• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Technical crystallization for application in pharmaceutical material engineering:Review article

    2015-05-16 02:14:02AbdulKhaliqEl-ZhryEl-Yafi,HindEl-Zein

    Technical crystallization for application in pharmaceutical material engineering:Review article

    ARTICLEINFO

    Article history∶

    Received 11 October 2014

    Received in revised form

    15 February 2015

    Accepted 25 March 2015

    Available online 4 April 2015

    In recent years,engineering the total morphology of pharmaceutical materials particles to desirable shape,size and surface area has long been actively increased because it has many advantages especially for improving physicochemical properties of Active Pharmaceutical Ingredients(APIs).This article therefore considers the potential utility of crystal engineering as a tool for controlling and designing properties of pharmaceutical solid particles in purpose to developing ef fi cacious performance of solid dosage form,fundamentals of crystallization process,applications.In addition,understanding the relationship between molecular recognition,thermodynamic,and kinetics which controls the crystallization process so that it bene fi ts in designing successful experiments to have desirable crystal habit for materials.

    ?2015 Shenyang Pharmaceutical University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

    1. Introduction

    Drug molecules with limited micromeritic properties& aqueous solubility(about 90%of new API's having low solubility in water)[1]are becoming increasingly prevalent in the research and development of new drugs[2].Nowadays, increasing energy prices and the inef fi cient manufacturing have made pharmaceutical companies face cost pressures. Therefore,the primary aim of pharmaceutical material engineering is to improve designed particles of solid pharmaceutical dosage forms which results in improving the ef fi ciency of the manufacturing processes and giving a high degree offunctionality to the drug or excipient particles(especially of pharmaceutical materials for direct compression)[3]in pharmaceuticalproducts.Materials in the solid state depending on the internal packing of their molecules can be found in either crystalline,polymorphism or amorphous(or a combination of both).It has been shown that they can be packed in a de fi ned order(crystalline),have no long-range three dimensional(3-D)order(amorphous)have different repeating packing arrangements(polymorphic crystals)or have solvent included(solvates and hydrates).Each of these changes in internal packing of a solid will give rise to changes in bulk properties such as physiochemical,mechanical,etc. [4].For the crystal form,it is possible to change the externalshape of a crystal and this is called the crystal habit which is the consequence of the rate at which different faces grow. Changes in internal packing usually(but not always)give an easily distinguishable change in the crystal habit.With any crystalline material,the largest face is always the slowest growing and some crystal faces may have more exposed polar groupsandothersmayberelatively non-polarthataredepend on the packing geometry of the molecules into the lattice.In other words,the growth on different faces will depend on the relative af fi nities of the solute for the solvent and the growing faces of the crystal.It is technically possible to engineer changes in crystal habit by deliberately manipulating the rate of growth of different faces of the crystal[5].Crystallization, particularly crystallization from solutions,is the vitally importantoperationintheproductionofpharmaceuticalsolid particles because most of drug particles(<90%)are delivered in crystalline form[1]and it bene fi ts in determining the purity (chemical and structure)and the physical properties of a material which are summarized in Table 1.

    However,changes in crystallization conditions can significantly alter their previous properties followed by thermodynamic and mechanical properties[6].

    Powder technology is the base of dosage form design with effective drug delivery.Any particles of pharmaceutical solid materials may be produced by two ways:

    ·Constructive methods∶include crystallization,spray-drying, lyophilization,and supercritical fl uid techniques.

    ·Destructive methods:include milling and grinding.

    In general,crystallization is the most common method of particle production[7].

    2. Crystal engineering in properties design of pharmaceutical materials

    2.1. The role of thermodynamic in the crystallization process

    The phase change with stability associated with crystallization processes can be explained by rules of physical chemistry and thermodynamic principles.When a substances is transformed from one phase to another,the change in the molar Gibbs free energy(Δ^G)of the transformation,at constant pressure and temperature,is given by:

    where μ1and μ2are the chemical potentials of phase 1 and phase 2,respectively.When Δ^G<0,the transition from phase 1 to 2 is spontaneous under speci fi c conditions(in case of supersaturated solution).Alternatively,when Δ^G>0,this phase transformation is not thermodynamically possible(in case of unsaturated solution);whereas,Δ^G=0 de fi nes a condition of thermodynamic equilibrium in the system,inthis situation,the free energy of two phases is the same[8](in case of saturated solution)and the process can divided as follows[9]:

    ?

    A supersaturated solution can be achieved in general by under cooling if dCeq/dT>0 or by evaporation the solution if dCeq/dT<0.If T0is the solute's saturation temperature for a given solvent system,then at some temperature T,Δ^G can be demonstrated in terms of heat effects as:

    where Δ^S is the molar entropy and Δ^H is the enthalpy change for the phase transformation.The molar Gibbs free energy can also be expressed in terms of activity as:

    where R is the universal gas constant,T is the absolute temperature,ɑis the activity of the solute andɑ0is the activity of the pure solute in equilibrium with a macroscopic crystal,S is the saturation ratio which is given by:

    where C is the solute concentration and Ceqis the equilibrium solubility of the solute at the temperature and pressure of the system;from this,the supersaturation ratio can be de fi ned as:

    These thermodynamic considerations describe a driving force for crystallization[10].

    2.2. Crystallization process and factors affecting in crystal habit

    2.2.1. The crystallization mechanism

    Because of instability of many amorphous materials,most drugs are formulated in the crystalline state[4].Crystals are produced by inducing a change from the liquid to the solid state.Crystallization fromsolutioncanbeconsideredtobe the result of relative rate of the three successive processes:

    ·Supersaturation of the solution.

    ·Formation of crystal nuclei.

    ·Crystal growth round the nuclei[10]. A Supersaturated Solution Step:

    Supersaturated solution,a chemical potential and essentialrequirement forcrystallizationprocess,isthe drivingforce for nucleation and crystal growth.It can be expressed as the concentration divided by the solubility(C/S).Supersaturation can be de fi ned as any solution that contains more dissolved solid(solute)than that can be found in saturation conditions [11].Supersaturated solutions are not thermodynamically stable;in these circumstances the system will adjust in order to move back to the true solubility and to do this the excess solute will precipitate[5].This supersaturated solution may be achieved by several methods including[8]and[10]:

    1 Methods that produce supersaturation by increasing the solute

    concentration∶include:

    a.Removing the solvent liquid by evaporation(this is the way sea salt is prepared):for systems(isothermal solution)in which the solubility is not a strong function of temperature.

    b.Dissolution of a metastable solid phase like amorphous, anhydrous,moresoluble,and saltwhich transformation to crystalline,hydrate,less soluble polymorph,and free acid or base,respectively).

    2 Methods that produce supersaturation by decreasing the solute

    solubility∶include:

    a.Cooling the solution,as most materials become less soluble when the temperature is decreased:for systems in which solubility increases with temperature.

    b.Adding another solvent which will mix with the solution,but in which the solute has a low solubility.This second solvent is often called an anti-solvent(i.e. water).

    c.Adding precipitants or by a chemical reaction that

    change the nature of the solute. d.pH changing.

    The terms labile(unstable)and metastable zones can classifysupersaturatedsolutionsin whichspontaneous nucleation would or would not occurs,respectively.These zones are presented in a solubility diagram as shown in Fig.1.

    Above the equilibrium line(solid line):the solution are at supersaturation.In the labile zone,nucleation can occur spontaneously which is called primary nucleation.In metastable zone,no nucleation occurs which means that supersaturation itself is insuf fi cient to cause crystal formation.The crystal embryos must form by collision of molecules of solute in thesolutionor sometimes by the additionofbreakageofthe seed crystals or dust particles or even particles from container walls.

    Deliberate seeding is often carried out in industrial processes,seeding crystals are not necessary to be of the substances concerned but may be isomorphous substances(i.e.of the same morphology)[11]and[12].

    B Nucleation step:

    Nucleation is the formation of a small mass on which a crystal can grow[5].There are three types of nucleation that can occur in supersaturated solutions.These types are presented in nucleation situations diagram as shown in Fig.2.

    1 Primary homogeneous nucleation:

    This is spontaneous nucleation where the formation of the solid phase particle is not brought by the presence of any solid phase.It requires very high supersaturation conditions such as in the labile zone[8],[11],and[13].

    2 Primary heterogeneous nucleation:

    Isthemostprimarynucleation where theformationof new solid phase particle is catalysed by the presence of a foreign solid phase which has lower surface energy than that of a new solute particle.Therefore,it requires lower supersaturation than homogeneous nucleation[10]and[13].However,homogeneous and heterogeneous can be presented in same the nucleation process as follow:

    where S is a saturation ratio of solution[10].

    3 Secondary heterogeneous nucleation:

    It is the most common nucleation event in industrial crystallization and is the mechanism by which formation of the solid phase is initiated when solid phase of solute particle can be present or added to solution.Therefore,this type of nucleation can be found even in the metastable zone where the crystals seemingly only grow[10],[11],and[13].

    In recent years,the theory of two step nucleation model has attracted attention,supported by various studies and observed especially in proteins and colloidal systems[14-18]. In this theory,nucleation proceeds through a dense liquid (amorphous)step before ordering into the growth structure to form a three-dimensional lattice structure[19].

    The two steps progression from liquid to crystalline nuclei observed in colloid experiments can be seen in Fig.3.As soon as stable nuclei are formed,they begin to grow into visible crystals[18].The macromolecules nucleation such as colloidals,proteins and polymers can be observed by using techniques that are summarized in Table 2.Such as optical microscopy,small-angle neutron scattering and atomic force microscopy(AFM)[20-23].which the effective technique to qualitatively study-surface morphology and crystal growth processes[24].In order that there is more chances to control the rate of nucleation step which affects in morphology of crystal particles.As far small molecules,direct measurement and observation of nucleation of nuclei is impossible so crystal particles can be observed only after growth to larger size through growth step[23].

    C Crystal growth step:

    Crystal growth is the addition of more solute molecules to the nucleation site or crystal lattice to evolution macroscopic crystal form of de fi ned size and shape[5].In other words,Particlesizedistributionandmorphologiesproducedarearesultof the relative rates of reaction of nucleation,crystal growth[10].

    Crystal growth is considered to be a reverse dissolution process and the diffusion theories of Noyes and Whitney,and of Nernst,consider that matter is deposited continuously on a crystal face at a rate proportional to the difference of concentration between the surface and the bulk solution.So an Equation(1.1)for crystallization can be proposed in the form: where m is the mass of solid deposited in time t,A is the surface area of the crystal,Csis the solute concentration at saturation and Cssis the solute concentration at supersaturation.As km=D/δ(D being the diffusion coef fi cient of the solute and δ the diffusion layer thickness),the degree of agitation of the system,which affects δ,also in fl uences crystal growth.Crystals generally dissolve faster than they grow and depend on their initial size[12]and[25],so growth is not simply the reverse of dissolution.It has been suggested that there are two steps involved ingrowth in addition to those mentioned earlier[12].

    However,crystal growth process consists of several stages through the growth unit.The growth unit in turn describes the critical elements of how a speci fi c molecular species has assembled in a crystalline state in three dimensions,so that crystal growth depend on strength of the interactions(especially,if there is hydrogen bonding between functional group, Fig.4)between molecules itself and also between growth layers in network structure which would change in overall morphology of the crystal[2].These stages include[7],[23], [26],and[27]:

    ?

    1)Transport of a growth unit(a single molecules,atom,ion, or cluster)from or through the bulk solution to an impingement site on the crystal face by convention and diffusion,which is not necessarily the fi nal growth site(i.e. site of incorporation into the crystal).

    2)Adsorption of the growth unit at the impingement site.

    3)Diffusion of the growth units from the impingement site to a growth site.

    4)Incorporation into the crystal lattice.

    5)The latent heat of crystallization is released and transported to the crystal and solution.

    Desolvation of the growth unit may occur anywhere in steps 2-4,or the solvent may be adsorbed with the growth unit.In general,three types of crystal surfaces(and thus growth sites created by these surfaces)can be observed when impingement site captured the arriving growth units: Kink,Step,and Flat faces,which provide three,two,and one surface bond(s),respectively Fig.5[28].As well,any of these steps can be the rate-limiting step in the crystal growth process and which step is rate-limiting will depend on the solvent properties like viscosity[8].When the diffusion of molecules from the bulk solution to the impingement site is the rate-limiting step,crystal growth is volume-diffusion controlled whereas if the incorporation of a growth unit into the lattice is the slowest process then crystal growth is surface-integration controlled[8],[11],and[29].At last,the fi nal shape of crystal is de fi ned by the slowest growing fl at faces.Crystal growth studies are therefore concerned with the mechanisms by which these faces grow[5].

    2.2.2. Factors affected of crystal habit

    If the crystallization conditions are changed in any way. Therefore,it is possible that the molecules may start to form crystals with a different packing pattern and different tuning crystal facets from that which occurred when the original conditions wereused.Thechangein someconditionscould be change in the rate and mechanism of crystallization process in crystal growth step,speci fi cally.Hence,the art of crystal facet engineering is determined by numerous factors that regarded in thermodynamic,kinetics,and molecular recognition. These factors are summarized in Fig.6[30].

    In general,a knowledge of how crystal grow from the crystal nuclei and the effects of the various factors which may in fl uence crystal growth is not studied from pharmaceutical viewpoint in as much as chemical or physical viewpoints.So crystal growth for any pharmaceutical ingredients may be in general affected by two factors[31],[32],and[33]:

    ·Rate-controlling process for crystal growth:

    The rate at which a crystal grows can be controlled by any of three factors:diffusion from the solution to the crystal nuclei as well as surface integration mechanisms, fl ow of latent heat away from the growing crystal surface(under cooling stage),and reactions at the crystal-solution interface.

    ·The stability of planar interfaces relative to cellular interfaces.

    Moreover,new drugs are screened to see how many polymorphs exist,and then to identify which one is the most stable.The screening process requires a lot of work in crystallizing from different solvent system,with variations in method and conditions,in order to try to cause different polymorphs to form.The products are then checked with spectroscopy(e.g.Raman)and X-ray diffraction to see if they have different internal packing[5].

    2.2.3. Effect of crystal habit on the performance of a pharmaceutical powders

    Changing in crystal habit to any solid state in crystal and powders of both drugs and pharmaceutical excipients are interested because it can be change in physicochemical properties for it like surface energy(which can be determined by gravimetric,calorimetric and chromatographic),density, fl owability,compressibility,melting point,solubility,physical& chemical stability and biopharmaceutical behaviour(dissolution,bioavailability)because these depend on the size and number of crystal faces in crystal habit which affect both the production of dosage forms and the performance of the fi nished product[5].As mentioned above,many properties can be change when a material is in a different polymorphic form in speci fi c micromeritic properties,such as fl owability,and a good reproducible compressibility.At all events,the fl owability of needle-shaped or plated-shaped crystals is very poor and these crystals are dif fi cult to handle[34].For example,Ibuprofen is usually crystallized from hexane as elongated needle-like crystals,which have been found to have poor fl ow properties that due to surface atomic arrangement and surface af fi nity for the solvent to each orientation is different which can affect in fi nal shape of the crystal[23];crystallization from methanol produces equidimensionalcrystalswith better fl ow propertiesand compaction characteristics,making them more suitable for tableting,plate-like crystals of tolbutamide cause powder bridging in the hopper of the tablet machine and also capping problems during tableting [12];crystallization by a temperature-cooling method[35]and by a solvent-change method[36]modi fi ed the size,shape of particles so it had improved the compressibility and had a higher dissolution rate of tolbutamide,respectively.Another consideration, crystallization process in aqueous solution at different pH values(1,7,and 11)affected the morphology and size of carbamazepine crystals,the shape of this crystals was changed from fl aky or thin plate-like to needle shape which improve better compaction and higher dissolution rate than the original carbamazepine powder[37].Paracetamol is a high-dose drug with poor compression properties,which can make it dif fi cult to form into tablets,Consequently,researchers have tried to use different polymorphic forms of paracetamol to fi nd one that is more compressible,for Nichols and Frampton are found this drug was exist in two polymorphic forms according to crystallization method used, a common crystal form is a form I(monoclinic)was described as plate-shape(Thermodynamically stable at room temperature,the commercially used form,and not suitable for direct compression which leads to unstable tablets with high capping tendency)and form II(orthorhombic)was a prismatic crystal show better compression behaviour(have a plastic deformation upon compaction so it suggested to use in direct compression)[38],and[39].The disadvantage of the orthorhombic form is the possible transition to form I[40].

    In general there will be a correlation between the melting point of the different polymorphs and the rate of dissolution, because the one with the lowest melting point will most easily give up molecules to dissolve,whereas the most stable form (highest melting point)will not give up molecules to the solvent[5].

    High melting point=strong lattice=hard to remove a molecule=low dissolution rate(and vice versa)

    A classical example of the importance of polymorphism on bioavailability is that of chloramphenicol palmitate suspensions in the late 1960s.In Fig.7 the blood serum level is plotted as a function of time after dosing.It can be seen that the stable α-polymorph(have low free energy)produces low serum levels,whereas the metastable β-polymorph(have high free energysohavegreatersolubility,absorption,and bioavilability)yields much higher serum levels when the same dose is administered[2],[5],and[41].

    Moreover,Norvir?,a semisolid capsules product which produced by Abbott company was failed in dissolution test after being in market that due to appearance of a new more stable crystalline polymorph of ritonavir(Form II)which held a lower thermodynamic solubility than the marketed(Form I) [42].The effect of a solvent or solvent mixture on the formation of erythromycin crystals was studied and the results illustrated that using solvent mixture of acetone and ethanol (3:1,v/v)induced the good shape and high purity crystals by comparison with other solvents such as isopropyl,1 propanol [43].In addition,some anti-in fl ammatory drugs for pulmonary delivery such as bedomethasone,dipropionate,betamethasone,prednisolone were micronized by controlled crystallization process without any milling process by using solventchangemethodwhichimproves powderpropertiesfor inhalation[44],moreover,zinc-free insulin crystals can be prepared in the inhalation size range of 0.2-5 μm by using the solvent change(antisolvent precipitation)method[45].On the other hand,synthesis,crystallization,separation and agglomeration can be incorporation in one step which de fi ned as spherical crystallization;one must be mentioned,this technique can improve mechanical properties like compressibility,packability and fl owability for API's powders such as naproxen,aminophylline,and salicylic acid crystals [46-48].

    3. Growth rate dispersion&factors affected of it

    Crystal growth rate dispersion(GRD)is a phenomenon,known as a great breadth and depth problem in the crystallineproduct industries,where obviously identical crystals in the same solution under identical conditions(such as temperature,supersaturation levels,and hydrodynamic)grow at different rates.It appears to occur to different extents in all crystallization systems[49-53].GRD was fi rst seen by White and Wright(1971)in sucrose batch crystallization[54].Growth rate dispersion broadens the crystal size distribution(CSD) and hence affects the product quality(bulk properties)of industrial crystallizers such as fi ltration,drying rates,compaction,content uniformity and so on.From the bioavailability perspective,small particles have faster dissolution rate and lower mechanical properties than the larger particles in general[1].Various studies try to explanation this correlation, Judge R.A.,et al.grew tetragonal lysozyme crystal and investigate growth rate dispersion of the(110)and(101)crystal faces as a function of sodium chloride concentration,temperature,and solution pH.They reported that the lysozyme face growth rate was independent of the solution conditions for(110)face in compared with(101)face which was observed tovarysystematically withtemperature andpH[55].However, there is some poor in understanding physicochemical mechanism of why it occurs and what contributes to it.According to the literatures,two different mechanisms can illustrate this phenomenon.Firstly,random fl uctuations mechanism shows that all crystals have the same-averaged growth rate but that individual crystals growth rates fl uctuate during growth periods[56].Secondly,constant crystal growth mechanism assumes that crystals are born with an inherent constant growth rate but the rate from crystal to crystal varies[57].Moreover,the differences in growth rates between same crystals have been attributed to differences in molecular arrangement in crystal unit as well as differences in internal crystal structure like internal strains,in size and in lattice spread angle[25]and[58] which cause difference in surface structure of crystal faces. All in all,growth rate dispersion can be a result of different crystal perfection[59]and[60].

    4. Conclusion

    This article covers,in brief,the importance of crystal engineering,mechanism of crystallization,methods of preparation of crystals,application of crystallization to modify physicochemical properties of pharmaceutical materials,and phenomenon GRD.At last,there are more works required in crystal engineering fi eld in order to development and design solid particles in the desired form.

    REFERENCES

    [1]Variankaval N,Cote AS.From form to function: crystallization of active pharmaceutical ingredient.AIChE J 2008;54(7):1682-1688.

    [2]Blagden N,De Matas M,Cavan PT,et al.Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates.Adv Drug Deliv Rev 2007;59:617-630.

    [3]Mahanty S,Sruti J,Patra Ch Niranjan,et al.Particle design of drugs by spherical crystallization techniques.Int J Pharm Sci Nanotech 2010;3(2):912-918.

    [4]Vippagunta SR,Brittain HG,Grant DJW.Crystalline solids. Adv Drug Deliv Rev 2001;48(1):3-26.

    [5]Buckton G.Solid-state properties,Aulton's pharmaceutics, The science of dosage form design,Aulton M.E..3rd ed. London:Churchill Livingstone;2007.p.110-120.

    [6]Shekunov BY,York P.Crystallization process in pharmaceutical technology and drug delivery design.J Cryst Growth 2000;211:122-136.

    [7]Crowder TM,Hickey AJ,Louey MD,et al.A guide to pharmaceutical particulate science.Interpharm/CRC Press; 2003.p.9-26.

    [8]Augustijns P,Brewster ME.Solvent systems and their selection in pharmaceutics and biopharmaceutics.In: Borchardt RT,Russell Middaugh C,editors.Biotechnology: pharmaceutical aspects,Vol.VI.New York,NY:Springer; 2007.p.53-109.

    [9]Connors KA.Thermodynamics of pharmaceutical systems: an introduction for students of pharmacy.Canada:John Wiley&Sons Inc.;2002.p.116-134.

    [10]Dirksen JA,Ring TA.Fundamentals of crystallization:kinetic effects on particle size distributions and morphology.Chem Eng Sci 1991;46(10):2389-2427.

    [11]Mullin JW.Crystallization.4th ed.Oxford:Butterworth-Heinemann Ltd;2001.Oxford.

    [12]Florence AT,Attwood D.Physicochemical principles of pharmacy.4th ed.London:Pharmaceutical Press;2006. p.7-33.

    [13]Garside J.Industrial crystallization from solution.Chem Eng Sci 1985;40:3-26.

    [14]Ten Wolde PR,Frenkel D.Enhancement of protein crystal nucleation by critical density fl uctuations.Science 1997;277(5334):1975-1983.

    [15]Lomakin A,Asherie N,Benedek G.Liquid-solid transition in nuclei of protein crystals.Proc Natl Acad Sci U.S.A 2003;100:10254-10257.

    [16]Pan W,Kolomeisky AB,Vekilov PG,et al.Nucleation of ordered solid phases of proteins via a disordered highdensity state:phenomological approach.J Chem Phys 2005;122:174905.

    [17]Liu G,Yu JC,Lu GQ,et al.Crystal facet engineering of semiconductor photocatalysts:motivations,advances and unique properties.Chem Commun 2011;47:6763-6783.

    [18]Zhang T,Liu X.How does a transient amorphous precursor template crystallization.J Am Chem Soc 2007;129(44):13520-13526.

    [19]Kashchiev D,Vekilov PG,Kolomeisky AB.Kinetics of twostep nucleation of crystals.J Chem Phys 2005;122:244706-244712.

    [20]Yau S,Vekilov P.Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization.J Am Chem Soc 2001;123:1080.

    [21]Yu L.Nucleation of one polymorph by another.J Am Chem Soc 2003;125:6380.

    [22]Balsara NP,Rappl TJ,Lefebvre AA.Does conventional nucleation occur during phase separation in polymer blends?J Poly Sci Part B:Polym Phys 2004;42:1793.

    [23]Lovette MA,Browning AR,Grif fi n DW,et al.Crystal shape engineering.Ind Eng Chem Res 2008;47(24):9812-9833.

    [24]McPherson A.Crystallization of biological macromolecules. New York:Spring Harber Laboratory Press;1999.

    [25]Fabian J,Hartel RW,Ulrich J,et al.Growth and dissolution rate dispersion of sucrose crystals.In:Proceedings of the international workshop on crystal growth of organic materials;August 1995.Washington,D.C.:American Chemical Society;1996.p.216-219.

    [26]Rodriguez-Hornedo N,Murphy D.Signi fi cance of controlling crystallization mechanisms and kinetics in pharmaceutical systems.J Pharm Sci 1999;88:651-660.

    [27]Davey R,Garside J.From molecules to crystallizers:an introduction to crystallization.Oxford:Oxford University Press.

    [28]Hartman P,Perdock WG.On the relations between structure and morphology of crystals.I.Acta Cryst 1955;8:49-52.

    [29]Myerson AS.Handbook of industrial crystallization.Oxford: Butterworth-Heinemann Ltd;2002.

    [30]Rodriguez-Spong B,Price CP,Jayasankar A,et al.General principles of pharmaceutical solid polymorphism.A supramolecular perspective.Adv Drug Deliv Rev 2004;56:241-274.

    [31]Eros I,Goczo H,Szabo-Revesz P,et al.Development of spherical crystals of acetyl salicylic acid for direct tablet making.Chem Pharm Bull 2000;48(12):1877-1881.

    [32]Chakravarty P,Alexander KS,Riga AT,et al.Crystal forms of tolbutamide from acetonitrile and 1-octanol:effect of solvent,humidity and compression pressure.Int J Pharm 2005;288(2):335-348.

    [33]Keraliya RA,Soni TG,Thakar T,et al.Effect of solvent on crystal habit and dissolution behavior of tolbutamide by initial solvent screening.Dissolut Technol 2010:6-21.

    [34]Jaradzadeh Y,Mohammadi A,Khoei NS,et al.Improvement of physicomechanical properties of carbamazepine by recrystallization at diggerent pH values.Acta Pharm 2009;59(2):187-197.

    [35]Nichols G,Frampton CS.Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution.J Pharm Sci 1998;87:684-693.

    [36]Martino P,Guyot-Herman AM,Con fl ant P,et al.A new pure paracetamol for direct compression:the orthorhombic form. Int J Pharm 1996;128:1-8.

    [37]Rasenack N,Muller BW.Crystal habit and tableting behavior. Int J Pharm 2002;244:45-57.

    [38]Aguiar AJ,Krc Jr J,Kinkel AW,et al.Effect of polymorphism on the absorption of chloramphenicol from chloramphenicol palmitate.J Pharm Sci 1967;56(7):847-853.

    [39]Bauer J,Spanton S,Henry R,et al.Ritonavir:an extraordinary example of conformational polymorphism.Pharm Res 2001;18(6):859-866.

    [40]Qian Z,Dawei G,Yongquan C,et al.Study on the effect of original solvent on erythromycin crystal habit and purity during its solvent out crystallization.Chin J Antibiot 1999.06.

    [41]Rasenack N,Steckel H.Micronization of anti-in fl ammatory drugs for pulmonary delivery by a controlled crystallization process.J Pharm Sci 2003;92:35-44.

    [42]Havelund S.Pulmonary insulin crystals.U.S Pat 2001. US6310038 B1.

    [43]Gordon MS,Chowhan LT.Manipulation of naproxen particle morphology via the spherical crystallization technique to achieve a directly compressible raw material.Drug Dev Ind Pharm 1990;16:1279-1290.

    [44]Kawashima Y,Aoki S,Takenaka H.Spherical agglomeration of aminophylline crystals during reaction in liquid by the spherical crystallization technique.Chem Pharm Bull 1982;30:1837-1843.

    [45]Kawashima Y,Okumura M.Takenaka.Spherical crystallization:direct spherical agglomeration of salicylic acid crystals during crystallization.Science 1982;216(4550):1127-1128.

    [46]Mitrovic MM.Growth rate dispersion of small KDP crystals.J Cryst Growth 1997;265:315-319.

    [47]Bohlin M,Rasmuson AC.Modeling of growth rate dispersion in batch cooling crystallization.AIChE J 1992;38(12):1853-1863.

    [48]Larson MA,White ET,Ramanarayanan KA,et al.Growth rate dispersion in MSMPR crystallizers.AIChE J 1985;31(1):90-94.

    [49]Patience DB,Dell’Orco PC,Rawlings JB.Optimal operation of a seeded pharmaceutical crystallization with growthdependent dispersion.Org Process Res Dev 2004;8(4):609-615.

    [50]Haseltine EL,Patience DB,Rawlings JB.On the stochastic simulation of particulate systems.Chem Eng Sci 2005;60(10):2627-2641.

    [51]White ET,Wright PG.Magnitude of size dispersion effects in crystallization.J Cryst Growth 1971;67:81-87.

    [52]Judge RA,Forsythe EL,Pusey ML.Growth rate dispersion in protein crystal growth.Cryst Growth&Des 2010;10:3164-3168.

    [53]Zumstein RC,Rousseau RW.Growth rate dispersion by initial growth rate distributions and growth rate fl uctuations. AIChE J 1987;33(1):121-129.

    [54]Klug DL,Pigford RL.The probability distribution of growth rates of anhydrous sodium sulfate crystals.Ind Eng Chem Res 1989;28(11):1718-1725.

    [55]Ma CY,Wang XZ.Crystal growth rate dispersion modeling using morphological population balance.AIChE J 2008;54(9):2321-2334.

    [56]Tanneberger U,Lacmann R,Herden A,et al.The dispersion of growth rate as a result of different crystal perfection.J Cryst Growth 1996;166:1074-1077.

    [57]Pantaraks P,Flood A.Effect of growth rate history on current crystal growth:a second look at surface effects on crystal growth rates.Cryst Growth&Des 2005;5(1):365-371.

    [58]Wang S,Mersmann A,Kind M.Veri fi cation of the constant crystal growth model for attrition particles and its relevance to the modeling of crystallizers.J Cryst Growth 1990;99:1104-1107.

    [59]Randolph AD,Larson MA.Theory of particulate processes: analysis and techniques of continuous crystallization.2nd ed.California:Academic Press,INC;1988.

    [60]Kirkpatrick RJ.Crystal growth from the melt:a review.Am Miner 1975;60:798-814.

    Abdul Khaliq El-Zhry El-Ya fi*,Hind El-Zein

    Department of Pharmaceutical Technology,Faculty of Pharmacy,Damascus University,Damascus,Syria

    *Corresponding author.Department of Pharmaceutical Technology,Faculty of Pharmacy,Damascus University,Damascus,Syria.

    E-mail addresses:telya fi@gmail.com(A.K.El-Zhry El-Ya fi),hindalzen@yahoo.com(H.El-Zein).

    Peer review under responsibility of Shenyang Pharmaceutical University.

    http://dx.doi.org/10.1016/j.ajps.2015.03.003

    1818-0876/?2015 Shenyang Pharmaceutical University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Crystallization

    Nucleation

    Crystal growth dispersion Thermodynamic

    午夜福利视频在线观看免费| 丝瓜视频免费看黄片| 别揉我奶头~嗯~啊~动态视频| 午夜福利乱码中文字幕| 91大片在线观看| 欧美午夜高清在线| 高清av免费在线| 啦啦啦免费观看视频1| 欧美人与性动交α欧美软件| 午夜老司机福利片| 日本黄色日本黄色录像| 国产极品粉嫩免费观看在线| 成年人免费黄色播放视频| 精品一区二区三区视频在线观看免费 | 欧美另类亚洲清纯唯美| 男男h啪啪无遮挡| aaaaa片日本免费| 国产精品自产拍在线观看55亚洲 | 两性午夜刺激爽爽歪歪视频在线观看 | 一a级毛片在线观看| 国产亚洲精品一区二区www | 国产精品 欧美亚洲| 国产成人影院久久av| 少妇被粗大的猛进出69影院| 麻豆成人av在线观看| 日韩欧美在线二视频 | 嫁个100分男人电影在线观看| 男女午夜视频在线观看| 黄色丝袜av网址大全| av有码第一页| 一级黄色大片毛片| 国产精品一区二区在线不卡| 18禁裸乳无遮挡免费网站照片 | 中文字幕最新亚洲高清| 久久亚洲真实| 日韩欧美一区二区三区在线观看 | 成年版毛片免费区| 国产亚洲欧美精品永久| 丝袜人妻中文字幕| 精品乱码久久久久久99久播| 久久久精品区二区三区| 人人妻人人添人人爽欧美一区卜| 制服诱惑二区| 国产一区二区三区综合在线观看| 欧美亚洲日本最大视频资源| 一级毛片精品| 国产精品永久免费网站| 国产一区二区三区在线臀色熟女 | 欧美日韩福利视频一区二区| 老汉色av国产亚洲站长工具| 老熟女久久久| 97人妻天天添夜夜摸| 两性夫妻黄色片| 三上悠亚av全集在线观看| 午夜免费鲁丝| aaaaa片日本免费| 国产亚洲精品久久久久5区| 在线观看一区二区三区激情| 免费在线观看视频国产中文字幕亚洲| 一级片'在线观看视频| 一级片免费观看大全| 亚洲熟妇中文字幕五十中出 | 免费在线观看亚洲国产| 中文欧美无线码| 亚洲,欧美精品.| av免费在线观看网站| 91麻豆av在线| 香蕉国产在线看| 国产免费av片在线观看野外av| 国产无遮挡羞羞视频在线观看| 中文字幕精品免费在线观看视频| 欧美中文综合在线视频| 久久午夜亚洲精品久久| 精品久久久久久,| 国产成人欧美| 色尼玛亚洲综合影院| 免费看十八禁软件| 国产91精品成人一区二区三区| 999精品在线视频| 色婷婷av一区二区三区视频| 久久人妻熟女aⅴ| 啦啦啦 在线观看视频| 亚洲少妇的诱惑av| 亚洲午夜理论影院| 午夜久久久在线观看| 99riav亚洲国产免费| 亚洲成av片中文字幕在线观看| 亚洲专区中文字幕在线| 脱女人内裤的视频| 久久亚洲真实| av中文乱码字幕在线| 日本vs欧美在线观看视频| 亚洲中文av在线| 国产不卡av网站在线观看| 999久久久国产精品视频| 亚洲精品成人av观看孕妇| 看免费av毛片| 精品一区二区三区av网在线观看| 久久久国产成人精品二区 | 国产亚洲一区二区精品| 久久久久国产一级毛片高清牌| 亚洲av熟女| 久久国产精品男人的天堂亚洲| 激情在线观看视频在线高清 | 悠悠久久av| 色综合婷婷激情| 精品无人区乱码1区二区| 性色av乱码一区二区三区2| 黄色女人牲交| 国产一区二区三区视频了| 少妇 在线观看| 中文字幕最新亚洲高清| 操出白浆在线播放| 国产成人精品久久二区二区91| 午夜免费观看网址| 亚洲国产欧美日韩在线播放| 丝袜美足系列| 日本vs欧美在线观看视频| 人人妻人人澡人人爽人人夜夜| 久久久国产欧美日韩av| 又紧又爽又黄一区二区| 午夜日韩欧美国产| svipshipincom国产片| 熟女少妇亚洲综合色aaa.| 免费在线观看亚洲国产| 亚洲精品中文字幕一二三四区| 99久久人妻综合| 亚洲精品一卡2卡三卡4卡5卡| 国精品久久久久久国模美| 首页视频小说图片口味搜索| 最新的欧美精品一区二区| 成年人免费黄色播放视频| 精品一区二区三卡| 999久久久精品免费观看国产| 黑人操中国人逼视频| 狂野欧美激情性xxxx| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂中文最新版在线下载| 天堂√8在线中文| 天天躁狠狠躁夜夜躁狠狠躁| 三上悠亚av全集在线观看| 国产亚洲av高清不卡| 女人精品久久久久毛片| 国产免费现黄频在线看| 国产成人系列免费观看| 亚洲欧美日韩另类电影网站| 亚洲第一欧美日韩一区二区三区| 视频在线观看一区二区三区| videosex国产| 一二三四社区在线视频社区8| 亚洲国产精品sss在线观看 | 国产精品国产高清国产av | 欧美日韩国产mv在线观看视频| 首页视频小说图片口味搜索| 午夜精品在线福利| 极品教师在线免费播放| 亚洲av日韩精品久久久久久密| a级片在线免费高清观看视频| 欧美乱码精品一区二区三区| 国产激情欧美一区二区| 欧洲精品卡2卡3卡4卡5卡区| 两性夫妻黄色片| 大型av网站在线播放| 精品视频人人做人人爽| 成人特级黄色片久久久久久久| 日韩免费高清中文字幕av| 人妻丰满熟妇av一区二区三区 | 国产亚洲精品久久久久5区| 女性生殖器流出的白浆| 日韩欧美三级三区| 亚洲少妇的诱惑av| 丝袜在线中文字幕| 在线观看免费视频日本深夜| 欧美人与性动交α欧美软件| 91在线观看av| 亚洲欧美日韩高清在线视频| 欧美另类亚洲清纯唯美| 中文字幕人妻熟女乱码| 久久精品亚洲av国产电影网| 丝袜人妻中文字幕| 又大又爽又粗| 国产精品偷伦视频观看了| 啪啪无遮挡十八禁网站| 中文字幕制服av| 99久久国产精品久久久| 精品乱码久久久久久99久播| 嫩草影视91久久| 亚洲一区中文字幕在线| 不卡av一区二区三区| 成人永久免费在线观看视频| 少妇猛男粗大的猛烈进出视频| 伦理电影免费视频| a级毛片在线看网站| 黄色视频,在线免费观看| 黄片小视频在线播放| 久久久久久久国产电影| 亚洲精品成人av观看孕妇| 国产精品久久久久成人av| av国产精品久久久久影院| www.熟女人妻精品国产| 日韩欧美在线二视频 | 99久久国产精品久久久| 亚洲人成77777在线视频| 18禁国产床啪视频网站| 日本a在线网址| 欧美精品一区二区免费开放| 99热国产这里只有精品6| 国产97色在线日韩免费| 国产区一区二久久| 久久影院123| 男男h啪啪无遮挡| a级毛片黄视频| 精品国产超薄肉色丝袜足j| 黄色 视频免费看| 中文字幕精品免费在线观看视频| 黄色丝袜av网址大全| 天天操日日干夜夜撸| 一级作爱视频免费观看| 一本一本久久a久久精品综合妖精| 人人妻人人澡人人爽人人夜夜| 女人久久www免费人成看片| 一二三四社区在线视频社区8| 亚洲一区二区三区不卡视频| 正在播放国产对白刺激| 最新美女视频免费是黄的| 黄色视频,在线免费观看| 18禁美女被吸乳视频| 国产熟女午夜一区二区三区| 高清毛片免费观看视频网站 | 嫩草影视91久久| 欧美乱色亚洲激情| 成人影院久久| 久久精品国产99精品国产亚洲性色 | 一级片'在线观看视频| www.精华液| 欧美亚洲 丝袜 人妻 在线| 波多野结衣一区麻豆| 成年女人毛片免费观看观看9 | 国产精品九九99| 精品视频人人做人人爽| 九色亚洲精品在线播放| 成年人午夜在线观看视频| 久久精品国产综合久久久| 精品卡一卡二卡四卡免费| 色尼玛亚洲综合影院| 国内久久婷婷六月综合欲色啪| 香蕉国产在线看| 黄片大片在线免费观看| 午夜亚洲福利在线播放| 欧美激情高清一区二区三区| 色94色欧美一区二区| 亚洲精品国产精品久久久不卡| 亚洲视频免费观看视频| 成年动漫av网址| 男女午夜视频在线观看| 亚洲av成人不卡在线观看播放网| 三上悠亚av全集在线观看| 看免费av毛片| 亚洲国产欧美网| 日本vs欧美在线观看视频| 女警被强在线播放| 99热网站在线观看| 人妻久久中文字幕网| 成人18禁在线播放| 精品午夜福利视频在线观看一区| 国产一区二区三区综合在线观看| 男女床上黄色一级片免费看| 啦啦啦免费观看视频1| 久久精品国产清高在天天线| 一a级毛片在线观看| 亚洲欧美色中文字幕在线| 国产淫语在线视频| 在线永久观看黄色视频| 亚洲色图av天堂| 亚洲专区国产一区二区| 人人澡人人妻人| 国产单亲对白刺激| 麻豆国产av国片精品| 中文欧美无线码| 最新的欧美精品一区二区| 最近最新中文字幕大全免费视频| 亚洲人成77777在线视频| 久久精品91无色码中文字幕| 成熟少妇高潮喷水视频| xxxhd国产人妻xxx| 亚洲欧美激情在线| 国产精品国产高清国产av | 欧美性长视频在线观看| 亚洲成人免费电影在线观看| 亚洲国产毛片av蜜桃av| 国产精品免费一区二区三区在线 | 亚洲av欧美aⅴ国产| 亚洲av欧美aⅴ国产| 免费在线观看亚洲国产| 两个人看的免费小视频| 国产精品亚洲av一区麻豆| 91麻豆av在线| 大片电影免费在线观看免费| 久久ye,这里只有精品| 一级毛片女人18水好多| 制服人妻中文乱码| 国产人伦9x9x在线观看| 久久ye,这里只有精品| 黑人欧美特级aaaaaa片| 亚洲avbb在线观看| 高清在线国产一区| 中文字幕高清在线视频| 亚洲av片天天在线观看| 亚洲午夜理论影院| 久久久久国产精品人妻aⅴ院 | av天堂在线播放| 国产成人系列免费观看| 午夜免费观看网址| 亚洲第一青青草原| 天天添夜夜摸| 国产成人av教育| 欧美最黄视频在线播放免费 | 91麻豆av在线| 制服人妻中文乱码| 精品国产乱子伦一区二区三区| 91在线观看av| 亚洲欧美精品综合一区二区三区| 亚洲熟女毛片儿| 日韩欧美国产一区二区入口| 国产真人三级小视频在线观看| 国产高清视频在线播放一区| 国产精品影院久久| 国产精品免费视频内射| 亚洲在线自拍视频| av网站在线播放免费| xxxhd国产人妻xxx| 亚洲国产中文字幕在线视频| 黄色怎么调成土黄色| 欧美人与性动交α欧美软件| 身体一侧抽搐| 女同久久另类99精品国产91| 老熟妇仑乱视频hdxx| 80岁老熟妇乱子伦牲交| 中文字幕人妻丝袜一区二区| 人人妻人人爽人人添夜夜欢视频| 国产精品影院久久| 成年动漫av网址| av超薄肉色丝袜交足视频| 欧美另类亚洲清纯唯美| 水蜜桃什么品种好| netflix在线观看网站| 午夜两性在线视频| 999精品在线视频| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| videosex国产| 少妇裸体淫交视频免费看高清 | 欧美精品一区二区免费开放| 女人精品久久久久毛片| 成人18禁在线播放| netflix在线观看网站| 黑人巨大精品欧美一区二区mp4| 12—13女人毛片做爰片一| 欧美在线黄色| 在线免费观看的www视频| 中文字幕人妻丝袜制服| 国产精华一区二区三区| 久久精品亚洲av国产电影网| 99热网站在线观看| 国产精品永久免费网站| 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 国产精品一区二区精品视频观看| 搡老熟女国产l中国老女人| 99久久99久久久精品蜜桃| 女性被躁到高潮视频| 免费久久久久久久精品成人欧美视频| 两性夫妻黄色片| 夫妻午夜视频| 下体分泌物呈黄色| 久久久国产欧美日韩av| 免费高清在线观看日韩| 无人区码免费观看不卡| 国产高清国产精品国产三级| 天天躁日日躁夜夜躁夜夜| 乱人伦中国视频| 日韩熟女老妇一区二区性免费视频| 欧美日韩福利视频一区二区| 亚洲在线自拍视频| 精品国产亚洲在线| 亚洲久久久国产精品| 欧美精品一区二区免费开放| 黄色a级毛片大全视频| 久久婷婷成人综合色麻豆| 欧美午夜高清在线| 大香蕉久久成人网| 人妻丰满熟妇av一区二区三区 | 日韩欧美三级三区| 天堂√8在线中文| 欧美人与性动交α欧美精品济南到| 50天的宝宝边吃奶边哭怎么回事| 精品国产超薄肉色丝袜足j| 亚洲熟妇中文字幕五十中出 | 国产有黄有色有爽视频| 成人国语在线视频| 亚洲专区字幕在线| 波多野结衣av一区二区av| 免费观看人在逋| 99久久精品国产亚洲精品| 成人永久免费在线观看视频| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 美女 人体艺术 gogo| 咕卡用的链子| 亚洲国产精品sss在线观看 | 欧美精品高潮呻吟av久久| 欧美日韩乱码在线| 久久久久久亚洲精品国产蜜桃av| 高清欧美精品videossex| 欧美av亚洲av综合av国产av| 人成视频在线观看免费观看| 欧美中文综合在线视频| www.自偷自拍.com| 18在线观看网站| 久久国产亚洲av麻豆专区| 国产成人欧美| 久久久国产精品麻豆| 亚洲免费av在线视频| av不卡在线播放| 久久亚洲精品不卡| 制服诱惑二区| 黑人操中国人逼视频| 国产又色又爽无遮挡免费看| 超色免费av| 国产精品一区二区免费欧美| 伊人久久大香线蕉亚洲五| 免费女性裸体啪啪无遮挡网站| 免费久久久久久久精品成人欧美视频| 中文亚洲av片在线观看爽 | 成人18禁高潮啪啪吃奶动态图| 欧美日韩黄片免| 99精国产麻豆久久婷婷| www.精华液| 悠悠久久av| 久久中文字幕人妻熟女| 免费久久久久久久精品成人欧美视频| 一级黄色大片毛片| 欧美日韩中文字幕国产精品一区二区三区 | 久热这里只有精品99| a在线观看视频网站| 久久热在线av| 国产欧美日韩一区二区三区在线| 老司机影院毛片| 校园春色视频在线观看| 精品国产超薄肉色丝袜足j| 久久精品人人爽人人爽视色| 大码成人一级视频| 在线观看免费视频日本深夜| 久久久久精品人妻al黑| 亚洲免费av在线视频| 又紧又爽又黄一区二区| 日本黄色日本黄色录像| e午夜精品久久久久久久| 九色亚洲精品在线播放| 日韩三级视频一区二区三区| 精品久久久久久电影网| 色婷婷久久久亚洲欧美| 亚洲久久久国产精品| 欧美丝袜亚洲另类 | 黄色视频不卡| 国产区一区二久久| 一边摸一边做爽爽视频免费| 天堂动漫精品| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 人人妻人人澡人人看| 老熟妇乱子伦视频在线观看| 高清视频免费观看一区二区| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 国产精品自产拍在线观看55亚洲 | 午夜福利视频在线观看免费| 高清毛片免费观看视频网站 | 午夜老司机福利片| 国产精品国产高清国产av | 亚洲一区二区三区不卡视频| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 宅男免费午夜| 老司机午夜福利在线观看视频| 涩涩av久久男人的天堂| 国产av又大| av不卡在线播放| 亚洲,欧美精品.| 女人精品久久久久毛片| 超碰97精品在线观看| 亚洲七黄色美女视频| 午夜免费鲁丝| 国产精品久久久av美女十八| 青草久久国产| 777久久人妻少妇嫩草av网站| 女人久久www免费人成看片| 久久久久国产一级毛片高清牌| 韩国av一区二区三区四区| 日韩欧美一区二区三区在线观看 | 久久热在线av| 99国产极品粉嫩在线观看| 18在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 久久狼人影院| 一进一出抽搐动态| 久久香蕉精品热| 国内毛片毛片毛片毛片毛片| av天堂久久9| 极品少妇高潮喷水抽搐| 日韩大码丰满熟妇| 国产精品1区2区在线观看. | 一二三四社区在线视频社区8| 99久久综合精品五月天人人| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| 久久精品亚洲熟妇少妇任你| av视频免费观看在线观看| 操出白浆在线播放| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 狂野欧美激情性xxxx| 999久久久精品免费观看国产| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人 | 日韩欧美三级三区| 大片电影免费在线观看免费| 欧美+亚洲+日韩+国产| 国产色视频综合| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 两人在一起打扑克的视频| 亚洲成人免费电影在线观看| 高清黄色对白视频在线免费看| 人妻丰满熟妇av一区二区三区 | 91麻豆精品激情在线观看国产 | 国产国语露脸激情在线看| 又黄又爽又免费观看的视频| 成年人免费黄色播放视频| 国产人伦9x9x在线观看| 亚洲国产精品sss在线观看 | 国产免费av片在线观看野外av| 一区在线观看完整版| 国产精品1区2区在线观看. | 欧美乱妇无乱码| 欧美 亚洲 国产 日韩一| 在线免费观看的www视频| 夫妻午夜视频| 色在线成人网| 精品熟女少妇八av免费久了| 国产精品一区二区精品视频观看| 精品国产乱码久久久久久男人| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 这个男人来自地球电影免费观看| 国产精品国产高清国产av | 国产精品亚洲av一区麻豆| 男人舔女人的私密视频| 香蕉丝袜av| 男男h啪啪无遮挡| 91精品三级在线观看| 国产片内射在线| av视频免费观看在线观看| 欧美成人免费av一区二区三区 | 久久精品国产亚洲av香蕉五月 | 好男人电影高清在线观看| 久久久国产成人免费| 在线观看www视频免费| 国产精品久久视频播放| 人人妻人人爽人人添夜夜欢视频| 国产精品永久免费网站| 亚洲欧美色中文字幕在线| 一级作爱视频免费观看| 国产99白浆流出| 高清黄色对白视频在线免费看| 亚洲国产精品合色在线| 亚洲精品中文字幕一二三四区| 亚洲自偷自拍图片 自拍| 人人妻人人爽人人添夜夜欢视频| www.熟女人妻精品国产| 国产蜜桃级精品一区二区三区 | 99国产极品粉嫩在线观看| 国产亚洲欧美98| 亚洲精品在线观看二区| 色婷婷av一区二区三区视频| 午夜免费成人在线视频| 日本wwww免费看| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 欧美 日韩 精品 国产| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 国产精品 国内视频| 好看av亚洲va欧美ⅴa在| 亚洲精品中文字幕一二三四区| 国产免费男女视频| 91av网站免费观看| 欧美日韩国产mv在线观看视频| 人妻一区二区av| 久久人人爽av亚洲精品天堂| 日韩欧美一区二区三区在线观看 | 欧美国产精品va在线观看不卡| 极品教师在线免费播放| 国产高清国产精品国产三级| 热99久久久久精品小说推荐| 亚洲avbb在线观看| 久热这里只有精品99| 国产精品欧美亚洲77777| 国产淫语在线视频| 久久久国产一区二区| 国产主播在线观看一区二区| 夫妻午夜视频|