will operate as a single network.

    Keywords: advanced detector; initial LIGO; inferferometer; astrophysics

    IntroductionLIGOs scientific mission is to explore the physics and astrophysics of gravitational waves by their direct detection.Beyond the first detections,LIGO aims to open a new window on the Universe,gravitational wave astronomy.The detection and exploitation of gravitational waves by a groundbased instrument requires the development of exquisitely sensitive kmscale interferometers operated as remotely separated facilities.At the current time LIGO operates two separated observatories:LIGO Hanford Observatory(LHO)is located in eastern Washington State in the northwest of the U.S.and LIGO Livingston Observatory(LLO)is located in Louisiana approximately 40 km east of Baton Rouge; the lighttravel time between the two LIGO sites is 10 ms[1].LIGO Laboratory together with the LIGO Scientific Collaboration(LSC)carry out in concert the data analysis and research and development that drives improvements in interferometry that are eventually applied to the LIGO instruments.The LSC is an international organization numbering more than 900 members,comprising more than 80 institutions from 14 countries,including scientists and engineers from LIGO Laboratory.1Gravitational wavesGravitational waves are a prediction of Einsteins General Theory of Relativity,and reflect the fact that the propagation of information is limited by the speed of light,as required by his earlier Special Theory of Relativity.Gravitational waves are effectively ripples in the fabric of spacetime that propagate at the speed of light.Their existence was first demonstrated by precision timing measurements of the binary pulsar system PSR1913+16 by Hulse and Taylor,for which discovery they were awarded the Nobel Prize in Physics for 1993.To date,however,there has been no direct detection of gravitational waves with an instrument designed to respond to their passage through the device:this is the mission of LIGO,as well as a number of other kmscale interferometer projects around the globe(Virgo,GEO,KAGRA).光學(xué)儀器第37卷

    第2期Albert Lazzarini:開(kāi)啟引力波天文物理高級(jí)探測(cè)器新紀(jì)元

    Fig.1Gravitational waves are quadrupolar in

    nature and come in two orthogonal polarizationsReferring to Fig.1,gravitational waves are quadrupolar in nature and come in two orthogonal polarizations,“+”,“×”.The upper is a gravitational wave impinges on an array of test masses along the normal to the plane of the ring.Lower:The ring of test masses will respond to passage of a gravitational wave by being alternately compressed and then distended along perpendicular directions.The series of figures correspond to the configuration of the ring at different times during one period of the gravitational wave of frequency ω=2πf.One polarization,+,is aligned with the coordinate axes(x,y)while the other,×,is aligned 45° to the coordinate axes.The magnitude of the distortion,h≡ΔLL,corresponds to the dimensionless strain amplitude of the wave.Gravitational strain is a tidal effect which perturbs spacetime and is detectable by measuring the distance between pairs of“test masses”arranged,e.g.,in an L configuration.Gravitational waves propagating from astrophysical sources at extragalactic distances produce extremely weak perturbations in the local spacetime here on earth,and are therefore very difficult to detect.To set the scale,one can use the quadrupole approximation to the GW radiation formula[2]:h≈32π2GMR2sepf2orbc4r(1)Here,G is Newtons constant of gravitation,M is the mass of one of the two(equal)bodies orbiting each other,Rsep is the separation distance between the centers of the bodies,forb is the orbital frequency with which they orbit each other,c is the speed of light,and r is the distance to the orbiting binary.A representative astrophysical source might be a pair of neutron stars,each having the mass M=1.4M⊙,where M⊙ is the solar mass.When they are separated by Rsep=40 km,they are orbiting each other at a frequency of forb=380 Hz.At a distance of 15 Mpc(corresponding to the distance to the local Virgo cluster of galaxies),the gravitational strain produced on earth would correspond to h≈10-21,tiny indeed.Referring again to Fig.1 the effect on a pair of test masses separated by 4 km would be to displace their separation by approximately to 1/1 000 the diameter of a proton!2GW detection with kmscale interferometersNonetheless,it is possible to apply precision interferometry to detect and measure such minute dimensional changes,which is what LIGO and the other largescale interferometer projects are designed to do.Fig.2 shows a schematic arrangement of suspended mirrors which serve as the test masses described earlier.The LIGO arm lengths are 4 km.Such an Lshaped interferometer acts as an antenna for gravitation radiation.Fig.3 shows the corresponding antenna patterns for the two polarization states as well as the polarizationaveraged response.The polarization averaged(RMS)response is shown in the rightmost panel.The “peanut” shaped pattern as a ~2∶1 ratio in responses along the polar and equatorial directions.In addition the response in the equatorial plan has minima at 45° relative to the two arms.In initial LIGO,the laser light source operated at ~5 W; the resonant FabryPerot cavities in the arms stored the light in the arms for ~10 ms.For maximum sensitivity,the interferometer is operated at the dark fringe on the photo detector.A power recycling mirror forms a compound resonant cavity that reflects the light returning to the laser back into the interferometer,thereby increasing the effective light circulating within the interferometer to levels well above the laser power,by a factor ~50×.The initial LIGO interferometer had a limiting noise floor which at high frequencies,f100 Hz,is limited by the shot noise on the light.Below f50 Hz,the residual motion of the suspended mirrors due to unfiltered seismic motion limits sensitivity.Between these regimes Brownian motion(thermal noise)of the mirrors,their coatings,and the suspension fibers becomes the ultimate limiting factor in sensitivity.Taken together,the typical frequencydependent sensitivity curve for an interferometer is a U shaped curve.Fig.4 presents an overlay of the science requirement design with the actual sensitivities achieved during the last initial LIGO science run,S6.The data shown in the figure correspond to two interferometers,LHO,LLO,which operated together in coincidence during the S6 run.

    Fig.2Simplified schematic of a suspended mirror Michelson interferometer with FabryPerot cavities in the arms

    Fig.3A Michelson interferometer with arms aligned along the (x,y) axes has a quadrupolar antenna pattern to

    a plane gravitational wave.The two polarizations have responses as shown in the first two panels

    Fig.4The spectral density of amplitude noise for the LIGO interferometer during

    the last run,S6.Refer to text for details on shape of curves,performance,etc.

    3Results from the initial LIGO eraTo date,the LIGO Scientific Collaboration(LSC)has published more than 80 papers on the observational results with the initial LIGO interferometers.The initial LIGO era spanned the period the period 2002-2010 and consisted of six science runs,each having progressively better sensitivity that the previous one.S6 culminated in performance that exceeded the original interferometer design,as may be seen in Fig.4 for frequencies f60 Hz.

    3.1Classes of GW sourcesThe LSC organizes the observing program with LIGO data according to different classes of astrophysical sources:Coalescing compact binary systems,e.g.neutron star pairs(NS/NS),black hole pairs(BH/BH),or heterogenous systems composed of a NS+BH pair.These systems produce a characteristic“chirp”signal as they compete their last few hundred orbits with ever increasing frequency before their merger(ref.Eq.1).Depending on the bandwidth of the interferometer and the masses involved,these signals will last from seconds to minutes within the LIGO band.In addition,such events are expect to be associated with gamma ray bursts that are produced at the end of the coalescence[36].Unmodeled burst sources,such as supernova(SN)explosions[78].When a massive star exhausts its nuclear fuel,it can undergo catastrophic gravitational collapse,leading to either a neutron star or black hole.If the conditions of this collapse are such that there is an asymmetry to the collapse that leads to a dynamically varying mass quadrupole moment,a burst of gravitational waves will be emitted,lasting 1 sec.Rotating neutron stars with equatorial asymmetries.If a rapidly spinning neutron star(analog to an EM pulsar)has a “mountain” on its surface,there will be a dynamically varying quadruple which will result in the generation of gravitational waves[910].Such sources are expected to be extremely narrowband signals with an instantaneous frequency that will be modulated by a number of factors.These include deterministic effects:earth rotation(~3×10-6 effect); earth orbital motion about the sun(~2×10-4 effect).There are also unknown effects associated with the sourcespecific motion of the rotating neutron starthese are modeled as a Taylor series expansion in terms of source velocity,and higher derivatives.Stochastic gravitational sources.These include primordial waves from the Big Bang[11],as well a superposition of many unresolved foreground astrophysical sources[12].These signals are detectable by crosscorrelating the outputs of multiple interferometers,looking for common signals associated with the sky that are detectable across continental distances.

    3.2Highlights of observational results from initial LIGOSelected highlights of observational results published by the LSC together with the Virgo Collaboration include:Results from the search for binary coalescences[1314].This search utilized a network of three interferometers,the two LIGO and the Virgo instrument,operating at the best sensitivity achieved; binary neutron star mergers to a distance from earth of approximately 40 Mpc away and binary black hole mergers up to approximately 90 Mpc could have been detected.No gravitational wave signals were identified.This “null result” led to new observational new limits on the rate of compact binary mergers in the local universe.These limits are still about 100 times higher than expected rates from astronomical observations,so the fact that no gravitational waves were detected was consistent with expectations.Results from searches for gravitational waves associated with GRBs.During the initial LIGO era a number of nearby GRBs provided triggers to search the LIGO data for evidence of associated GW bursts.For a number of these GRBs,interesting upper limits were able to be set.For example,the error box for GRB070201 overlapped the nearby Andromeda galaxy(M31).LIGO data showed that the GRB did not originate from a binary coalescence in that galaxy at the 95% confidence level[15].Similarly,analysis of observations made by LIGO during an epoch of data triggered by GRB051103,was able to rule out the collision of two neutron stars or a neutron star and a black hole as being responsible for the GRB in the nearby galaxy M81[16].Results from the search for gravitational waves from known pulsars[17].This search looked for signals from a population of 195 known EM pulsars,including the Crab and Vela pulsars.For the Crab pulsar,J0534+2200,(d ~2 kpc from earth),it was determined that the upper limit to the strength of gravitational waves was h<1.6×10-25,which translates to an upper limit in the emission of gravitational waves corresponding to less than 1.2% of the total power radiated by the pulsar as evidenced by its spindown rate.Further,this result corresponds to a maximum deviation from axial symmetry of δII<8.6×10-5,where δI is the difference between the two equatorial moments of inertia and I is the principle moment of inertia of the neutron star.Results from the search for an isotropic(cosmological)stochastic gravitational wave background[1819].This search looked for a correlated signal between the two LIGO interferometers that could be attributed to gravitational waves of a cosmological origin.No signals were detected.For a frequencyindependent gravitational wave spectrum,Ω(f)~Ω0,this corresponds to an upper limit to the energy density in gravitational waves in the LIGO frequency band corresponding to Ω0<5.6×10-6.endprint

    Fig.5The Advanced LIGO multistage active

    seismic isolation system under assembly

    Fig.6The Advanced LIGO multistage fused silica

    suspension system and 40 kg mirror under assembly

    Fig.7The Advanced LIGO 200 W laser under assembly

    4Advanced LIGOIn October 2014 LIGO completed fabrication,assembly and installation of the upgrades to the initial LIGO interferometers,termed Advanced LIGO.The upgrade was funded primarily by the U.S.National Science Foundation(US$205M)and included inkind contributions by LIGO collaborators in the UK(~US$12M),Germany(~US$12M),and Australia(~US$2M).Advanced LIGO was a complete rebuild of the interferometers,introducing newer,more sensitive technologies made possible through an intense R&D program over the past decade and not available when the first instruments were built.In particular,Advanced LIGO utilizes the following improvements:Better,2stage actively controlled seismic isolation capable of reducing ground motion at much lower frequencies f ~10 Hz compared to the initial LIGO,f ~60 Hz.This will allow LIGO to detect signals at lower frequencies,thereby increasing the signal to noise ratio for sources such as coalescing binary systems.Ref.to Fig.5 More sophisticated,4stage monolithic(glass)suspensions and larger,more massive mirrors.These serve to reduce the limiting mid frequencyband noise due to Brownian motion of the optics and their suspensions.Ref.to Fig.6 Higher laser power,capable of producing 200 W of λ=1 064 nm.This will allow highfrequency operation at lower shot noise levels than possible with initial LIGO.Ref.to Fig.7 A more flexible,more sensitive optical configuration.Combining these improvements,the Advanced LIGO design has an optimal sensitivity near f ~100 Hz that is ~10×better than initial LIGO.Because interferometers respond to the amplitude of a gravitational wave,a 10× better sensitivity corresponds to a 10× greater range to which sources may be detected,and this results in a 1 000× increase in their detection rate:a single day of observation with Advanced LIGO corresponds to almost three years of observations with initial LIGO.At this early stage of commissioning,performance exceeded the best performance ever achieved during the initial LIGO era(ref.to legend in the plot).Note:to obtain strain sensitvitivity,the ordinate must be divided by 4 000(the LIGO arm length).As of this writing,commissioning is continuing on both LIGO interferometers to prepare them for the first observational run of the advanced interferometer era.

    Fig.8Displacement sensitivity for the LA 4 km

    interferometer as of 26 Sept.2014

    Fig.9The global network of kmscale

    interferometers is growing

    Since May 2014,LIGO has been commissioning the new instruments.Fig.8 shows a commissioning spectrum from the LLO instrument taken in late September 2014,showing that that the sensitivity now exceeds by almost 2× the best achieved during the initial LIGO era.5The International Network of GW InterferometersThere are currently five major kmscale interferometers at various stages of construction around the globe(ref.Fig.9).These include the two 4km U.S.LIGO interferometers,0.6 km GE0600 advanced technology interferometer in Germany[20] the 3km Virgo interferometer in Italy,and the 3km cryogenic KAGRA interferometer in Japan.The LSC(which includes U.S.LIGO and GE0600),Virgo,and KAGRA have agreements in place to jointly analyze data from the various instruments when they are operating at comparable sensitivities.The combined data will be analyzed coherently,allowing the network of interferometers to operate as a phased array,thereby allowing for aperturesynthesis gravitational wave astronomy.A global network provides multiple detections of a common(plane)gravitational wave.Using timeofarrival information across the network as well as details of the signal waveform allows one to localize the source on the sky,provide(low resolution)pointing information,permitting EM observatories to follow up gravitational wave events with observations across the electromagnetic spectrum[21].At the present time,LIGO Laboratory is planning with Indian collaborators to install an identical third Advanced LIGO interferometer at a site in that country.The proposal for India to identify a site and begin work on a facility similar to the LIGO facilities in the U.S.is under consideration for approval by the Government of India.This third LIGO site would be located closer to the equator compared to the extant facilities.The additional node to the network,plus the more southerly location of a site in India serves improve the ability of the global network to localize events on the sky for handoff to EM observatories.With the addition of LIGOIndia to the U.SEuropeanJapanese network,80% of detected sources can be localized to within 20 sq.deg,compared to 80 sq.deg.for the network without India.This factor ~4x improvement in localization will enable the global network to play a key role in initiating the era of multimessenger astronomy with gravitational waves[2223].6AcknowledgmentsThe author gratefully acknowledges the support of the United States National Science Foundation for the construction and operation of the LIGO Laboratory.The scientific program of the LSC and Virgo is made possible through funding from Science and Technology Facilities Council of the United Kingdom,the MaxPlanckSociety,and the State of Niedersachsen/Germany for support of the construction and operation of the GEO600 detector,and the Italian Istituto Nazionale di Fisica Nucleare and the French Centre National de la Recherche Scientifique for the construction and operation of the Virgo detector.The authors also gratefully acknowledge the support of the research by these agencies and by the Australian Research Council,the International Science Linkages program of the Commonwealth of Australia,the Council of Scientific and Industrial Research of India,the Istituto Nazionale di Fisica Nucleare of Italy,the Spanish Ministerio de Economía y Competitividad,the Conselleria dEconomia Hisenda i Innovació of the Govern de les Illes Balears,the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research,the Polish Ministry of Science and Higher Education,the FOCUS Programme of Foundation for Polish Science,the Royal Society,the Scottish Funding Council,the Scottish Universities Physics Alliance,The National Aeronautics and Space Administration,OTKA of Hungary,the Lyon Institute of Origins(LIO),the National Research Foundation of Korea,Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation,the National Science and Engineering Research Council Canada,the Carnegie Trust,the Leverhulme Trust,the David and Lucile Packard Foundation,the Research Corporation,and the Alfred P.Sloan Foundation.This article has LIGO document number LIGOP1400230.References:

    [1]ABBOTT B P,ABBOTT R,ADHIKARI R,et al.,LIGO:the laser interferometer gravitationalwave observatory[J].Reports on Progress in Physics,2009,72:12.

    [2]FOSTER J,NIGHTENGALE J D.A short conrse in general relativity[M].Berlin:SpringerVerlag,1995.

    [3]CHEN H Y,HOLTZ D E.Gammarayburst beaming and gravitationalwave observations[J].Physical Review Letters,2013,111:181101.

    [4]FONG W,BERGER E,F(xiàn)OX D B,et al.Hubble space telescope observations of short gammaray burst host galaxies:morphologies,offsets,and local environments[J].The Astrophysical Journal,2010,708(1):9.

    [5]CHURCH R P,LEVAN A J,DAVIES M B,et al.Implications for the origin of short gammaray bursts from their observed positions around their host galaxies[J].Monthly Notices of the Royal Astronomical Society,2011,413:20042014.

    [6]BERGER E.The environments of shortduration gammaray bursts and implications for their progenitors[J].New Astronomy Reviews,2011,55:122.

    [7]OTT C D.The gravitationalwave signature of corecollapse supernovae[J].Classical and Quantum Gravity,2009,26(6):06300l.

    [8]KOTAKE K.Multiple physical elements to determine the gravitationalwave signatures of corecollapse supernovae[J].Comptes Rendus Physique,2013,14(4):318351.

    [9]OWEN B J.Maximum elastic deformations of compact stars with exotic equations of state[J].Physical Review Letters,2005,95:211101.

    [10]OWEN B J.Detectability of periodic gravitational waves by initial interferometers[J].Classical and Quantum Gravity,2006,23(8):S1S7.

    [11]MAGGIORE M.Gravitational wave experiments and early universe cosmology[J].Physics Reports,2000,331(6):283367.

    [12]REGIMBAU T.The astrophysical gravitational wave stochastic background[J].Research in Astronomy and Astrophysics,2011,11(14):369390.

    [13]The LIGO Scientific Collaboration,Virgo Collaboration.Search for gravitational waves from low mass compact binary coalescence in LIGOs sixth science run and vVirgos science runs 2 and 3[J].Physical Review D.,2012,85:082002.

    [14]The LIGO Scientific Collaboration,Virgo Collaboration.Search for gravitational waves from binary black hole inspiral,mergerand,ringdown in LIGOVirgo data from 20092010[J].Physical Review D.,2013,87:022002.

    [15]HURLEY K.Implications for the origin of GRB 070201 from LIGO Observations[J].The Astrophysical Journal,2008,681(2):1419.

    [16]ABADIE J,ABBOTT B P,ABBOTT T D,et al.Implications for the orign of GRB 051103 from LIGO obeservations[J].The Astrophysical Journal,2012,755(2):18.

    [17]AASIL J,ABADIE1 J,ABBOTTL B P,et al.Gravitational waves from known pulsars:results from the initial detector era[J].The Astrophysical Journal,2014,785(2):119.

    [18]The LIGO Scientific Collaboration,Virgo Collaboration.An upper limit on the stochastic gravitationalwave background of cosmological origin[J].Nature,2009,460:990994.

    [19]The LIGO Scientific Collaboration,Virgo Collaboration.Improved upper Limits on the stochastic gravitationalwave background from 20092010 LIGO and Virgo data[J].Physical Review Letters,2014,113:231101.

    [20]AFFELDT C,DANZMANN K,DOOLEY K L,et al.Advanced techniques in GEO 600[J].Classical and Quantum Gravity,2014,31:224002.

    [21]NISSANKE S,KASLIWAL M,GEORGIEVA A.Identifying elusive electromagnetic counterparts to gravitational wave mergers:an endtoend simulation[J].The Astrophysical Journal,2013,767:124.

    [22]FAIRHURST S.Source localization with an advanced gravitational wave detector network[J].Classical and Quantum Gravity,2011,28:105021.

    [23]SATHYAPRAKASH B S,F(xiàn)AIRHURST S,SCHUTZ B F,et al.Scientific benefits of moving one of LIGO Hanford detectors to India,LIGO Document[DB/OL],2012,No.LIGOT1200219v1.

    (編輯:張磊)

    猜你喜歡
    干涉儀
    干涉儀溫度變化對(duì)解調(diào)系統(tǒng)相位噪聲的影響
    基于改進(jìn)的邁克爾遜干涉儀對(duì)熱變形特性的研究
    非線性光學(xué)干涉儀的研究現(xiàn)狀及發(fā)展趨勢(shì)
    用于原子干涉儀的光學(xué)鎖相環(huán)系統(tǒng)
    基于鏡組準(zhǔn)直的激光干涉儀快速對(duì)光方法研究
    非對(duì)稱干涉儀技術(shù)及工程實(shí)現(xiàn)
    大光程差高魯棒性擺臂角鏡干涉儀設(shè)計(jì)與實(shí)現(xiàn)
    高靈敏度的量子邁克耳孫干涉儀?
    基于最優(yōu)模糊的均勻圓陣干涉儀測(cè)向算法
    淺談雷尼紹XL-80激光干涉儀的對(duì)光
    日本与韩国留学比较| 日韩人妻高清精品专区| 欧美日韩一区二区视频在线观看视频在线| 伊人久久精品亚洲午夜| 亚洲国产日韩一区二区| 日本黄色日本黄色录像| av天堂中文字幕网| 三级经典国产精品| 午夜免费男女啪啪视频观看| 国产日韩欧美在线精品| 国产一级毛片在线| 免费观看性生交大片5| 最新中文字幕久久久久| 色94色欧美一区二区| 亚洲三级黄色毛片| 高清欧美精品videossex| 高清av免费在线| 亚洲精品乱码久久久久久按摩| 国产av一区二区精品久久| 国产精品一二三区在线看| 啦啦啦中文免费视频观看日本| 中国三级夫妇交换| 一级毛片 在线播放| 国产精品偷伦视频观看了| 成人毛片a级毛片在线播放| 国产白丝娇喘喷水9色精品| 亚洲精品中文字幕在线视频 | 精华霜和精华液先用哪个| 久久久久久久久久人人人人人人| tube8黄色片| 国产黄色视频一区二区在线观看| 久久人人爽人人片av| 麻豆乱淫一区二区| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 久久久国产欧美日韩av| 免费黄网站久久成人精品| 狠狠精品人妻久久久久久综合| 国产精品99久久99久久久不卡 | 人妻制服诱惑在线中文字幕| 午夜老司机福利剧场| 久久精品国产a三级三级三级| 国语对白做爰xxxⅹ性视频网站| a级一级毛片免费在线观看| 韩国av在线不卡| 欧美xxxx性猛交bbbb| 婷婷色av中文字幕| 欧美 日韩 精品 国产| 夜夜骑夜夜射夜夜干| 最近中文字幕高清免费大全6| 日本av免费视频播放| 成年人免费黄色播放视频 | 在线免费观看不下载黄p国产| 嫩草影院新地址| 国产精品国产三级国产av玫瑰| 亚洲精品亚洲一区二区| 欧美激情极品国产一区二区三区 | 日日爽夜夜爽网站| 一级毛片久久久久久久久女| 亚洲精品久久午夜乱码| 国产综合精华液| 99九九线精品视频在线观看视频| 狂野欧美激情性xxxx在线观看| 综合色丁香网| 黑人猛操日本美女一级片| 我的女老师完整版在线观看| 最黄视频免费看| av福利片在线| 国产精品国产三级专区第一集| 纵有疾风起免费观看全集完整版| 国产成人精品福利久久| 伊人久久精品亚洲午夜| 黄色配什么色好看| 一二三四中文在线观看免费高清| 国产伦精品一区二区三区视频9| 69精品国产乱码久久久| av免费在线看不卡| 青春草亚洲视频在线观看| 久久国产亚洲av麻豆专区| 午夜免费鲁丝| 成人漫画全彩无遮挡| 国产精品久久久久成人av| 一级av片app| 男人添女人高潮全过程视频| 日韩成人伦理影院| 久久国产精品男人的天堂亚洲 | 国产精品人妻久久久久久| tube8黄色片| 亚洲图色成人| 亚洲精品中文字幕在线视频 | 九九爱精品视频在线观看| 久久99热6这里只有精品| 国产精品国产三级国产专区5o| 麻豆成人午夜福利视频| 亚洲国产色片| 国产成人aa在线观看| 国产视频内射| 欧美日韩亚洲高清精品| 国产91av在线免费观看| 熟妇人妻不卡中文字幕| 香蕉精品网在线| 亚洲国产成人一精品久久久| 亚洲av不卡在线观看| 久久精品国产鲁丝片午夜精品| 丝袜喷水一区| 国产淫语在线视频| 成年人免费黄色播放视频 | 国产午夜精品久久久久久一区二区三区| 如日韩欧美国产精品一区二区三区 | 国产真实伦视频高清在线观看| 国产精品无大码| 国产伦精品一区二区三区视频9| 日韩伦理黄色片| 色婷婷av一区二区三区视频| 最近最新中文字幕免费大全7| 久久人人爽人人爽人人片va| 亚洲精品国产色婷婷电影| 亚洲色图综合在线观看| 亚洲,一卡二卡三卡| 亚洲婷婷狠狠爱综合网| 中文字幕精品免费在线观看视频 | 一本大道久久a久久精品| 日韩一区二区视频免费看| 极品教师在线视频| 建设人人有责人人尽责人人享有的| 51国产日韩欧美| 最近2019中文字幕mv第一页| 成年人午夜在线观看视频| 老司机亚洲免费影院| 在现免费观看毛片| 男人和女人高潮做爰伦理| 一本久久精品| 人妻人人澡人人爽人人| 春色校园在线视频观看| 亚洲欧美中文字幕日韩二区| 最后的刺客免费高清国语| 99九九在线精品视频 | 久久人人爽人人片av| 精品一区二区三区视频在线| 日韩欧美精品免费久久| 一级毛片我不卡| 夜夜骑夜夜射夜夜干| 简卡轻食公司| 国产69精品久久久久777片| 国产精品一区www在线观看| 少妇人妻精品综合一区二区| 免费黄色在线免费观看| 丝袜脚勾引网站| 人妻少妇偷人精品九色| 女性被躁到高潮视频| 国产乱来视频区| 国产在线一区二区三区精| 日日摸夜夜添夜夜添av毛片| 看十八女毛片水多多多| 国产高清不卡午夜福利| 免费观看在线日韩| 欧美bdsm另类| 日韩不卡一区二区三区视频在线| 国国产精品蜜臀av免费| 欧美精品亚洲一区二区| 如何舔出高潮| 久热这里只有精品99| 80岁老熟妇乱子伦牲交| 人妻一区二区av| 久久久久国产网址| 人妻夜夜爽99麻豆av| 日本免费在线观看一区| 免费观看a级毛片全部| 亚洲自偷自拍三级| 毛片一级片免费看久久久久| 最近2019中文字幕mv第一页| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 国产成人freesex在线| 全区人妻精品视频| 亚洲精品自拍成人| 国产伦精品一区二区三区视频9| 国产高清国产精品国产三级| 日本爱情动作片www.在线观看| av国产久精品久网站免费入址| 欧美日韩国产mv在线观看视频| 日韩免费高清中文字幕av| 国产精品熟女久久久久浪| 春色校园在线视频观看| 精品一区二区三区视频在线| 熟女人妻精品中文字幕| 国产精品一二三区在线看| 丝袜喷水一区| h视频一区二区三区| 成人午夜精彩视频在线观看| 中文资源天堂在线| 亚洲国产精品一区二区三区在线| 如日韩欧美国产精品一区二区三区 | 2021少妇久久久久久久久久久| 简卡轻食公司| 在线观看一区二区三区激情| 国产成人精品福利久久| 在线观看av片永久免费下载| 免费不卡的大黄色大毛片视频在线观看| 亚洲情色 制服丝袜| 老司机亚洲免费影院| 精品一区二区三卡| 国产成人精品无人区| 97超视频在线观看视频| 午夜福利影视在线免费观看| 亚洲成人一二三区av| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产欧美在线一区| 国产精品嫩草影院av在线观看| 欧美成人午夜免费资源| 中国美白少妇内射xxxbb| 日本免费在线观看一区| 国产精品福利在线免费观看| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 大片免费播放器 马上看| 日韩免费高清中文字幕av| 一区二区三区免费毛片| 卡戴珊不雅视频在线播放| 99国产精品免费福利视频| 观看美女的网站| 男男h啪啪无遮挡| 国产亚洲一区二区精品| 久久精品久久久久久久性| 亚洲人成网站在线播| 欧美高清成人免费视频www| .国产精品久久| 三级国产精品欧美在线观看| 2022亚洲国产成人精品| 日韩精品有码人妻一区| 国产男人的电影天堂91| 97在线视频观看| 亚洲精品国产色婷婷电影| 综合色丁香网| 9色porny在线观看| 午夜久久久在线观看| 久久久久视频综合| 桃花免费在线播放| 国产亚洲91精品色在线| 五月玫瑰六月丁香| 97在线视频观看| 精品一区在线观看国产| 日韩成人av中文字幕在线观看| 久久久久久久精品精品| 亚洲成人手机| 日韩免费高清中文字幕av| 久久国内精品自在自线图片| 欧美精品亚洲一区二区| 国产成人aa在线观看| 少妇熟女欧美另类| 最近的中文字幕免费完整| 下体分泌物呈黄色| 国产精品99久久99久久久不卡 | 久久国产精品男人的天堂亚洲 | 18禁动态无遮挡网站| 国产91av在线免费观看| 在线观看人妻少妇| 男人添女人高潮全过程视频| 国产伦理片在线播放av一区| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区黑人 | 午夜免费男女啪啪视频观看| a级一级毛片免费在线观看| 国产av一区二区精品久久| 十八禁网站网址无遮挡 | 色哟哟·www| 国产精品一区二区在线不卡| av又黄又爽大尺度在线免费看| 欧美精品国产亚洲| 青春草亚洲视频在线观看| 18禁在线播放成人免费| 免费观看性生交大片5| 久久午夜福利片| 下体分泌物呈黄色| 国产91av在线免费观看| 人妻一区二区av| 欧美日韩精品成人综合77777| 狂野欧美激情性xxxx在线观看| 国产在视频线精品| 在线观看www视频免费| av线在线观看网站| 国产精品不卡视频一区二区| 久久久久久久久久久免费av| av网站免费在线观看视频| 日本色播在线视频| 2018国产大陆天天弄谢| 视频中文字幕在线观看| 亚洲,一卡二卡三卡| 国产精品熟女久久久久浪| 麻豆乱淫一区二区| 午夜激情福利司机影院| 国产69精品久久久久777片| 亚洲欧美一区二区三区国产| 午夜精品国产一区二区电影| 亚洲av成人精品一区久久| 久久久a久久爽久久v久久| 18+在线观看网站| 你懂的网址亚洲精品在线观看| 国产黄频视频在线观看| 亚洲av.av天堂| 亚洲av福利一区| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | 久久综合国产亚洲精品| 99久久综合免费| 狂野欧美白嫩少妇大欣赏| 十八禁高潮呻吟视频 | 欧美bdsm另类| 日本猛色少妇xxxxx猛交久久| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 精品久久久噜噜| 伦理电影大哥的女人| 亚洲精品,欧美精品| 免费不卡的大黄色大毛片视频在线观看| 99久久综合免费| 一级av片app| 夜夜爽夜夜爽视频| 久久国产精品大桥未久av | 国产亚洲最大av| 成人无遮挡网站| 国产精品国产三级国产专区5o| 九九爱精品视频在线观看| 成人综合一区亚洲| 国产欧美亚洲国产| 纵有疾风起免费观看全集完整版| 最黄视频免费看| 欧美日韩视频高清一区二区三区二| 老司机影院成人| 亚洲美女搞黄在线观看| 国产成人freesex在线| 国产永久视频网站| 十分钟在线观看高清视频www | 国产av国产精品国产| 国产老妇伦熟女老妇高清| 久久精品国产a三级三级三级| 国产午夜精品一二区理论片| 少妇高潮的动态图| 精品熟女少妇av免费看| 欧美精品一区二区免费开放| 2018国产大陆天天弄谢| 91精品伊人久久大香线蕉| 国产精品99久久99久久久不卡 | 91久久精品电影网| 成人国产麻豆网| 校园人妻丝袜中文字幕| 狂野欧美激情性bbbbbb| 亚洲国产毛片av蜜桃av| 插逼视频在线观看| 国产精品三级大全| 简卡轻食公司| 我要看日韩黄色一级片| 2018国产大陆天天弄谢| 我要看黄色一级片免费的| 国产欧美日韩一区二区三区在线 | 韩国高清视频一区二区三区| 日本欧美视频一区| 老司机影院毛片| 精品国产乱码久久久久久小说| 9色porny在线观看| 曰老女人黄片| 99热这里只有是精品50| 黑丝袜美女国产一区| 国产一区二区三区av在线| 高清av免费在线| 一本久久精品| 晚上一个人看的免费电影| 亚洲久久久国产精品| 久久久午夜欧美精品| 免费久久久久久久精品成人欧美视频 | 成人黄色视频免费在线看| 高清av免费在线| 丰满少妇做爰视频| 久久久久久久大尺度免费视频| 少妇的逼水好多| 纵有疾风起免费观看全集完整版| 亚洲国产av新网站| 午夜免费鲁丝| 啦啦啦啦在线视频资源| 成年女人在线观看亚洲视频| 国产熟女欧美一区二区| 99久久精品热视频| 亚洲av电影在线观看一区二区三区| 亚洲人与动物交配视频| 男人添女人高潮全过程视频| 欧美三级亚洲精品| 亚洲av男天堂| 丰满少妇做爰视频| 乱码一卡2卡4卡精品| 夫妻性生交免费视频一级片| 亚洲av成人精品一二三区| 久久综合国产亚洲精品| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 男的添女的下面高潮视频| 在线观看三级黄色| 在线 av 中文字幕| 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线| 久久精品国产自在天天线| 18禁在线播放成人免费| 免费黄色在线免费观看| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 最近中文字幕2019免费版| 一级爰片在线观看| av.在线天堂| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 久久久久国产网址| 色婷婷av一区二区三区视频| 亚洲国产最新在线播放| 久久精品国产a三级三级三级| 人妻制服诱惑在线中文字幕| 久久99精品国语久久久| 一级毛片久久久久久久久女| 最近的中文字幕免费完整| 午夜视频国产福利| 日韩欧美 国产精品| 国产一区亚洲一区在线观看| 美女cb高潮喷水在线观看| tube8黄色片| 欧美精品一区二区大全| 午夜久久久在线观看| 亚洲人与动物交配视频| 黄色欧美视频在线观看| 久久久久久久久久人人人人人人| 精品一区二区免费观看| 最近手机中文字幕大全| 男人添女人高潮全过程视频| 亚洲一区二区三区欧美精品| 9色porny在线观看| 日日啪夜夜爽| 大话2 男鬼变身卡| √禁漫天堂资源中文www| 少妇 在线观看| 午夜免费男女啪啪视频观看| 男人狂女人下面高潮的视频| 日韩精品免费视频一区二区三区 | 你懂的网址亚洲精品在线观看| 十分钟在线观看高清视频www | 人妻系列 视频| 日韩一区二区视频免费看| 久久热精品热| 成人漫画全彩无遮挡| av国产精品久久久久影院| 五月玫瑰六月丁香| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 2022亚洲国产成人精品| 日日摸夜夜添夜夜爱| 国产乱人偷精品视频| 一级毛片黄色毛片免费观看视频| 国产亚洲欧美精品永久| 免费在线观看成人毛片| 国产欧美亚洲国产| 色吧在线观看| 18禁动态无遮挡网站| freevideosex欧美| 水蜜桃什么品种好| av.在线天堂| 久久精品久久精品一区二区三区| 国产成人精品一,二区| 五月伊人婷婷丁香| 人妻系列 视频| 午夜福利在线观看免费完整高清在| 亚洲情色 制服丝袜| videos熟女内射| 在线天堂最新版资源| 搡老乐熟女国产| av在线老鸭窝| 成人国产麻豆网| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| 六月丁香七月| 成人午夜精彩视频在线观看| 国内揄拍国产精品人妻在线| 韩国av在线不卡| 中文字幕人妻丝袜制服| 欧美性感艳星| 少妇精品久久久久久久| 国产一区二区在线观看日韩| 五月天丁香电影| 精品国产一区二区三区久久久樱花| 观看美女的网站| 精品视频人人做人人爽| 精品久久久久久电影网| 国内精品宾馆在线| 精品人妻熟女毛片av久久网站| 又粗又硬又长又爽又黄的视频| 纯流量卡能插随身wifi吗| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 人人澡人人妻人| 午夜免费男女啪啪视频观看| 日韩强制内射视频| 人人妻人人看人人澡| 九色成人免费人妻av| 日本欧美视频一区| 免费不卡的大黄色大毛片视频在线观看| 婷婷色av中文字幕| 国产成人精品无人区| 我要看黄色一级片免费的| 国产高清不卡午夜福利| av国产精品久久久久影院| 成人午夜精彩视频在线观看| 亚洲欧美成人综合另类久久久| 少妇 在线观看| 永久免费av网站大全| 久久 成人 亚洲| 国产色婷婷99| 午夜av观看不卡| 下体分泌物呈黄色| 久久女婷五月综合色啪小说| 久久午夜综合久久蜜桃| 国产欧美日韩精品一区二区| 日韩中文字幕视频在线看片| 亚洲图色成人| 日本av免费视频播放| 亚洲国产色片| 色网站视频免费| 日韩成人av中文字幕在线观看| 在线观看免费视频网站a站| 精品国产乱码久久久久久小说| 少妇高潮的动态图| 国产精品三级大全| 国产日韩欧美亚洲二区| 日韩中字成人| 丰满饥渴人妻一区二区三| 精品熟女少妇av免费看| 久久韩国三级中文字幕| 99re6热这里在线精品视频| 亚洲欧洲日产国产| 国产高清三级在线| 久久精品久久久久久噜噜老黄| 午夜激情福利司机影院| 久久国产精品大桥未久av | 精品99又大又爽又粗少妇毛片| 国产极品天堂在线| 水蜜桃什么品种好| 亚洲av日韩在线播放| 免费观看的影片在线观看| 国产有黄有色有爽视频| 午夜老司机福利剧场| 岛国毛片在线播放| 国产精品一区二区在线不卡| 久久狼人影院| 亚洲av男天堂| 内地一区二区视频在线| 欧美日韩在线观看h| 99热6这里只有精品| 永久免费av网站大全| 一本大道久久a久久精品| 国产黄片美女视频| 观看美女的网站| kizo精华| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 亚洲av成人精品一二三区| 丝袜在线中文字幕| 欧美日韩视频精品一区| 晚上一个人看的免费电影| 草草在线视频免费看| av线在线观看网站| 一本色道久久久久久精品综合| 91成人精品电影| 一本色道久久久久久精品综合| 中文在线观看免费www的网站| 一本色道久久久久久精品综合| 精品亚洲成国产av| 日韩制服骚丝袜av| 亚洲av在线观看美女高潮| 视频区图区小说| 久久久久久久国产电影| 亚洲av成人精品一二三区| 国产乱人偷精品视频| 精品午夜福利在线看| 一级毛片aaaaaa免费看小| 97在线视频观看| 另类亚洲欧美激情| 欧美国产精品一级二级三级 | 五月伊人婷婷丁香| 中文字幕免费在线视频6| 视频区图区小说| 熟妇人妻不卡中文字幕| 日本wwww免费看| 国产色爽女视频免费观看| 精品午夜福利在线看| 久久久欧美国产精品| 青青草视频在线视频观看| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 亚洲av二区三区四区| 五月伊人婷婷丁香| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 熟妇人妻不卡中文字幕| 日日撸夜夜添| av在线老鸭窝| 国产亚洲欧美精品永久| h视频一区二区三区| 伦理电影免费视频| 日日摸夜夜添夜夜添av毛片| 免费观看性生交大片5| 色网站视频免费| 女性被躁到高潮视频| 男的添女的下面高潮视频| 亚洲欧美一区二区三区国产| 这个男人来自地球电影免费观看 | 久久女婷五月综合色啪小说| 嫩草影院入口| 国产熟女欧美一区二区| 成年人午夜在线观看视频| 婷婷色麻豆天堂久久|