• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Developments of mucus penetrating nanoparticles

    2015-05-16 02:14:02MinLiu,JianZhang,WeiShan

    Developments of mucus penetrating nanoparticles

    ARTICLEINFO

    Article history∶

    Received 6 December 2014

    Accepted 31 December 2014

    Available online 16 February 2015

    Mucus can effectively protect the exposed mucosal surfaces due to its adhesive and viscoelastic properties.Most foreign particulates are ef fi ciently trapped in mucus layers via steric obstruction and adhesion.Trapped particles are typically removed from the mucosal tissue within seconds to a few hours depending on their location sites.This article focuses on describing the tenacious mucus barrier properties,the strategies to investigate the interaction of nanoparticles with the mucus as well as the novel developments of mucus penetrating nanoparticles.

    ?2015 Shenyang Pharmaceutical University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

    1. Introduction

    Nanocarriers have emerged as an effective strategy for mucosa delivery of drugs,which possess a series of desirable properties,including small steric obstruction due to their nanometer size,and protection of cargo therapeutics at both the extracellular and intracellular levels[1].However,one of the greatest challenges that limit the success of nanoparticles (NPs)is their ability to penetrate quickly through mucus to reach the underlying cells.

    Mucus is a viscoelastic and adhesive hydrogel that covers in the surface of lung airways,gastrointestinal(GI)tract,female reproductive tracts,eye and other mucosa[2].Mucus protects underlying epithelium by ef fi ciently trapping pathogens and foreign particulates,then rapidly removing them.Therefore, mucus is not only vital for human health,but also represents a substantial barrier to mucosal drug delivery.Mucus forms adhesive interactions with particulates via electrostaticinteractions,van derWaalsforces,hydrophobicforces, hydrogen bonding,and chain entanglement[3,4].Mucoadhesive NPs is to prolong the retention timeof particles in mucosal surface by maximize these interactions[5],which would undergo either direct transit or elimination.Different mucoadhesive systems have been well reviewed previously[6,7].

    Another strategy to overcome the mucus barrier and achieve longer retention time in cell surface is to develop a nanocarrier which can effectively penetrate the mucus layer and accumulate in epithelial surface.Justin Hanes and coworkers fi rst proposed mucus penetrating particles(MPP)by mimicking the essential surface properties of viruses that allow them to avoid mucoadhesion[5],showing great promise in mucosal drug delivery.Thereby,the aim of present study is to summarize the properties of mucus,approaches for designing NPs to conquer the mucus barrier as well as the strategies used to investigate the interactions between mucus and NPs.

    2. Barrier of mucus layer

    Mucus is a viscoelastic,adhesive gel that coats and protects most epithelial surfaces,which ef fi ciently trap most foreign particles and pathogens through adhesive and steric interactions,followed by rapid clearance.Fig.1 illustrated the fate of foreign particulates,including penetrating through mucus(A),trapping in mucus(B)and excluding by mucus(C) [8].The following will elaborate the reasons resulting in various fates of foreign particulates.

    2.1. Composition of mucus

    Mucus is a hydrogel complex composed of carbohydrates, protein,lipids,antibody,cellular debris bacteria and inorganic salts[9].The barrier properties of mucus are rooted in its dense network of mucin fi bers,which contain highly glycosylated(negatively charged)segments[5],thus show high affi nity with positively charged particles.For example,Laf fl eur F et al.reported that the diffusion rate of neutral polyacrylic acid(PAA)-polypropylene amide(PAM)nanoparticles(NPs)is 2.5-fold higher than positively charged PAM NPs[8].Similar phenomenon also has been reported by other groups that NPs with positively charged surface can be trapped in mucus effectively own to strong electrostatic interactions[10].

    Additionally,there exist periodic hydrophobic domains along the mucin strains[11],which can bind hydrophobic particles with high avidity.Although hydrophobic interactions effectively limit the transport of some harmful agents such as bacteria[12,13],italso represents a challenge for the delivery of drug carriers,since the commonly used biomaterials are hydrophobic,like poly(lactic-co-glycolic acid)(PLGA)[14,15]and polystyrene(PS)[16].However,after coating PLGA NPs with hydrophilic DNA,the average transport rates can be improved 10-fold in reconstituted pig gastric mucus[17].

    2.2. Viscoelasticity

    The viscoelasticity of mucus are essential for its protective properties.As reported,a rather moderate decrease of viscoelasticity can signi fi cantly promote bacterialand sperm motility[11].Mucin,as the main component of mucus,directly affects the viscoelastic properties of mucus. A series studies have shown that the mucins can be changed in amount,type and size in disease[18-20].For instance,compared with healthy secretions,the mucin concentration increased approximately 7-fold for patient with asthma,further increasing the dif fi culty of mucosal drug delivery[21].Apart from mucin,other factors also play a key role in regulating mucus viscoelasticity,including lipids,inorganic salts,pH and cellular debris.The cell debris DNA can further increase the viscoelasticity of mucus due to its fi bers are even longer than mucin fi bers[18].Besides, highly acidic environments(pH<4)would cause the aggregation of mucin fi bers and greatly increase the mucus viscoelasticity[22].Therefore,to ensure free diffusion of NPs in mucus,large amounts of mucus mucolytic agents can be adopted to reduce the viscoelasticity of mucus (Fig.2),including papain[23,24],recombinant human DNase (rhDNase)[10,25],N-acetyl-L-cysteine(NAC)[26]and guluronate oligomers[27].

    2.3. Steric obstruction

    Mucus gel is composed of highly cross-linked mucin fi bers by hydrophobic interactions and disul fi des link,creating a dense porous structure.However,mucus displays different pore size depending on its location on the body,such as,the average pore size of human cervicovaginal mucus(CVM)is 340±70 nm[28]and 550±50 nm for fresh bovine vitreous [29],while smaller mesh spacing inherent to cystic fi brosis (CF)sputum(140±50 nm)own to the higher concentrations of mucins,DNA,and actin[30].Thereby,to penetrate mucus,nanocarriersmustbesmallenoughtoavoid steric obstruction in spite of NPs with larger size are preferred to improve drug loading and release kinetics[5]. As reported,a 2-fold increase in particle size,from 510 nm to 1190 nm for PS-PEG NP,would led to a 30-fold decrease in the ensemble-averaged mean squared displacement[29]. Italsohasbeen reported thatthenanospheressize approaching 560 nm were almost completely blocked by the sputum[25].Similarly,Norris and Sinko studied the diffusion of variously sized PS particles in reconstituted porcine gastric mucin gel,and observed a sharp decrease in translocation permeability when particle sizes reach 300 nm[31].

    2.4. Dynamic properties

    Mucus is constantly secreted,subsequently shed and discarded or digested and recycled.Its turnover time is short, especiallyforthelooselyadherentmucuslayer,often measured in minutes to hours.For oral drug delivery,the intestinal mucus turnover time is 50-270 min[32],resulting in ef fi cient clearance of administered particulates.

    In conclusion,the understanding of mucus compositions and properties is important to design nanocarriers which can avoid the blockagein mucus,meanwhile penetratemucusat a rate signi fi cantly higher than mucus turnover cycle.

    3. MPP by modi fi cation their surface physicochemical properties

    NPs properties including charge and hydrophobicity have a great in fl uence on their behavior of penetrating through mucus.As a consequence,to prepare NPs with a suf fi ciently hydrophilic and uncharged surface to effectively minimize the adhesive interactions betweenmucin and NPs by reducing hydrophobicorelectrostatic interactions,show promise prospect on mucus penetrating.

    3.1. PEG-modi fi ed NPs

    Coating NPs with low molecular weight(MW)PEG is the most widely studied mucus penetrating strategy(Fig.3A)[33].There are various PEG modi fi ed MPP described in the literature (Table 1).PEG is an uncharged hydrophilic polymer which was used to increase the mucus adhesion in earlier studies[34,35]. While later researches have shown that coating NPs with a high density of low MW PEG can reduce the interactions between particle and mucus.The possible reasons are as followings:the MW of PEG was too low to support adhesion via polymer chains interpenetration and the PEG density is suffi cient to shield the hydrophobic core effectively[36].To determine the effect of PEG MW on the interactions of coated particles with mucus,Hanes et al.studied the diffusion rate of PS NPs modi fi ed by different MW(2,5 and 10 kDa)and densities(42±3%,65±1%and 69±1%)of PEG in CVM.The experimental results showed that low MW(e.g.2 kDa)and high-density(e.g.65-70%)PEG coating can facilitate the NPs to pass through mucus[36].Apart from modi fi ed PS NPs,PEG also can be used to conjugate with other polymeric materials to prepare MPP,like PLGA[37],poly sebacic acid(PSA)[38], polyethylenimine (PEI)[39]and poly-L-lysine(PLL)[40]. Furthermore,densely PEGylated particles are able to readily penetrate chronic rhinosinusitis mucus(CRSM)samples and sputum expectorated from the cystic fi brosis(CF)patients with higher viscosity[37].

    In addition to covalent conjugation of PEG to the particles core,PEG also can be physically absorbing on the particle surface by hydrophobic or electrostatic interactions[41,42]. This kind of NPs has similar mucus penetrating properties as long as their surface is densely coated by low MW PEG.

    3.2. Pluronic F-127 modi fi ed NPs

    Triblock copolymer of poly(ethylene glycol)-poly(propylene oxide)-poly(ethylene glycol)(PEG-PPO-PEG;known as Pluronics)has a long application history in oral,intravenous and ophthalmic administration,which can coat hydrophobic particle surfaces by adsorption of the hydrophobic PPO segments,leaving a dense brush of uncharged,hydrophilic PEG segments protruding from the particle surface[43](Fig.3B). Studies have shown that Pluronics containing PPO segments with MW>3 kDa,such as F-127,can produce MPP.Coating PLGA nanoparticles with Pluronic F127 can effectively block adhesive interactions between the PLGA core and mucus constituents,which are similar to covalent conjugation of PEG toPLGA,simultaneously without changingthestructureofthe PLGA carrier materials[44].Other studies also indicated that the average speed for PLGA/F127 particles was only 20-fold reduced compared to their theoretical speed in water(uncoated PLGA particles were slowed by>1000-fold)[37].Similarly,X.Li et al.designed a core shell corona nanolipoparticles (CSC)which contains chitosan NPs as a core component and pluronic F127-lipid vesicles as a shell with hydrophilic chain and polyethylene oxide PEO as a corona for oral protein delivery.CSC can further improve the absorption of drug through enhanced intestinal mucus penetration[45].Additionally,otherstudycomparedthemucuspenetrating behavior of Pluronic F127-modi fi ed liposomes(PF127-Lip)and chitosan-modi fi ed liposomes(CS-Lip).Pharmacokinetic analysis in rats shows that the Cmaxand AUC0-tof F127-Lip were 1.73-fold and 1.84-fold higher than those of CS-Lip,respectively.This indicated F127-Lip more suitable for drug nanocarriers[46].Besides,it is interesting to found that PS NPs can rapidly penetrate CVM if the CVM is pretreated with suf fi cient concentrations of F127[47].

    However,it needs to be noticing that not all hydrophilic and neutral modi fi cation can facilitate mucus penetration. Like hydrophilic and uncharged polyvinyl alcohol coated PS NPs were immobilized,with speeds at least 4000-fold lower in mucus than in water,regardless of the MW or incubation concentration of PVA[48].

    4. MPP by disrupting the mucus barrier

    Due to the tenacious and sticky network of mucin fi bers,the diffusion of foreign particles is restricted by trapping and steric hindrance.According to the nature of mucus,a technique to reach the underlying cell layer is presented by disrupting the mucoglycoprotein substructures using mucolytic agents[49] (Fig.3C).For example,Mu¨ller C and coworkers prepared NPs composed of polyacrylic acid(PAA)and papain.The presence of papain on the surface and inside of the particles could strongly decrease viscosity of the mucus thus leading to particle transition across the mucus layer quickly[23,24].

    In addition,recombinant human DNase(rhDNase)is the most commonly used mucolytic in CF,which can hydrolyzes the DNA that forms dense entanglements with mucin glycoproteins and other mucus constituents,thus reducing the number of viscoelasticity and crosslinks of mucus[50]. Sanders et al.observed rhDNase moderately facilitated the transport of nanospheres through CF sputum[25].However, Dawson et al.found that treatment with rhDNase dramatically narrowed the distribution of individual particle diffusion rates and reduced macroviscoelastic properties of CF sputum by up to 50%,but did not signi fi cantly alter the ensembleaverage particle diffusion rate.This might attribute to the hydrolytic cleavage of DNA into smaller fragments which diffuse freely into micropores and then increased the microviscosity within the pores[10].

    N-acetyl-L-cysteine(NAC)is another common mucolytic for its ability to facilitate the penetration of NPs across CF sputum.NAC disrupts the structure of the mucus polymer by substituting free thiol(sulfhydryl)groups for the disul fi de bonds connecting with mucin proteins[26].As a result,both the elasticity and viscosity of the mucus are lowered.Alton et al.found that the mucus barrier to non-viral gene vectors can be overcome partially by treatment with NAC in an ex vivo model of sheep tracheal epithelium[51].However,it is still need further investigation to clarify if the combination of polymeric NPs with mucolytic agents will promote more endotoxins and other toxic substances absorption by decreasing the local viscosity of mucus layer.

    5. Research strategies of mucus penetration

    5.1. Diffusion experiments

    Methods used to study particle diffusion in mucus include multiple particle tracking(MPT),Ussing chamber or Transwell-Snapwelldiffusion chamberand so on.Transwell-Snapwelldiffusion chamberwas fi rstused for quantitatively measuring the diffusivity of particles in mucus, which consists of two chambers with the placement of the mucus layer in the middle.Although this method is conceptually straightforward,it is also sensitive to parameters that are dif fi cult to control,including the thickness of the mucussample,alterations in mucus properties and blockage of fi lter pores by mucus[52].

    In order to avoid the defects in diffusion chamber experiments,many studies recorded the NPs dynamic transit in the mucus using fl uorescence microscopy,such as fl uorescence recovery after photobleaching(FRAP)and multiple particle tracking(MPT).FRAP is the fl uorescently labeled NPs exposure to a laser beam to form a fl oating white spot.The diffusion coef fi cient is obtained by the recovery of the fl uorescence intensity,which results following diffusion of the fl uorescently labeled molecules into this area with the fl ow of NPs[53].Shen etal.applied FRAPtoexamine the diffusion ofplasmid DNAsin mucus[54].Additionally,FRAP also has been used to investigate the effect of guluronate oligomers on mobility of NPs in mucous matrices,and results showed that guluronate oligomers can improve NPs mobility in native pig gastric mucus (Fig.4A and B)[27].FRAPcan beused to investigate the mobility of labeled molecules in mucus and biogels,but it provides only ensemble-averaged diffusion rates and cannot be used to quantify the transport rates of individual particles.A lack of information at the individual particle level may limit its application in complex mucus[55].For this purpose,Hanes et al.have pioneered MPT to measure the transport of NPs in mucus.As shown in Fig.4C and D[56],it can record each particletrajectoriesbyinverted fl uorescencemicroscope meanwhile MPT can be used for analysis of NPs in some complex biological fl uids,such as sputum[57].Apart from this, the diffusion behavior of NPs in the mucus also can be studied by rotating diffusion tubes[58]and mucus slices[59]etc.

    5.2. Cell models

    5.2.1. HT29-MTX cell model

    HT29 cells belong to human colonic adenocarcinoma cell line. Under the in fl uence of methotrexate(MTX)[60],HT29 differentiated into mature goblet cells,such as E12 cells,which can secrete mucus.Therefore,HT29-MTX cells can be used to study thein fl uenceofmucuslayeronNPstransport[61].However,this modelhassomedrawbackscomparedtotheinvivosituationdue to it is based on only one cell type of the intestinal epithelium.

    5.2.2. Caco-2/HT29-MTX co-cultures cell model

    Human colon carcinoma Caco-2 and HT29 cells were established to represent the two most abundant cell populations in the intestinal epithelium,absorptive cells and goblet cells. Therefore,co-cultures of Caco-2 cells and mucus-producing goblet cells HT29-MTX would provide a drug absorption model incorporating the mucus barrier[62].Wilkman-Larhead fi rst characterized co-cultures of Caco-2 and goblet-like HT29-MTX cells as in vitro drug and peptide absorption models[63]. In general,a higher amount of Caco-2 cells leads to higher transepithelial electrical resistance(TEER)values probably due to more intensely formed tight junctions.When HT29 cell ratio is 25%,the change of TEER value is 0-790 Ω·cm2in 0-23 days. whentheratiois75%,theTEERvaluedowngradeto 0-310 Ω·cm2.Goblet cells comprise a quantitatively signi fi cant component of the GI tract,comprising approximately 10%of the duodenal epithelium and increasing to 24%in the distal colon.Thus,to maintain better in vivo/in vitro correlationrelevance,the co-cultures proportion of Caco-2/HT29-MTX is 90%/10%or 75%/25%mostly[64,65].

    5.2.3. Caco-2/HT29-MTX/Raji B triple culture model

    Apart from enterocytes and goblet cells,M cells located in the epithelium that overlay the Peyer's patches also play a dominant role.Several reportssuggest that NPs are capable to enter intestinal epithelia via M cells while uptake by absorptive enterocytes only plays a minor role[66,67].In order to design a model which can mimic the small intestinal epithelial more accurately,some studies establish an in vitro cellular model based on Caco-2,mucus-producing HT29-MTX,and human Burkitt's lymphoma Raji B cells which represent M cells.The model was set up by seeding co-cultures of Caco-2 and HT29 cells into Transwell fi lters and maintained under identical conditions following the addition of Raji B to the basolateral chamber[68,69].

    In addition,there were also studies designed and characterized biosimilar mucus compatible with Caco-2 cell monolayers cultured in vitro to establish a more representative in vitro model for the intestinal mucosa to predict the in fl uence of mucus on intestinal drug absorption[70].

    5.3. Animal models

    To better understand the fate of the particles and how the results might translate in humans,many studies adopt animal models to investigate the therapeutic effects or pharmacokinetics of NPs,which mainly include isolated intestinal experiments,in situ experiments and in vivo experiments.

    5.3.1. Isolated intestinal model

    To avoid the shortcomings of cell monolayer model such as lack of three-dimensional macrostructure and cells of varying degrees of differentiation,some studies adopted isolated intestinal experiments(including everted intestinal sac and permeability study by Ussing chamber[71])to measure the mucoadhesive properties of NPs.However,in such model,the intestinalneed toberemoved,opened,washed and segmented,which may change the intestinal property and failed to predict what occurred in vivo[72].

    5.3.2. In situ model

    Intestinal loop models have been used for decades to investigate systemic absorption of drugs.In this model,a portion of the small intestine is excised from the abdominal cavity, subsequently ligated at both ends to make an isolated“l(fā)oop”, and the test NPs is directly injected into the loop.After a chosen time period,the animal is sacri fi ced and the intestinal loop is removed from the body cavity for further morphology or quantitative analysis[73].Several studies have used this modelto investigate thein fl uenceofmucusonNPsabsorption and the amounts of NPs trapped in mucus[45,46].

    5.3.3. In vivo model

    No matter how sophisticated an in vitro model,eventually in vivo evaluation is necessary to validate the true performance of a drug delivery system.For example,the signi fi cant difference existed in mucus composition and thickness with the position of the GI tract,it is dif fi cult to simulate these in vitro experiments.However,a shortcoming existed in all models so far is their non-human nature,which shows great difference in human studies[72].

    6. Conclusions

    Mucus layer covering in exposed epithelial surfaces of the body has vital protective and lubrication effect.However,the adhesive and rapidly update properties of mucus is one of the main barriers for mucosal drug delivery.A promising strategy to tacklethisproblemisuse ofMPPwhichcanreadilyin fi ltrate into the mucus layer before turnover occurring.While some problems for MPP including the epithelial barrier,the security of MPP and suitable mucus models still need to be further investigated.

    Acknowledgement

    We gratefully acknowledge fi nancial support from the National Natural Science Foundation of China(81173010).

    REFERENCES

    [1]Panyam J,Labhasetwar V.Biodegradable nanoparticles for drug and gene delivery to cells and tissue.Adv Drug Deliv Rev 2003;55:329-347.

    [2]Ensign LM,Schneider C,Suk JS,et al.Mucus penetrating nanoparticles:biophysical tool and method of drug and gene delivery.Adv Mater 2012;24:3887-3894.

    [3]Ponchel G,Irache J.Speci fi c and non-speci fi c bioadhesive particulate systems for oral delivery to the gastrointestinal tract.Adv Drug Deliv Rev 1998;34:191-219.

    [4]Woodley J.Bioadhesion:new possibilities for drug administration?Clin Pharmacokinet 2001;40:77-84.

    [5]Lai SK,Wang YY,Hanes J.Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.Adv Drug Deliv Rev 2009;61:158-171.

    [6]Sosnik A,das Neves J,Sarmento B.Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes:a review.Prog Polym Sci 2014;39:2030-2075.

    [7]Takeuchi H,Yamamoto H,Kawashima Y.Mucoadhesive nanoparticulate systems for peptide drug delivery.Adv Drug Deliv Rev 2001;47:39-54.

    [8]Laf fl eur F,Hintzen F,Shahnaz G,et al.Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus.Nanomedicine(Lond) 2014;9:387-396.

    [9]Ensign LM,Cone R,Hanes J.Oral drug delivery with polymeric nanoparticles:the gastrointestinal mucus barriers.Adv Drug Deliv Rev 2012;64:557-570.

    [10]Dawson M,Wirtz D,Hanes J.Enhanced viscoelasticity of human cystic fi brotic sputum correlates with increasing microheterogeneity in particle transport.J Biol Chem 2003;278:50393-50401.

    [11]Cone RA.Barrier properties of mucus.Adv Drug Deliv Rev 2009;61:75-85.

    [12]Sajjan U,Reisman J,Doig P,et al.Binding of nonmucoid Pseudomonas aeruginosa to normal human intestinal mucinand respiratory mucin from patients with cystic fi brosis.J Clin Invest 1992;89:657-665.

    [13]Drumm B,Neumann AW,Policova Z,et al.Bacterial cell surface hydrophobicity properties in the mediation of in vitro adhesion by the rabbit enteric pathogen Escherichia coli strain RDEC-1.J Clin Invest 1989;84:1588-1594.

    [14]Sellers DL,Kim TH,Mount CW,et al.Poly(lactic-co-glycolic) acid microspheres encapsulated in Pluronic F-127 prolong hirudin delivery and improve functional recovery from a demyelination lesion.Biomaterials 2014;35:8895-8902.

    [15]Zheng F,Wang S,Wen S,et al.Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid)composite nano fi bers.Biomaterials 2013;34:1402-1412.

    [16]Lunov O,Syrovets T,Loos C,et al.Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.ACS Nano 2011;5:1657-1669.

    [17]Dawson M,Krauland E,Wirtz D,et al.Transport of polymeric nanoparticle gene carriers in gastric mucus.Biotechnol Prog 2004;20:851-857.

    [18]Thornton DJ,Sheehan JK.From mucins to mucus:toward a more coherent understanding of this essential barrier.Proc Am Thorac Soc 2004;1:54-61.

    [19]Thornton DJ,Davies JR,Kraayenbrink M,et al.Mucus glycoproteins from'normal'human tracheobronchial secretion.Biochem J 1990;265:179-186.

    [20]Thornton DJ,Sheehan JK,Lindgren H,et al.Mucus glycoproteins from cystic fi brotic sputum.Macromolecular properties and structural‘architecture’.Biochem J 1991;276(Pt 3):667-675.

    [21]Sheehan JK,Richardson PS,Fung DC,et al.Analysis of respiratory mucus glycoproteins in asthma:a detailed study from a patient who died in status asthmaticus.Am J Respir Cell Mol Biol 1995;13:748-756.

    [22]Hong Z,Chasan B,Bansil R,et al.Atomic force microscopy reveals aggregation of gastric mucin at low pH. Biomacromolecules 2005;6:3458-3466.

    [23]Muller C,Perera G,Konig V,et al.Development and in vivo evaluation of papain-functionalized nanoparticles.Eur J Pharm Biopharm 2014;87:125-131.

    [24]Mu¨ller C,Leithner K,Hauptstein S,et al.Preparation and characterization of mucus-penetrating papain/poly(acrylic acid)nanoparticles for oral drug delivery applications.J Nanopart Res 2012;15:1-13.

    [25]Sanders NN,De Smedt SC,Van Rompaey E,et al.Cystic fi brosis sputum:a barrier to the transport of nanospheres. Am J Respir Crit Care Med 2000;162:1905-1911.

    [26]Henke MO,Ratjen F.Mucolytics in cystic fi brosis.Paediatr Respir Rev 2007;8:24-29.

    [27]Nordgard CT,Nonstad U,Olderoy MO,et al.Alterations in mucus barrier function and matrix structure induced by guluronate oligomers.Biomacromolecules 2014;15:2294-2300.

    [28]Lai SK,Wang YY,Hida K,et al.Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses.Proc Natl Acad Sci U S A 2010;107:598-603.

    [29]Xu Q,Boylan NJ,Suk JS,et al.Nanoparticle diffusion in,and microrheology of,the bovine vitreous ex vivo.J Control Release 2013;167:76-84.

    [30]Suk JS,Lai SK,Wang YY,et al.The penetration of fresh undiluted sputum expectorated by cystic fi brosis patients by non-adhesive polymer nanoparticles.Biomaterials 2009;30:2591-2597.

    [31]Norris DA,Sinko PJ.Effect of size,surface charge,and hydrophobicity on the translocation of polystyrene microspheres through gastrointestinal mucin.J Appl Polym Sci 1997;63:1481-1492.

    [32]Lehr C-M,Poelma FGJ,Junginger HE,et al.An estimate of turnover time of intestinal mucus gel layer in the rat in situ loop.Int J Pharm 1991;70:235-240.

    [33]Nance E,Zhang C,Shih TY,et al.Brain-penetrating nanoparticles improve Paclitaxel ef fi cacy in malignant glioma following local administration.ACS Nano 2014;8:10655-10664.

    [34]Huang Y,Leobandung W,Foss A,et al.Molecular aspects of muco-and bioadhesion:tethered structures and site-speci fi c surfaces.J Control Release 2000;65:63-71.

    [35]Bures P,Huang Y,Oral E,et al.Surface modi fi cations and molecular imprinting of polymers in medical and pharmaceutical applications.J Control Release 2001;72:25-33.

    [36]Wang YY,Lai SK,Suk JS,et al.Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that“slip”through the human mucus barrier.Angew Chem Int Ed Engl 2008;47:9726-9729.

    [37]Lai SK,Suk JS,Pace A,et al.Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 2011;32:6285-6290.

    [38]Tang BC,Dawson M,Lai SK,et al.Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier.Proc Natl Acad Sci U S A 2009;106:19268-19273.

    [39]Suk JS,Kim AJ,Trehan K,et al.Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier.J Control Release 2014;178:8-17.

    [40]Boylan NJ,Suk JS,Lai SK,et al.Highly compacted DNA nanoparticles with low MW PEG coatings:in vitro,ex vivo and in vivo evaluation.J Control Release 2012;157:72-79.

    [41]Mert O,Lai SK,Ensign L,et al.A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles.J Control Release 2012;157:455-460.

    [42]Xie Z,Ji Z,Zhang Z,et al.Adenoviral vectors coated with cationic PEG derivatives for intravaginal vaccination against HIV-1.Biomaterials 2014;35:7896-7908.

    [43]Illum L,Davis SS.The organ uptake of intravenously administered colloidal particles can be altered using a nonionic surfactant(Poloxamer 338).FEBS Lett 1984;167:79-82.

    [44]Yang M,Lai SK,Wang YY,et al.Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus.Angew Chem Int Ed Engl 2011;50:2597-2600.

    [45]Li X,Guo S,Zhu C,et al.Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles.Biomaterials 2013;34:9678-9687.

    [46]Chen D,Xia D,Li X,et al.Comparative study of Pluronic((R)) F127-modi fi ed liposomes and chitosan-modi fi ed liposomes for mucus penetration and oral absorption of cyclosporine A in rats.Int J Pharm 2013;449:1-9.

    [47]Ensign LM,Lai SK,Wang YY,et al.Pretreatment of human cervicovaginal mucus with pluronic F127 Enhances nanoparticle penetration without compromising mucus barrier properties to Herpes Simplex Virus. Biomacromolecules 2014;15:4403-4409.

    [48]Yang M,Lai SK,Yu T,et al.Nanoparticle penetration of human cervicovaginal mucus:the effect of polyvinyl alcohol. J Control Release 2014;192:202-208.

    [49]Bell AE,Sellers LA,Allen A,et al.Properties of gastric and duodenal mucus:effect of proteolysis,disul fi de reduction, bile,acid,ethanol,and hypertonicity on mucus gel structure. Gastroenterology 1985;88:269-280.

    [50]Shah PL,Scott SF,Knight RA,et al.In vivo effects of recombinant human DNase I on sputum in patients with cystic fi brosis.Thorax 1996;51:119-125.

    [51]Ferrari S,Kitson C,Farley R,et al.Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther 2001;8:1380-1386.

    [52]Saltzman WM,Radomsky ML,Whaley KJ,et al.Antibody diffusion in human cervical mucus.Biophys J 1994;66:508-515.

    [53]Groo AC,Lagarce F.Mucus models to evaluate nanomedicines for diffusion.Drug Discov Today 2014;19:1097-1108.

    [54]Shen H,Hu Y,Saltzman WM.DNA diffusion in mucus:effect of size,topology of DNAs,and transfection reagents.Biophys J 2006;91:639-644.

    [55]Suh J,Dawson M,Hanes J.Real-time multiple-particle tracking:applications to drug and gene delivery.Adv Drug Deliv Rev 2005;57:63-78.

    [56]Zagato E,Forier K,Martens T,et al.Single-particle tracking for studying nanomaterial dynamics:applications and fundamentals in drug delivery.Nanomedicine(Lond) 2014;9:913-927.

    [57]Suk JS,Suh J,Lai SK,et al.Quantifying the intracellular transport of viral and nonviral gene vectors in primary neurons.Exp Biol Med(Maywood)2007;232:461-469.

    [58]Dunnhaupt S,Barthelmes J,Hombach J,et al.Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa. Int J Pharm 2011;408:191-199.

    [59]Gradauer K,Barthelmes J,Vonach C,et al.Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J Control Release 2013;172:872-878.

    [60]Lesuf fl eur T,Barbat A,Dussaulx E,et al.Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells.Cancer Res 1990;50:6334-6343.

    [61]Behrens I,Stenberg P,Artursson P,et al.Transport of lipophilic drug molecules in a new mucus-secreting cell culture model based on HT29-MTX cells.Pharm Res 2001;18:1138-1145.

    [62]Mahler GJ,Shuler ML,Glahn RP.Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability.J Nutr Biochem 2009;20:494-502.

    [63]Wikman-Larhed A,Artursson P.Co-cultures of human intestinal goblet(HT29-H)and absorptive(Caco-2)cells for studies of drug and peptide absorption.Eur J Pharm Sci 1995;3:171-183.

    [64]Walter E,Janich S,Roessler BJ,et al.HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans.J Pharm Sci 1996;85:1070-1076.

    [65]Hilgendorf C,Spahn-Langguth H,Regardh CG,et al.Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion,inside-and outside-directed carrier-mediated transport.J Pharm Sci 2000;89:63-75.

    [66]Jepson MA,Clark MA,Hirst BH.M cell targeting by lectins:a strategy for mucosal vaccination and drug delivery.Adv Drug Deliv Rev 2004;56:511-525.

    [67]des Rieux A,Ragnarsson EG,Gullberg E,et al.Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium.Eur J Pharm Sci 2005;25:455-465.

    [68]Schimpel C,Teubl B,Absenger M,et al.Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles.Mol Pharm 2014;11:808-818.

    [69]Antunes F,Andrade F,Araujo F,et al.Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs.Eur J Pharm Biopharm 2013;83:427-435.

    [70]Boegh M,Baldursdottir SG,Mullertz A,et al.Property pro fi ling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Eur J Pharm Biopharm 2014;87:227-235.

    [71]Fan T,Chen C,Guo H,et al.Design and evaluation of solid lipid nanoparticles modi fi ed with peptide ligand for oral delivery of protein drugs.Eur J Pharm Biopharm 2014;88:518-528.

    [72]Gamboa JM,Leong KW.In vitro and in vivo models for the study of oral delivery of nanoparticles.Adv Drug Deliv Rev 2013;65:800-810.

    [73]Jin Y,Song Y,Zhu X,et al.Goblet cell-targeting nanoparticles for oral insulin delivery and the in fl uence of mucus on insulin transport.Biomaterials 2012;33:1573-1582.

    Min Liu,Jian Zhang,Wei Shan,Yuan Huang*

    Key Laboratory of Drug Targeting and Drug Delivery System,Ministry of Education,West China School of Pharmacy, Sichuan University,No.17,Block 3,Southern Renmin Road,Chengdu 610041,China

    *Corresponding author.West China School of Pharmacy,Sichuan University,Chengdu,Sichuan 610041,China.Tel./fax:+86 028 85501617. E-mail address:huangyuan0@163.com(Y.Huang).

    Peer review under responsibility of Shenyang Pharmaceutical University.

    http://dx.doi.org/10.1016/j.ajps.2014.12.007

    1818-0876/?2015 Shenyang Pharmaceutical University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Mucus barrier

    Mucus penetrating nanoparticles Mucus properties

    Experimental strategies

    国产伦在线观看视频一区| 女同久久另类99精品国产91| 国产精品综合久久久久久久免费| 国产精品九九99| a级毛片在线看网站| 非洲黑人性xxxx精品又粗又长| 国产片内射在线| 亚洲国产精品合色在线| avwww免费| 久久人妻福利社区极品人妻图片| x7x7x7水蜜桃| 成人精品一区二区免费| 日本五十路高清| 亚洲精品国产精品久久久不卡| 午夜免费激情av| 亚洲av电影不卡..在线观看| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 亚洲精品美女久久久久99蜜臀| 久久精品91无色码中文字幕| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 国产一卡二卡三卡精品| 青草久久国产| 亚洲 欧美一区二区三区| 亚洲成人免费电影在线观看| 亚洲成人国产一区在线观看| 亚洲精品久久国产高清桃花| 亚洲人成网站高清观看| 在线观看www视频免费| 国产精品久久久人人做人人爽| 香蕉丝袜av| 精品无人区乱码1区二区| 日日摸夜夜添夜夜添小说| 亚洲精品在线美女| 成人免费观看视频高清| 国产区一区二久久| 日本熟妇午夜| 婷婷六月久久综合丁香| 在线观看午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 欧美一区二区精品小视频在线| 国产精品一区二区三区四区久久 | 久久久国产成人精品二区| 一区二区三区国产精品乱码| 午夜福利在线在线| 男女之事视频高清在线观看| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 久久国产精品男人的天堂亚洲| 少妇裸体淫交视频免费看高清 | √禁漫天堂资源中文www| 国产精品国产高清国产av| 国产成人系列免费观看| 精品国产乱码久久久久久男人| 人人妻人人澡人人看| 日韩大尺度精品在线看网址| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 狂野欧美激情性xxxx| 欧美乱色亚洲激情| 美女免费视频网站| 1024视频免费在线观看| 啦啦啦观看免费观看视频高清| 国产一级毛片七仙女欲春2 | 亚洲一区中文字幕在线| 巨乳人妻的诱惑在线观看| 日本a在线网址| 可以免费在线观看a视频的电影网站| 搡老熟女国产l中国老女人| 精品人妻1区二区| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 精品卡一卡二卡四卡免费| 此物有八面人人有两片| 中文字幕另类日韩欧美亚洲嫩草| 国产精品亚洲av一区麻豆| 一本综合久久免费| 精华霜和精华液先用哪个| 精品免费久久久久久久清纯| 国产人伦9x9x在线观看| 精品国产超薄肉色丝袜足j| 亚洲精品色激情综合| 久久九九热精品免费| 淫妇啪啪啪对白视频| 999久久久精品免费观看国产| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲| 一进一出好大好爽视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲美女久久久| 欧美在线黄色| 国产亚洲av嫩草精品影院| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| 天堂√8在线中文| 国产真实乱freesex| 国产激情偷乱视频一区二区| 999久久久国产精品视频| 欧美性猛交黑人性爽| 久久久精品国产亚洲av高清涩受| 超碰成人久久| av欧美777| 18禁美女被吸乳视频| 亚洲男人的天堂狠狠| 一级a爱视频在线免费观看| 国产av一区二区精品久久| 日韩高清综合在线| 中文字幕久久专区| 波多野结衣av一区二区av| 成人午夜高清在线视频 | 日韩三级视频一区二区三区| 女警被强在线播放| 国产精品乱码一区二三区的特点| 欧美黑人精品巨大| 成年人黄色毛片网站| 亚洲欧美日韩高清在线视频| av中文乱码字幕在线| av有码第一页| 午夜福利欧美成人| 嫁个100分男人电影在线观看| xxx96com| 精品人妻1区二区| 成人午夜高清在线视频 | av有码第一页| 校园春色视频在线观看| 亚洲五月色婷婷综合| 免费电影在线观看免费观看| 99久久国产精品久久久| 久久精品亚洲精品国产色婷小说| 久久亚洲精品不卡| 99riav亚洲国产免费| xxx96com| 亚洲av成人不卡在线观看播放网| 亚洲av日韩精品久久久久久密| 精品久久久久久久末码| 欧美国产日韩亚洲一区| 国产伦在线观看视频一区| 久久久国产欧美日韩av| 日本免费a在线| 国产精品久久电影中文字幕| 亚洲三区欧美一区| 黑丝袜美女国产一区| 国产区一区二久久| 国产一级毛片七仙女欲春2 | 欧美三级亚洲精品| 欧美日韩亚洲综合一区二区三区_| 色av中文字幕| 国产精品综合久久久久久久免费| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| www.自偷自拍.com| 国产高清有码在线观看视频 | 亚洲国产欧美网| 国产精品久久久av美女十八| 亚洲成av人片免费观看| 老司机深夜福利视频在线观看| 在线永久观看黄色视频| 后天国语完整版免费观看| 国产亚洲精品综合一区在线观看 | 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 精品国产乱子伦一区二区三区| 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 亚洲av片天天在线观看| 无遮挡黄片免费观看| 国产精品久久视频播放| 中文字幕av电影在线播放| 一级a爱片免费观看的视频| 久久精品91无色码中文字幕| 搡老熟女国产l中国老女人| 国产av一区二区精品久久| 精品熟女少妇八av免费久了| 婷婷精品国产亚洲av| 日本精品一区二区三区蜜桃| 免费在线观看成人毛片| 中文字幕精品免费在线观看视频| 国产私拍福利视频在线观看| 精品一区二区三区四区五区乱码| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯| 黄色a级毛片大全视频| 午夜福利在线在线| a在线观看视频网站| 麻豆一二三区av精品| 一级a爱片免费观看的视频| 久久性视频一级片| 亚洲va日本ⅴa欧美va伊人久久| 国产精品免费一区二区三区在线| 欧美一级毛片孕妇| 日韩免费av在线播放| 亚洲av熟女| 精品一区二区三区av网在线观看| 美女免费视频网站| 久久久精品国产亚洲av高清涩受| 国产午夜福利久久久久久| 欧美激情高清一区二区三区| 中文字幕最新亚洲高清| 国产野战对白在线观看| 麻豆国产av国片精品| 久久精品国产综合久久久| 一进一出好大好爽视频| 婷婷丁香在线五月| www.自偷自拍.com| 国产精品久久视频播放| 亚洲av成人一区二区三| 国产av不卡久久| 成人亚洲精品av一区二区| 少妇粗大呻吟视频| 1024视频免费在线观看| 亚洲最大成人中文| 成人亚洲精品一区在线观看| 91大片在线观看| 午夜影院日韩av| 久久九九热精品免费| 天天一区二区日本电影三级| 亚洲精品美女久久久久99蜜臀| 色综合欧美亚洲国产小说| 欧美日韩黄片免| 欧美日韩乱码在线| 看片在线看免费视频| 国产不卡一卡二| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品亚洲一级av第二区| 人成视频在线观看免费观看| 91九色精品人成在线观看| 宅男免费午夜| 美女扒开内裤让男人捅视频| 大型黄色视频在线免费观看| tocl精华| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 国产精品野战在线观看| 草草在线视频免费看| 国内精品久久久久久久电影| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 又黄又爽又免费观看的视频| 国产精品自产拍在线观看55亚洲| 日日摸夜夜添夜夜添小说| 午夜福利一区二区在线看| 欧美色欧美亚洲另类二区| 久久精品91蜜桃| 精品免费久久久久久久清纯| 国产精品野战在线观看| 欧美激情 高清一区二区三区| 国产单亲对白刺激| 日韩欧美国产一区二区入口| 欧美人与性动交α欧美精品济南到| 白带黄色成豆腐渣| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 两个人免费观看高清视频| 国产极品粉嫩免费观看在线| 亚洲国产高清在线一区二区三 | 一级毛片女人18水好多| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| 一a级毛片在线观看| 久久香蕉激情| 身体一侧抽搐| 18禁裸乳无遮挡免费网站照片 | 色综合站精品国产| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| 国内精品久久久久久久电影| 久久精品人妻少妇| 最近在线观看免费完整版| 亚洲一区中文字幕在线| 国内毛片毛片毛片毛片毛片| 精品高清国产在线一区| 久久久久久久久久黄片| 色av中文字幕| 啦啦啦免费观看视频1| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 色精品久久人妻99蜜桃| 亚洲av五月六月丁香网| а√天堂www在线а√下载| 中文字幕av电影在线播放| 国产私拍福利视频在线观看| 精品久久蜜臀av无| 2021天堂中文幕一二区在线观 | 亚洲国产毛片av蜜桃av| 国产视频内射| 韩国精品一区二区三区| 在线观看免费午夜福利视频| 欧美三级亚洲精品| 禁无遮挡网站| 亚洲午夜精品一区,二区,三区| 听说在线观看完整版免费高清| 人人澡人人妻人| 国产蜜桃级精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 日韩有码中文字幕| 久久婷婷成人综合色麻豆| 欧美黑人巨大hd| 欧美乱色亚洲激情| 欧美日韩乱码在线| 亚洲自偷自拍图片 自拍| 亚洲无线在线观看| 国产精品电影一区二区三区| 波多野结衣高清作品| 级片在线观看| 日韩欧美一区二区三区在线观看| 久久伊人香网站| 精华霜和精华液先用哪个| 国产视频内射| 91成人精品电影| 无人区码免费观看不卡| 日韩精品青青久久久久久| 亚洲黑人精品在线| 亚洲男人的天堂狠狠| 亚洲全国av大片| 欧美在线一区亚洲| 一个人免费在线观看的高清视频| 1024视频免费在线观看| 成人永久免费在线观看视频| 国产精品二区激情视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线美女| 亚洲黑人精品在线| 精品国产国语对白av| 精品国产美女av久久久久小说| 麻豆成人午夜福利视频| 中文字幕久久专区| 日本 av在线| 最新在线观看一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 日日干狠狠操夜夜爽| 50天的宝宝边吃奶边哭怎么回事| 一a级毛片在线观看| 中文字幕精品亚洲无线码一区 | 亚洲成人国产一区在线观看| 亚洲成国产人片在线观看| 久久婷婷成人综合色麻豆| 久久人妻福利社区极品人妻图片| 中文字幕久久专区| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 欧美日本视频| 日韩欧美三级三区| 99久久精品国产亚洲精品| 精品福利观看| 成人亚洲精品一区在线观看| 久久热在线av| 亚洲精品久久成人aⅴ小说| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 成在线人永久免费视频| 色尼玛亚洲综合影院| 悠悠久久av| 亚洲国产欧美一区二区综合| 精品国内亚洲2022精品成人| 久久久久亚洲av毛片大全| 一夜夜www| 中文字幕久久专区| 午夜福利18| 日韩大码丰满熟妇| 一本综合久久免费| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 一二三四社区在线视频社区8| 成人亚洲精品av一区二区| 精品电影一区二区在线| 男女视频在线观看网站免费 | 9191精品国产免费久久| 国产私拍福利视频在线观看| 在线av久久热| 国产一级毛片七仙女欲春2 | 欧美性长视频在线观看| 男女床上黄色一级片免费看| 观看免费一级毛片| 亚洲成av片中文字幕在线观看| xxx96com| 国产一区二区在线av高清观看| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 国产精品亚洲美女久久久| 免费女性裸体啪啪无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 一夜夜www| 又黄又爽又免费观看的视频| 久久精品成人免费网站| 身体一侧抽搐| x7x7x7水蜜桃| 欧美在线黄色| 天堂影院成人在线观看| 国产成年人精品一区二区| 脱女人内裤的视频| 成在线人永久免费视频| 女性被躁到高潮视频| 满18在线观看网站| 一二三四在线观看免费中文在| 麻豆av在线久日| 一区二区三区激情视频| 免费在线观看黄色视频的| 日本免费一区二区三区高清不卡| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 国产精品亚洲av一区麻豆| 啦啦啦免费观看视频1| 亚洲国产中文字幕在线视频| 久久精品国产清高在天天线| 国产精品电影一区二区三区| av在线天堂中文字幕| 不卡av一区二区三区| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 日韩精品青青久久久久久| 成年免费大片在线观看| 亚洲精品久久成人aⅴ小说| 国产人伦9x9x在线观看| 日韩三级视频一区二区三区| 美国免费a级毛片| 满18在线观看网站| 亚洲熟女毛片儿| 麻豆国产av国片精品| 男人舔奶头视频| 久久久国产成人精品二区| 久久狼人影院| 久久久久久久久免费视频了| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 免费一级毛片在线播放高清视频| 精品乱码久久久久久99久播| 97超级碰碰碰精品色视频在线观看| 男人舔奶头视频| 可以免费在线观看a视频的电影网站| 亚洲国产精品sss在线观看| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 久久精品影院6| 99久久99久久久精品蜜桃| 一夜夜www| 在线观看66精品国产| 亚洲五月婷婷丁香| 亚洲精品国产区一区二| 久久久精品国产亚洲av高清涩受| 久久国产精品男人的天堂亚洲| 高清在线国产一区| 国产一区二区激情短视频| 黑人操中国人逼视频| 19禁男女啪啪无遮挡网站| 国产片内射在线| 长腿黑丝高跟| 国产亚洲精品av在线| 国产三级黄色录像| 亚洲 欧美一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲色图av天堂| 亚洲成av人片免费观看| 亚洲真实伦在线观看| 91麻豆av在线| 宅男免费午夜| 午夜日韩欧美国产| 久久久久久久精品吃奶| 老汉色∧v一级毛片| xxxwww97欧美| 国产蜜桃级精品一区二区三区| 看免费av毛片| 一夜夜www| 欧美成人午夜精品| 无人区码免费观看不卡| av欧美777| 淫妇啪啪啪对白视频| 嫩草影院精品99| 亚洲国产精品合色在线| tocl精华| 亚洲国产精品sss在线观看| 伦理电影免费视频| 久久久久久大精品| 色老头精品视频在线观看| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站 | 日本一区二区免费在线视频| 精品国产一区二区三区四区第35| 91老司机精品| 99国产综合亚洲精品| 777久久人妻少妇嫩草av网站| 好男人在线观看高清免费视频 | 级片在线观看| 露出奶头的视频| 岛国在线观看网站| 国产色视频综合| 日韩精品青青久久久久久| 欧美日韩亚洲国产一区二区在线观看| 十八禁网站免费在线| 久久精品亚洲精品国产色婷小说| 高清毛片免费观看视频网站| 女人高潮潮喷娇喘18禁视频| 正在播放国产对白刺激| 国产一区二区三区在线臀色熟女| 一级a爱视频在线免费观看| 日韩有码中文字幕| 国产不卡一卡二| 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 亚洲精品在线美女| 欧美中文日本在线观看视频| 国产私拍福利视频在线观看| 国产亚洲精品av在线| 午夜福利在线观看吧| ponron亚洲| 精品日产1卡2卡| 黄片小视频在线播放| 精品卡一卡二卡四卡免费| 中亚洲国语对白在线视频| 好男人电影高清在线观看| 99热这里只有精品一区 | 免费在线观看影片大全网站| 亚洲欧美精品综合久久99| 亚洲第一青青草原| 国产伦一二天堂av在线观看| 一区二区三区精品91| 男女午夜视频在线观看| 精品第一国产精品| 久久人妻福利社区极品人妻图片| 欧美三级亚洲精品| 少妇的丰满在线观看| 亚洲第一青青草原| 亚洲专区字幕在线| 一本一本综合久久| 97人妻精品一区二区三区麻豆 | 日本 av在线| 国产激情偷乱视频一区二区| 国产精品 国内视频| 日本免费一区二区三区高清不卡| 亚洲国产中文字幕在线视频| 视频区欧美日本亚洲| 国产精品免费视频内射| 热99re8久久精品国产| 亚洲片人在线观看| 久久 成人 亚洲| 国产成人精品无人区| 国产爱豆传媒在线观看 | 黑人巨大精品欧美一区二区mp4| 老司机午夜十八禁免费视频| 亚洲第一青青草原| 两性午夜刺激爽爽歪歪视频在线观看 | 美女 人体艺术 gogo| 亚洲片人在线观看| 在线国产一区二区在线| 一级片免费观看大全| 国产精品影院久久| 久久国产精品人妻蜜桃| 51午夜福利影视在线观看| 色哟哟哟哟哟哟| 精品久久蜜臀av无| 欧美激情极品国产一区二区三区| 美女国产高潮福利片在线看| 99久久国产精品久久久| 香蕉av资源在线| 91九色精品人成在线观看| 禁无遮挡网站| 精品国产一区二区三区四区第35| 麻豆一二三区av精品| 欧美成人一区二区免费高清观看 | 国产一区二区三区视频了| 人妻久久中文字幕网| 国产精品九九99| 久久国产精品影院| 97超级碰碰碰精品色视频在线观看| 欧美黄色片欧美黄色片| 亚洲国产精品合色在线| 人人妻人人澡人人看| 91麻豆精品激情在线观看国产| 亚洲国产日韩欧美精品在线观看 | 村上凉子中文字幕在线| 两个人看的免费小视频| 亚洲欧美一区二区三区黑人| 免费在线观看影片大全网站| 法律面前人人平等表现在哪些方面| or卡值多少钱| 国产一级毛片七仙女欲春2 | 变态另类丝袜制服| 欧美日韩瑟瑟在线播放| 午夜老司机福利片| 日韩精品免费视频一区二区三区| 麻豆一二三区av精品| 久久久久九九精品影院| 巨乳人妻的诱惑在线观看| 一区二区三区国产精品乱码| 亚洲五月婷婷丁香| 99热这里只有精品一区 | 国产精品99久久99久久久不卡| 人人妻人人澡人人看| 宅男免费午夜| 亚洲国产精品合色在线| 久久这里只有精品19| 亚洲精品色激情综合| 亚洲av五月六月丁香网| av片东京热男人的天堂| 亚洲熟妇熟女久久| 女同久久另类99精品国产91| 国产v大片淫在线免费观看| 国产一区二区在线av高清观看| 欧美成人午夜精品| 精品日产1卡2卡| 久久久精品欧美日韩精品| 欧美亚洲日本最大视频资源| 99热这里只有精品一区 | 国产又爽黄色视频| 亚洲中文日韩欧美视频|