• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self nano-emulsifying drug delivery system for Embelin:Design,characterization and in-vitro studies

    2015-05-16 03:18:20KomlPrmrJyvdnPtelNvinSheth

    Koml Prmr*,Jyvdn Ptel,Nvin Sheth

    aDepartment of Pharmaceutical Sciences,Saurashtra University,Rajkot,Gujarat 360005,IndiabNootan Pharmacy College,Visnagar,Gujarat 384315,India

    Self nano-emulsifying drug delivery system for Embelin:Design,characterization and in-vitro studies

    Komal Parmara,*,Jayvadan Patelb,Navin Shetha

    aDepartment of Pharmaceutical Sciences,Saurashtra University,Rajkot,Gujarat 360005,IndiabNootan Pharmacy College,Visnagar,Gujarat 384315,India

    ARTICLEINFO

    Article history:

    Received 12 February 2015

    Received in revised form 22 April 2015

    Accepted 27 April 2015

    Available online 12 May 2015

    Embelin

    CThe objective of the present study was to prepare solid self-nanoemulsifying drug delivery system(S-SNEDDS)containing Capryol-90 as oil phase for the delivery of Embelin,a poorly water soluble herbal active ingredient.Box-Behnken experimental design was employed to optimise the formulation variables,X1(amount of oil;Capryol 90),X2(amount of surfactant;Acrysol EL 135)and X3(amount of co-surfactant;PEG 400).Systems were appraised for visual characteristics forselfemulsifyingtime,globule size anddrugrelease.Optimisedliquid formulations were formulated into free flowing granules(S-SNEDDS)by adsorption on the porous materials like Aerosil 200 and Neusilin and thereby compressed into tablet.In vitro dissolution studies of SNEDDS revealed increased in the dissolution rate of the drug.FT-IR data revealed no physicochemical interaction between drug and excipients.Solid state characterization of S-SNEDDS by DSC and Powder XRD confirmed reduction in drug crystallinity which further supports the results of dissolution studies.TEM analysis exhibited spherical globules.Further,the accelerated stability studies for 6 months revealed that S-SNEDDS of Embelin are found to be stable without any significant change in physicochemical properties.Thus,the present studies demonstrated dissolution enhancement potential of porous carrier based S-SNEDDS for poorly water soluble herbal active ingredient,Embelin.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    1. Introduction

    Embelin,(EMN)a benzoquinone found in Vidanga,is poorly water soluble drug which possess wide range of medicinal properties.Embelin exhibits antibacterial,antifertility and antioxidant properties[1-3].EMN plays an important role in diabetes by counteracting high levels of glucose in the blood [4].EMN demonstrates cytotoxic effect and inhibits cell proliferation in various cancer cell types[5].However,thebioavailability of EMN is extremely erratic due to inherent poor aqueous solubility and dissolution properties[6].With the objective of improving the poor solubility and dissolution properties of drug,advanced drug delivery systems are requisite.

    Oral bioavailability of poorly water soluble drugs may be enhanced if formulated with lipids.One of the accepted approaches is the exploitation of lipid and surfactant based drug delivery systems(SNEDDS)[7].SNEDDS are the isotropic mixtures of drug,lipid and surfactants,usually with one or more hydrophilic co-solvents or co-emulsifiers which upon mild agitation generates ultrafine droplets of oil in water nanoemulsion[8].The free energy required for self nano emulsification process is low.Thus,the process will occur spontaneously[9].The enhanced interfacial area of micronized globules will facilitate the dissolution of drug thereby improving the bioavailability and enhance permeability through biological membranes due to presence of lipid and surfactant[10].Therefore,solid SNEDDS is highly coveted due to its scalability and lustiness along with all advantages of liquid system.

    Therefore,in light of this,the present investigation was carried out to improve dissolution characteristics of EMN by preparing SNEDDS.Box Behnken Design was applied to optimize SNEDDS containing EMN.Box Behnken Design is an independent,rotatable,or nearly rotatable quadratic design (contains no embedded factorial or fractional factorial design), in which the treatment points are the end of the edges of the process space and at the centre[11].Among all the Response surface methodology designs,Box-Behnken design requires fewer runs(13 runs)in a 3-factor experimental design[12]. Hence,the Box-Behnken Design was applied to optimize EMNSNEDDS.Independent variables(factors)selected were amount of oil(Capryol 90)(X1),amount of surfactant(Acrysol EL 135) (X2)and amount of co-surfactant(PEG 400)(X3).The depended variables included globule size in nanometer(Y1)and self emulsification time in sec(Y2).To optimise EMN SNEDDS, mathematical model equations were derived by computer simulation programming Design Expert 8.0.5 software(State-Ease Inc.Mineapolis,USA).Physicochemical characterization was done by Fourier Transform Infrared Spectroscopy,Differential Scanning Calorimetry and Powder X-Ray Diffraction studies. To understand the morphology,diluted SNEDDS of EMN were subjected to Transmission Electron Microscopy studies.

    2. Materials and methods

    2.1. Materials

    EMN was a gift sample from BR Nahta College of Pharmacy, Mandsaur,India.Capryol 90,Labrafil and Paceol were gifted from Gattefosse,Mumbai,India.Oleic acid and Isopropyl myristate were purchased from Loba Chemie,Mumbai,India.Acrysol EL 135 and Acrysol K 140 were gift sample from Corel Pharma, Ahmedabad,India.Gelucire 44/14 was provided from Gatteffose India Pvt Ltd,Mumbai,India.Labrasol and Cremophore RH 40 were gifted from BASF,Mumbai,India.PEG 200,PEG 400 and Propylene glycol were purchased from Hi Media Labs,Mumbai, India.Aerosil 200 and Neusilin US2 were obtained from Gangwal Chemicals Ltd,Mumbai,India.All other ingredients used were of analytical grade.

    2.2. Solubility studies

    Solubility studies were conducted by adding an excess amount of EMN to 2 ml of oils,surfactants or co-surfactants.The mixtures were then swirled and sonicated for 30 min,respectively, followed by shaking at 37°C for 48 h using Water Bath Shaker (Remi,Mumbai,India).The mixtures were kept at room temperature for 24 h and centrifuged using 12C-micro centrifuge (Remi,Mumbai,India)at 3000 rpm for 15 min.The separated supernatant fraction was suitably diluted with methanol and analysed for drug concentration spectrophotometrically at λmax291 nm using UV-Visible spectrophotometer(Shimadzu 1800, Japan).

    2.3. Construction of ternary phase diagram

    Various mixtures with varying concentration of surfactant,cosurfactant and oil were prepared.Ternary diagrams of surfactant,co-surfactant and oil were plotted.The levels of surfactant,co-surfactant and oil were varied from 40%to 90% (w/w),0%to 30%(w/w)and 10%-60%(w/w),respectively.All compositions were examined for nanoemulsion formation after diluting each of the mixtures 200 times with distilled water. Thereafter,transmittance and globule size of the resulting dispersions were measured using UV-Visible Spectrophotometer (Shimadzu 1800,Japan)at 650 nm and Particle size analyser (Malvern Instruments,UK)respectively.Dispersions having globule size 200 nm or below were considered acceptable.

    2.4. Formulation and optimization of SNEDDS using Box-Behnken design

    Three factors,three level(33)and 13 runs Box-Behnken Experimental Design using Design Expert 8.0.5 software(State-Ease Inc.Mineapolis,USA)was employed to formulate liquid SNEDDS.The concentration of Capryol 90(X1),Acrysol EL 135 (X2)and PEG 400(X3)were selected as independent variables,while globule size in nanometer(Y1)and self emulsification time in sec(Y2)were selected as responses.Response surface analysis was carried out to study the effect of different independent variables on the observed responses.The independent and dependent variables are listed in Table 1. Weighed quantity of EMN(100 mg)was mixed with oil,surfactant and co-surfactant with continuous stirring to obtain a homogeneous mixture.The prepared liquid SNEDDS were stored in sealed transparent glass bottles at roomtemperature until used.The formulations were recorded for any changes in turbidity or phase separation.

    Table 1-Factors investigated using Box-Behnken experimental design.

    2.5. Characterization of SNEDDS

    2.5.1. Dispersibility studies

    Self emulsification time was assessed by dispersibility studies. One ml of SNEDDS was added drop wise to 500 ml of 0.1N HCl with gentle agitation using USPType II(paddle)dissolution apparatus rotating at 50 rpm at temperature 37±0.5°C.The process of self emulsification was visually monitored.Precipitation was assessed by visual monitoring of the resultant emulsion after 24 h storage at room temperature.

    2.5.2. Globule size,size distribution and zeta potential

    Malvern Zetasizer(Malvern Instruments,UK)was employed to determine globule size,polydispersity index and zeta potential.Liquid SNEDDS or Solid SNEDDS were diluted 1000 times with distilled water and shaken gently to form a fine emulsion and the resultant emulsion was utilised for the further study.The values of z-average diameters were used.

    2.5.3. Comparative in vitro drug release studies

    In vitro drug release studies of EMN drug loaded liquid SNEDDS, Solid-SNEDDS,Formulation based tablet and pure drug were carried out in USP type II dissolution apparatus(Model Disso 2000,Lab India)using 900 ml of phosphate buffer(pH 7.4)as dissolution media,at 50 rpm and temperature 37±0.5°C. Aliquots of 5 ml was withdrawn at suitable time interval(5, 10,15,20,30 45,60 and 90 min),filtered,appropriately diluted and analysed spectrophotometrically at λmaxof 291 nm by UV/ Visible spectrophotometer(UV-1800 Shimadzu,Japan).

    2.5.4. Refractive index measurement

    The optical clarity of the optimized liquid SNEDDS formulation was determined in terms of refractive index using Abbe’s refractrometer(Mettler Toledo,Mumbai,India).

    2.5.5. Transmission electron microscopy

    For visual observation optimized batch of SNEDDS was subjected to transmission electron microscopy(TEM)(H-7000, Hitachi,Japan).Briefly,a drop of diluted SNEDDS was placed on a copper grid stained with 1%w/v phosphotungistic acid solution for 5 min at room temperature.The image was taken with transmission electron microscope at an accelerated voltage of 100 kV.

    2.6. Preparation of Solid-SNEDDS

    The optimised liquid SNEDDS formulation was transformed into solid free flowing granules using Neusilin US2 and Aerosil 200 as adsorbent material.Appropriate quantities of adsorbent materials required to convert a given amount of liquid SNEDDS into an acceptably flowing and compressible system were determined.The solid formulations obtained were passed through sieve number 22 to achieve uniformly free flowing self nanoemulsifying granules(SNEG’s).The final blend of optimized batch obtained was compressed into tablet using Rotary tablet compression machine(Hardik,Tablet Press,Ahmedabad,India);flat faced and die sized 9 mm punch were used. For comparison other tablets were prepared by directly compressing powder mixture of EMN with Neusilin US2,Aerosil 200 and sodium starch glycolate.

    2.7. Characterization of Solid-SNEDDS

    ThepreparedS-SNEDDSwereevaluatedforvarious micromeritic properties viz.Bulk density,tapped density,angle of repose,Carr’s Index and Hausner’s ratio.In vitro drug release studies of S-SNEDDS and the tablet prepared were determined using dissolution studies.

    2.7.1. Drug content estimation

    Liquid SNEDDS,S-SNEDDS and tablet containing EMN,each equivalent to 100 mg of drug was dispersed into appropriate quantity of methanol,stirred sufficiently to dissolve the drug, and centrifuged at 3000 rpm for 15 min.The supernatant was duly diluted and analysed spectrophotometrically at λmaxof 291 nm by UV/visible spectrophotometer(UV-1800 Shimadzu, Japan).

    2.7.2. Fourier transformed infrared spectroscopy

    Fourier transformed infrared spectroscopy(FT-IR)of pure drug, optimized Solid-SNEDDS,Physical mixture and blank Solid-SNEDDS were carried out using KBr disc.The spectra were recorded using Fourier transform infrared spectrophotometer(Shimadzu 8400,Japan).Each KBr disc was scanned at 4 mm/s at a resolution of 2 cm over a wave number region of 4000-400 cm-1.An average of 20 scans was taken.

    2.7.3. Differential scanning calorimetry studies

    Thermal analysis of final formulation of pure drug,optimized Solid-SNEDDS,Physical mixture and blank Solid-SNEDDS were carried out using Differential scanning calorimeter(DSC)(Shimadzu,DSC 60TSW 60,Japan).Study was carried out between the range of 50-200°C,at a scanning rate of 10°C/min.An empty pan was used as a reference.

    2.7.4. Powder X-ray diffraction studies(PXRD)

    To observe crystallographic pattern of pure drug,optimized Solid-SNEDDS,Physical mixture and blank Solid-SNEDDS were carried out using Powder X-ray diffractometer(Phillips X-Pert MPD,The Netherlands)using a voltage of 45 kV,generator current 40 mA,scan step time 9 sec-1and scan step size of 0.008° (2θ).The scanning rate employed was maintained over the interval 1-50°2θ-1.

    2.7.5. Accelerated stability studies

    The optimised S-SNEDDS based tablets were stored at 40°±5°C/ 75±5%RH for 6 months.Samples were withdrawn at definite time interval(0,1,2,3 and 6 months)and analysed for self emulsification time,globule size and drug release at 15 min.

    3. Results and discussion

    3.1. Solubility studies

    Comparative study of solubility of EMN in various liquids is given in the Table 2.Solubility was found to be highest inCapryol 90,Acrysol EL 135 and PEG 400 among the oils,surfactants and co-surfactants respectively.They were further utilized for the construction of ternary phase diagram.

    Table 2-Solubility studies of EMN in various solvents.

    3.2. Construction of ternary phase diagrams

    Fig.1 depicts the phase diagram of the systems containing Capryol 90 as oil,Acrysol EL 135 as surfactant and PEG 400 as co-surfactant.The ternary phase diagrams were constructed to determine the concentration range of components for the formation of nanoemulsion.All the components were converted into weight/weight percent before construction of the phase diagram.The darker region in the phase diagram represents the self emulsification area.It was observed that the efficiency of emulsification was improved by the aid ofsurfactant-cosurfactant addition due to their higher hydrophilicity properties[13].Stable systems were observed with concentration of oil upto 45%w/w in the system.It was observed that addition of co-surfactant,PEG 400 improved the self emulsification property of the system[14].It was observed that spontaneous emulsion formation was not efficient with less than 45%w/w of the surfactant in the system.

    Table 3-Box-Behnken experimental design with measured responses.

    Table 4-Results of ANNOVA.

    3.3. Optimization of SNEDDS

    A Box-Behnken experimental design with 3 independent variables at 3 different levels was used to study the effect on dependent variables.A total of 13 formulations were prepared as per the experimental design and characterized further for responses like globule size and self emulsification time as shown in Table 3.For all the 13 batches dependent variables, globule size(Y1)and self emulsification time(Y2)demonstrated wide variations from 28.85±1.82 to 99.35±1.33 nm and 20.68±2.49 to 113.38±4.13 s respectively indicating good influence of independent variables(X1,X2 and X3)on the selected responses.

    The relationship between the dependent and independent variables was further enlightened using response surface plot shown in Fig.2.The mathematical relationships were established and coefficients of second order polynomial equation generated using multi linear regression analysis for globule size and self emulsification time.The equations were found to be quadratic in nature with interaction terms.The coefficients of the polynomials fitted well to the data,with the values of R2, 0.9964 and 0.9978 for Y1 and Y2 respectively.

    Fig.2a depicts an interaction effect between oil(Capryol 90) and surfactant(Acrysol EL 135)on the globule size as dependent variable.With increasing the amount of Capryol 90 and Acrysol EL 135,a linear increase in the globule size was observed.Fig.2b shows the response surface plot,characterizing increase in the SEF with increase in the concentration of oil (Capryol 90)and co-surfactant(PEG 400).All the response surfaces were fitted with quadratic polynomial models.TheANOVA results are shown in Table 4.The F calculated value 4.16 and 3.38 is less than the table value 9.55 for Y1 and Y2,respectively.Hence it is concluded that the omitted terms do not significantly contribute in predicting globule size and self emulsification time.

    Using software optimisation process and response surface plots shown in Fig.2c,level selected for X1,X2 and X3 were 49.50,115.50 and 24.75 respectively,which gives theoretical values of 33.39 nm and 23.26 s for globule size and self emulsification time respectively.Fresh formulation was prepared using the optimum levels of independent variables.The observed values of globule size and self emulsification time were found to be 30.15±2.68 nm and 21.62±1.19 s,respectively, which were in close agreement with the theoretical values.

    3.4. Characterization of SNEDDS

    Table 3 summarised mean globule size and self emulsification time of prepared SNEDDS(E1-E13).The largest droplet size appeared in E6 of 99.35±1.33 nm which could be due to presence of high amount of oil and lesser amount of surfactantco-surfactant mixture[15].All the liquid formulations showed good self emulsification efficiency forming nanoemulsion immediately after dilution.In vitro drug release study data as shown in Fig.3,revealed dissolution enhancement with morethan 80%drug release in initial 15 min while pure drug release was found to be 5.7±0.30%within 15 min.This suggested that dissolution enhancement of pure drug in formulation might be imputed to solubility enhancement property of selected excipients[16].

    Zeta potential values of E1 to E13 as depicted in Table 5 were found in the range of-31.47±1.76 mV to-26.02±1.53 mV. Optimisedformulationhadzetapotentialvalueof -28.69±1.67 mV.Zeta potential values in the range of-25 mV to-30 mV in either charge signifies a stable formulation[17]. Polydispersity index is the measure of globule size homogeneity.Value closer to zero,more homogeneous are the particles. Refractive index(RI)values of SNEDDS were found to be in the range of 1.35±0.03 to 1.57±0.02.RI of optimized batch was found to be 1.38±0.03.PI and RI values are shown in Table 5. TEM image of the optimized SNEDDS after dilution appeared as dark globules as depicted in Fig.4.

    3.5. Characterization of Solid-SNEDDS

    The drug loaded S-SNEDDS were prepared choosing optimised batch as per the composition illustrated in Table 6.Tablets were preparedusing5%w/wSodiumstarchglycolateas superdisintegrant.Results of micromeritic properties indicate good flow property of the formulation with values of angle of repose;25.5,Carr’s Index;20.5 and Hausner’s ratio;1.15.The In-vitro dissolution studies revealed faster drug release property with 99.60±0.85%of drug release within 15 min.

    The tablet hardness was found to be 5 kg/cm2,disintegration time less than 3 min and friability less than 1%.

    Table 6-Composition of optimised batch.

    3.5.1. Comparative in-vitro drug release studies

    In vitro drug release studies of pure drug,optimised liquid SNEDDS,S-SNEDDS and prepared tablet were carried out using dissolution studies as shown in Fig.5.The drug release demonstrated optimized liquid SNEDDS,S-SNEDDS and prepared tablet exhibited faster drug release within 15 min up to 99.60±0.85%,97.80±1.27%and 96.45±1.91%respectively,in comparison to 5.7±0.30%of pure drug.The faster drug release from liquid SNEDDS might be attributed to spontaneous nanoemulsion formation[18].Drug release from S-SNEDDS was slightly lower than liquid SNEDDS,it might be attributed to the presence of adsorbent materials while that for tablet,additional process of disintegration of tablet into granules and then desorption of liquid SNEDDS from excipients surface might be the reason.

    3.5.2. Fourier transformed infrared(FT-IR)spectroscopy

    The FT-IR spectra,Fig.6(a)of drug showed bands at 3398(-OH), 3001(-CH)and 1776(C=O)cm-1.Drug loaded S-SNEDDS systemFig.6(b)showed no specific physicochemical interaction.It was observed that all important peaks due to functional group of drug were presented in physical mixture,Fig.6(c).There was no significant difference found in wave number(cm-1)of the drug,broadening effect was observed[19].

    Table 5-Values of polydispersity index,refractive index and zeta potential.

    3.5.3. Differential scanning calorimetry studies

    Fig.7 shows DSC thermograms of pure EMN(a),optimized S-SNEDDS(b),Physical mixture(c)and blank S-SNEDDS(d).The thermogram of EMN showed a single endothermic peak at 149°C,whereasthermogramofS-SNEDDSshowed dissappearance of characteristic peak of EMN,supporting molecular dispersion of drug in excipients and conversion of crystalline form into amorphous form[20].Physical mixture showed retention of characteristic peak of EMN.

    3.5.4. Powder X-ray diffraction studies(PXRD)

    The PXRD of EMN in Fig.8(a)showed sharp peaks at 13.3°,16.2°, 19.0°,21.6°,23.5°and 25.3°demonstrating its crystalline nature whereas spectra of optimized S-SNEDDS Fig.8(b)showed disappearance of sharp peaks of EMN indicating conversion into amorphous form[21,22].Physical mixture,Fig.8(c)showed sharp peaks of ELN at 13.3°,19.0°and 21.6°.Amorphous halo peaks were observed in the diffractogram of blank S-SNEDDS with a peak at 21.8°corresponding to peak of PEG 400.

    3.5.5. Accelerated stability studies

    Results of different parameters like self emulsification time, globule size and drug release of optimized S-SNEDDS based tablet were evaluated at specific intervals(0,1,2,3 and 6 months)are depicted in Table 7.Results showed that there was no significant change in these parameters.

    4. Conclusion

    In the present investigation,SNEDDS formulation was proposed to enhance the dissolution properties of poorly water soluble herbal active ingredient,EMN.Liquid SNEDDS were transformed into S-SNEDDS by adsorbing onto adsorbents, Aerosil 200 and Neusilin US2.The drug release studies revealed higher and uniform release of EMN from the formulations.DSC and PXRD studies indicated incorporation of drug into SNEDDS components.EMN SNEDDS were found to be chemically and physically stable for 6 months.Thus,it can be inferred that physicochemically stable EMN SNEDDShave potential to enhance the dissolution properties of poorly water soluble drug,EMN.

    Table 7-Characterization of optimised S-SNEDDS based tablet during accelerated stability studies at 40°C/75%RH.

    Acknowledgement

    The authors are thankful to Mr.Swapnil Goyal(Asst.Prof.,BR Nahta College of Pharmacy,Mandsaur)for providing the gift sample of EMN.

    REFERENCES

    [1]Chitra M,Shyamala C,Sukumar E..Antibacterial activity of embelin.Fitoterapia 2003;74:401-403.

    [2]Radhakrishnan N,Alam M..Antifertility effects of embelin in albino rats.Indian J Exp Biol 1975;13:70-71.

    [3]Gupta R,Sharma A,Sharma M,et al.Antioxidant activity and protection of pancreatic β-cells by embelin in streptozotocin-induced diabetes.J Diabetes 2012;4:248-256.

    [4]Tripathi S..Screening of hypoglycemic action in certain indigenous drugs.J Res Ind Med 1979;14:159-169.

    [5]Joy B,Lakshmi S..Antiproliferative properties of embelia ribes.Open Proc Chem J 2010;3:17-22.

    [6]Pathan R,Bhandari U..Preparation and characterization of embelin-phospholipid complex as effective drug delivery tool.J Incl Phenom Macro Chem 2012;69:139-147.

    [7]Jun H,Dong H,Yu K,et al.Effects of solid carriers on the crystalline properties,dissolution and bioavailability of flurbiprofen in solid self-nanoemulsifying drug delivery system(solid SNEDDS).Eur J Pharm Biopharm 2012;80:289-297.

    [8]Nicholas C,Kenneth C,Ifeanyi T,et al.Self-Nanoemulsfiying drug delivery systems based on melon oil and its admixture with a homolipid from Bos indicus for the delivery of Indomethacin.Trop J Pharm Res 2011;10:299-307.

    [9]Porter C,Pouton C,Cuine J,et al.Enhancing intestinal drug solubilisation using lipid-based delivery systems.Adv Drug Deliv Rev 2008;60:673-691.

    [10]Wang L,Dong J..Design and optimization of a new selfnanoemulsifying drug delivery system.J Colloid Interface Sci 2009;330:443-448.

    [11]Box G,Behnken D..Some new three level designs for the study of quantitative variables.Technometrics 1960;2:455-475.

    [12]Nazzal S,Nutan M,Palamakula A,et al.Optimization of a self-nanoemulsifed tablet dosage form of ubiquinone using response surface methodology:effect of formulation ingredients.Int J Pharm 2002;240:103-114.

    [13]Rizwan M,Aqil M,Azeem A,et al.Enhanced transdermal delivery of carvedilol using nanoemulsion as a vehicle.J Exp Nanosci 2010;5:390-411.

    [14]Kommuru T,Gurley B,Khan M,et al.Self-emulsifying drug delivery systems(SEDDS)of coenzyme Q10:formulation development and bioavailability assessment.Int J Pharm 2001;212:233-246.

    [15]Gupta S,Chavhan S,Sawant K..Self-nanoemulsifying drug delivery system for adefovir dipivoxil:design, characterization,in vitro and ex vivo evaluation.Colloids Surf A:Physicochem Eng Apects 2011;392:145-155.

    [16]Beg S,Jena S,Patra C,et al.Development of solid selfnanoemulsifying granules(SSNEGs)of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B:Biointerfaces 2013;101:414-423.

    [17]Shakeel F,Haq N,El-Badry M,et al.Ultra fine super selfnanoemulsifying drug delivery system(SNEDDS)enhanced solubility and dissolution of indomethacin.J Mol Liq 2013;180:89-94.

    [18]Beg S,Swain S,Singh H,et al.Development,optimization and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers.AAPS Pharm Sci Tech 2012;13:1416-1427.

    [19]Patel M,Patel N,Patel R,et al.Formulation and evaluation of self-emulsifying drug delivery system of lovastatin.Asian J Pharm Sci 2010;5:266-275.

    [20]Shanmugam S,Baskaran R,Balakrishnan P,et al.Solid self nanoemulsifying drug delivery system(S-SNEDDS) containing phosphatidylcholine for enhanced bioavailability of highly lipophilic bioactive carotenoid lutein.Eur J Pharm Biopharm 2011;70:250-257.

    [21]Shrivastava A,Kapadia U..Design,optimization, preparation and evaluation of dispersion granules of valsartan and formulation into tablets.Curr Drug Deliv 2009;6:28-37.

    [22]Dixit R,Nagarsenkar M..Self nanoemulsifying granules of ezetimibe:design,optimization and evaluation.Eur J Pharm Sci 2008;35:183-192.

    *Corresponding author.Department of Pharmaceutical Sciences,Saurashtra University,Rajkot 360 005,Gujarat,India.Tel.:+91 281 2578501; fax:+91 281 2585083.

    E-mail address:komal.parmar2385@gmail.com(K.Parmar).

    Peer review under responsibility of Shenyang Pharmaceutical University.

    http://dx.doi.org/10.1016/j.ajps.2015.04.006

    1818-0876/?2015 Production and hosting by Elsevier B.V.on behalf of Shenyang Pharmaceutical University.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    SNEDDS

    Dissolution enhancement Box-Behnken design

    Characterization

    成熟少妇高潮喷水视频| 精品日产1卡2卡| 国产成人欧美在线观看| 高清av免费在线| www.熟女人妻精品国产| 人人澡人人妻人| 亚洲av成人一区二区三| 欧美成人午夜精品| 在线免费观看的www视频| 国产成人精品久久二区二区91| 99精品久久久久人妻精品| 午夜成年电影在线免费观看| 又黄又爽又免费观看的视频| 久久国产乱子伦精品免费另类| 色综合站精品国产| 在线观看免费午夜福利视频| 国产精品电影一区二区三区| 一区二区三区激情视频| 99精品欧美一区二区三区四区| 一级,二级,三级黄色视频| 久久草成人影院| 咕卡用的链子| 国产三级在线视频| 天堂动漫精品| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 不卡一级毛片| 19禁男女啪啪无遮挡网站| 欧美精品一区二区免费开放| 窝窝影院91人妻| 亚洲精品中文字幕在线视频| 19禁男女啪啪无遮挡网站| 麻豆国产av国片精品| 两个人看的免费小视频| 亚洲欧美激情在线| 午夜免费观看网址| 久9热在线精品视频| 黑人欧美特级aaaaaa片| 亚洲成人久久性| 99国产精品免费福利视频| 在线观看免费日韩欧美大片| 欧美久久黑人一区二区| 欧美亚洲日本最大视频资源| 国产一区二区在线av高清观看| 欧美色视频一区免费| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 亚洲av成人av| 欧美日韩福利视频一区二区| 精品卡一卡二卡四卡免费| 韩国精品一区二区三区| 中文字幕人妻丝袜制服| 免费久久久久久久精品成人欧美视频| 国产精品一区二区精品视频观看| 精品福利永久在线观看| 正在播放国产对白刺激| 亚洲成人久久性| 黄色视频不卡| 99久久精品国产亚洲精品| 精品国产国语对白av| 国产精品影院久久| 日日干狠狠操夜夜爽| 久久草成人影院| 免费日韩欧美在线观看| 日韩欧美一区二区三区在线观看| 成人手机av| 9色porny在线观看| 日本免费一区二区三区高清不卡 | 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 校园春色视频在线观看| 国产在线精品亚洲第一网站| 又大又爽又粗| 国产av一区二区精品久久| 亚洲熟妇中文字幕五十中出 | 久9热在线精品视频| bbb黄色大片| 欧美日韩一级在线毛片| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人爽av亚洲精品天堂| 国产亚洲精品一区二区www| 丰满饥渴人妻一区二区三| 欧美av亚洲av综合av国产av| 久久久水蜜桃国产精品网| 欧美精品一区二区免费开放| 欧美日韩一级在线毛片| 夫妻午夜视频| 国产熟女xx| 色哟哟哟哟哟哟| 美女午夜性视频免费| 在线天堂中文资源库| 亚洲人成电影免费在线| 亚洲午夜理论影院| 亚洲国产毛片av蜜桃av| 欧美在线一区亚洲| 日韩大尺度精品在线看网址 | 深夜精品福利| 亚洲欧美激情综合另类| 久热爱精品视频在线9| 国产91精品成人一区二区三区| 久久精品亚洲av国产电影网| netflix在线观看网站| 丁香欧美五月| 91国产中文字幕| 免费观看精品视频网站| 成人三级黄色视频| 中亚洲国语对白在线视频| 免费久久久久久久精品成人欧美视频| 夜夜看夜夜爽夜夜摸 | 男女高潮啪啪啪动态图| 精品电影一区二区在线| 欧美成人性av电影在线观看| 国产av一区在线观看免费| 午夜两性在线视频| 国产三级黄色录像| 免费不卡黄色视频| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院| 久9热在线精品视频| 久久精品国产综合久久久| 成人三级黄色视频| 亚洲色图 男人天堂 中文字幕| 美女福利国产在线| 色哟哟哟哟哟哟| 国产又色又爽无遮挡免费看| 久久久久久大精品| 后天国语完整版免费观看| 久久 成人 亚洲| 久久久久亚洲av毛片大全| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| 悠悠久久av| 久久久精品欧美日韩精品| 中出人妻视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产精品av久久久久免费| 亚洲国产中文字幕在线视频| 一进一出抽搐gif免费好疼 | 精品国产超薄肉色丝袜足j| 亚洲精品粉嫩美女一区| av网站在线播放免费| 亚洲人成网站在线播放欧美日韩| 欧美日本中文国产一区发布| 国产97色在线日韩免费| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 少妇的丰满在线观看| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 极品人妻少妇av视频| 亚洲av五月六月丁香网| 国产亚洲欧美在线一区二区| 欧洲精品卡2卡3卡4卡5卡区| 国产深夜福利视频在线观看| 18美女黄网站色大片免费观看| 一级毛片精品| 日韩欧美一区视频在线观看| 一进一出抽搐动态| av免费在线观看网站| 中文字幕人妻丝袜一区二区| 婷婷丁香在线五月| 妹子高潮喷水视频| 亚洲欧美一区二区三区黑人| 亚洲 欧美一区二区三区| 日韩免费av在线播放| 日本a在线网址| 最近最新中文字幕大全电影3 | 亚洲午夜理论影院| 亚洲,欧美精品.| 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 亚洲视频免费观看视频| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 亚洲av电影在线进入| 高清av免费在线| 麻豆久久精品国产亚洲av | 国产精品亚洲一级av第二区| 日韩视频一区二区在线观看| 9色porny在线观看| 男人舔女人下体高潮全视频| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站 | 一级,二级,三级黄色视频| 一级毛片精品| 1024香蕉在线观看| 可以免费在线观看a视频的电影网站| 女同久久另类99精品国产91| 淫秽高清视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美+亚洲+日韩+国产| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区免费| 人人妻人人爽人人添夜夜欢视频| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 久久中文字幕一级| 国产人伦9x9x在线观看| 啦啦啦免费观看视频1| 男人操女人黄网站| 亚洲精品一卡2卡三卡4卡5卡| av有码第一页| 久久久久久久久免费视频了| av欧美777| 亚洲人成电影免费在线| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 琪琪午夜伦伦电影理论片6080| 精品久久久久久成人av| 91字幕亚洲| 夜夜爽天天搞| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| xxxhd国产人妻xxx| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 99久久国产精品久久久| 热re99久久精品国产66热6| 久久人妻熟女aⅴ| 高潮久久久久久久久久久不卡| 最好的美女福利视频网| 中文字幕人妻熟女乱码| 精品国产亚洲在线| 色精品久久人妻99蜜桃| 99久久99久久久精品蜜桃| 精品久久蜜臀av无| 嫩草影视91久久| 久久久久国内视频| a级毛片黄视频| 久久久久久久午夜电影 | 国产精品二区激情视频| 校园春色视频在线观看| 波多野结衣av一区二区av| 制服诱惑二区| 亚洲欧美激情在线| 中亚洲国语对白在线视频| 女人爽到高潮嗷嗷叫在线视频| 久久天堂一区二区三区四区| av网站在线播放免费| 亚洲 国产 在线| 国产成人影院久久av| 欧美人与性动交α欧美软件| 一区福利在线观看| 在线观看免费日韩欧美大片| 国产高清videossex| 精品一区二区三区视频在线观看免费 | 亚洲精品一卡2卡三卡4卡5卡| 啦啦啦免费观看视频1| 高清黄色对白视频在线免费看| 熟女少妇亚洲综合色aaa.| 一本综合久久免费| 新久久久久国产一级毛片| 大陆偷拍与自拍| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 国产一卡二卡三卡精品| 欧美人与性动交α欧美精品济南到| 美女福利国产在线| 国产不卡一卡二| 电影成人av| 亚洲精品久久午夜乱码| 动漫黄色视频在线观看| 天堂俺去俺来也www色官网| 一区二区日韩欧美中文字幕| bbb黄色大片| 亚洲色图综合在线观看| 国产真人三级小视频在线观看| 一区二区三区精品91| 欧美乱码精品一区二区三区| 日本 av在线| 中文字幕人妻熟女乱码| 91精品国产国语对白视频| 老熟妇乱子伦视频在线观看| 亚洲成人精品中文字幕电影 | 国产精品 国内视频| 久久热在线av| 久久精品91蜜桃| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| 黄色怎么调成土黄色| 在线观看www视频免费| videosex国产| 亚洲avbb在线观看| 亚洲精品成人av观看孕妇| 在线天堂中文资源库| 极品人妻少妇av视频| 老司机亚洲免费影院| 另类亚洲欧美激情| 成人黄色视频免费在线看| 色综合婷婷激情| 在线观看免费视频网站a站| 国产精华一区二区三区| 麻豆一二三区av精品| 亚洲国产精品999在线| 国产成人影院久久av| 精品高清国产在线一区| 亚洲国产毛片av蜜桃av| 在线观看午夜福利视频| 丁香六月欧美| 亚洲成人免费av在线播放| 免费看十八禁软件| 精品高清国产在线一区| 国产又色又爽无遮挡免费看| 中文欧美无线码| 国产精品免费视频内射| 麻豆av在线久日| 曰老女人黄片| 亚洲黑人精品在线| 色老头精品视频在线观看| 久久中文字幕一级| 成人永久免费在线观看视频| 精品国产乱码久久久久久男人| 中文字幕高清在线视频| 亚洲人成77777在线视频| 国产99久久九九免费精品| 黄片小视频在线播放| 午夜成年电影在线免费观看| 男女做爰动态图高潮gif福利片 | 国产精品野战在线观看 | 好看av亚洲va欧美ⅴa在| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区av网在线观看| 亚洲av美国av| 黑人欧美特级aaaaaa片| www.999成人在线观看| 国产av一区在线观看免费| 国产主播在线观看一区二区| 色尼玛亚洲综合影院| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看| 精品一区二区三卡| 精品欧美一区二区三区在线| av在线播放免费不卡| 91麻豆av在线| 成人三级黄色视频| 老司机福利观看| 搡老岳熟女国产| 久久久国产成人精品二区 | 国产人伦9x9x在线观看| 亚洲成人国产一区在线观看| 久久人人爽av亚洲精品天堂| 国产一区二区三区综合在线观看| 淫妇啪啪啪对白视频| 亚洲男人天堂网一区| 久久热在线av| 亚洲精品美女久久av网站| 淫妇啪啪啪对白视频| 88av欧美| 日日爽夜夜爽网站| 欧美日韩中文字幕国产精品一区二区三区 | 国产区一区二久久| 在线观看一区二区三区激情| 成人亚洲精品av一区二区 | 高潮久久久久久久久久久不卡| 国产成年人精品一区二区 | 久久人妻福利社区极品人妻图片| netflix在线观看网站| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 老司机亚洲免费影院| 欧美成人性av电影在线观看| 水蜜桃什么品种好| 中国美女看黄片| 国产精品亚洲一级av第二区| 香蕉国产在线看| 欧美亚洲日本最大视频资源| 99久久国产精品久久久| 午夜影院日韩av| 首页视频小说图片口味搜索| av在线播放免费不卡| 国产激情久久老熟女| 亚洲片人在线观看| 级片在线观看| 中文字幕人妻丝袜一区二区| 国产成人免费无遮挡视频| 日韩三级视频一区二区三区| 91精品国产国语对白视频| 久久久国产精品麻豆| 91在线观看av| 亚洲精品中文字幕一二三四区| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 妹子高潮喷水视频| 人人妻人人澡人人看| cao死你这个sao货| 老司机亚洲免费影院| 日韩av在线大香蕉| 久久国产精品影院| 青草久久国产| 一进一出抽搐gif免费好疼 | 国产蜜桃级精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 91麻豆精品激情在线观看国产 | 90打野战视频偷拍视频| 亚洲专区字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 操出白浆在线播放| 国产野战对白在线观看| 欧美另类亚洲清纯唯美| 啦啦啦免费观看视频1| av片东京热男人的天堂| 欧美日韩亚洲高清精品| 新久久久久国产一级毛片| 嫩草影院精品99| 99久久综合精品五月天人人| 国产精品影院久久| 波多野结衣一区麻豆| 在线观看66精品国产| 午夜亚洲福利在线播放| 精品国产一区二区久久| 国产成+人综合+亚洲专区| 亚洲狠狠婷婷综合久久图片| av国产精品久久久久影院| avwww免费| 亚洲人成电影观看| 9色porny在线观看| 色在线成人网| 在线看a的网站| 久久伊人香网站| 亚洲第一av免费看| bbb黄色大片| 国产无遮挡羞羞视频在线观看| 啪啪无遮挡十八禁网站| 一本综合久久免费| 美女高潮到喷水免费观看| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 日韩一卡2卡3卡4卡2021年| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 老熟妇乱子伦视频在线观看| 日韩欧美免费精品| 91精品国产国语对白视频| 十八禁网站免费在线| 高清在线国产一区| 日本 av在线| 色综合欧美亚洲国产小说| 91成人精品电影| 免费在线观看黄色视频的| 动漫黄色视频在线观看| 99在线人妻在线中文字幕| 两性夫妻黄色片| 免费久久久久久久精品成人欧美视频| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av| 国产国语露脸激情在线看| 亚洲熟女毛片儿| 人成视频在线观看免费观看| 黑人操中国人逼视频| 天堂√8在线中文| 最近最新中文字幕大全电影3 | 久久久国产成人免费| 亚洲专区国产一区二区| 一夜夜www| 国产熟女xx| av欧美777| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区| 日韩欧美免费精品| 中文字幕人妻熟女乱码| 50天的宝宝边吃奶边哭怎么回事| 一二三四在线观看免费中文在| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 亚洲欧洲精品一区二区精品久久久| 女同久久另类99精品国产91| 日韩欧美三级三区| 一级作爱视频免费观看| 不卡av一区二区三区| 1024香蕉在线观看| 成年人黄色毛片网站| 不卡av一区二区三区| 丰满的人妻完整版| 成人手机av| 亚洲中文日韩欧美视频| 一区福利在线观看| 亚洲人成电影免费在线| 美女国产高潮福利片在线看| 国产精品二区激情视频| 老司机午夜十八禁免费视频| 精品福利观看| 亚洲av日韩精品久久久久久密| 国产亚洲欧美98| 日韩中文字幕欧美一区二区| 一个人免费在线观看的高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产无遮挡羞羞视频在线观看| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 伊人久久大香线蕉亚洲五| 母亲3免费完整高清在线观看| 一级毛片高清免费大全| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 91九色精品人成在线观看| 国产主播在线观看一区二区| 人人妻人人澡人人看| 一二三四在线观看免费中文在| 久久久国产精品麻豆| 在线播放国产精品三级| 精品电影一区二区在线| 久久亚洲真实| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 精品久久久久久电影网| 亚洲三区欧美一区| 欧美激情高清一区二区三区| 黑人欧美特级aaaaaa片| avwww免费| 在线观看日韩欧美| 欧美日韩av久久| 午夜福利免费观看在线| 久久久久精品国产欧美久久久| av中文乱码字幕在线| 成人手机av| 九色亚洲精品在线播放| 国产一区二区三区在线臀色熟女 | 在线天堂中文资源库| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 超色免费av| 又黄又爽又免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区 | 黑丝袜美女国产一区| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 99精品久久久久人妻精品| av免费在线观看网站| 丝袜美腿诱惑在线| 脱女人内裤的视频| 国产蜜桃级精品一区二区三区| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 高清黄色对白视频在线免费看| 在线观看免费高清a一片| 欧美午夜高清在线| 可以免费在线观看a视频的电影网站| 欧美日韩亚洲高清精品| 免费看十八禁软件| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲专区国产一区二区| а√天堂www在线а√下载| 热re99久久国产66热| 老汉色av国产亚洲站长工具| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| 无人区码免费观看不卡| 激情视频va一区二区三区| 免费人成视频x8x8入口观看| 欧美日韩国产mv在线观看视频| 99国产精品免费福利视频| 黑人猛操日本美女一级片| 欧美av亚洲av综合av国产av| 国产麻豆69| 成人av一区二区三区在线看| 这个男人来自地球电影免费观看| 日韩精品中文字幕看吧| 久久久精品欧美日韩精品| 免费在线观看日本一区| 国产欧美日韩一区二区三| 国产区一区二久久| 久久人人97超碰香蕉20202| 成年人黄色毛片网站| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 黄色成人免费大全| 视频在线观看一区二区三区| 亚洲五月色婷婷综合| 久久性视频一级片| 欧美日韩亚洲高清精品| 三级毛片av免费| 日韩欧美国产一区二区入口| 亚洲人成伊人成综合网2020| 韩国精品一区二区三区| 午夜老司机福利片| 日韩欧美国产一区二区入口| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 可以免费在线观看a视频的电影网站| 欧美在线黄色| 免费久久久久久久精品成人欧美视频| 一a级毛片在线观看| 日韩欧美在线二视频| 在线永久观看黄色视频| 国产精品一区二区在线不卡| 国产精品免费一区二区三区在线| 9色porny在线观看| 一二三四社区在线视频社区8| 日韩大尺度精品在线看网址 | 露出奶头的视频| 搡老熟女国产l中国老女人| 免费观看人在逋| 久久久久国产精品人妻aⅴ院| 日韩av在线大香蕉| 亚洲午夜精品一区,二区,三区| 久久久久久久久久久久大奶| 亚洲五月色婷婷综合| 亚洲色图 男人天堂 中文字幕| 亚洲成人久久性| 热99re8久久精品国产| 男女午夜视频在线观看| 亚洲欧美精品综合久久99| 男女下面进入的视频免费午夜 | 99久久人妻综合| 国产成人欧美在线观看|