• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constraining the Parameterized Neutron Star Equation of State with Astronomical Observations

    2022-05-24 06:33:44JaikhombaSinghaMullaiVaneshwarandAnkitKumar

    Jaikhomba Singha,S.Mullai Vaneshwar,and Ankit Kumar

    1 Department of Physics,Indian Institute of Technology Roorkee,Roorkee 247667,India;mjaikhomba@gmail.com

    2 Department of Physics,National Institute of Technology Calicut,Kozhikode 673601,India

    Abstract We utilize the phenomenologically parameterized piecewise polytropic equations of state to study various neutron star properties.We investigate the compliance of these equations of state with several astronomical observations.We also demonstrate that the theoretical estimates of the fractional moment of inertia cannot explain all the pulsar glitches observed.We model the crust as a solid spheroidal shell to calculate the fractional moment of inertia of fast-spinning neutron stars.We also show that the braking index obtained in a simple magnetic dipole radiation model with a varying moment of inertia deviates significantly from the observed data.Future developments in both theory and observations may allow us to use the fractional moment of inertia and braking index as observational constraints for neutron star equation of state.

    Key words:stars:neutron– (stars:) pulsars:general– stars:rotation

    1.Introduction

    Neutron stars(NSs)are extremely dense objects formed as a result of violent supernova explosions of massive stars at the end of their lifetimes.Their extreme properties,such as strong magnetic fields,stable rotations,intense gravity,etc.,make them ideal laboratories to test various theories of physics under extreme conditions (Baym &Pethick 1979;Stairs 2003;Lattimer &Prakash 2004;Pizzochero 2016;Bandyopadhyay 2017).The observational manifestation of an NS is a pulsar.The internal structure and composition of NSs are governed by the equation of state (EOS) of neutron-rich matter (Lattimer &Prakash 2001).Despite extensive research,the composition of NS matter is not precisely known.While the primary constituents are neutrons and protons,the possible existence of hyperons and kaon condensates is still being debated.It is understood that the observation of most massive NSs could reveal some information about the presence of such exotic matter.A detailed study of EOS over a wide range of densities is crucial in understanding the properties of NSs.NSs are also continuously losing their rotational energy due to the emission of several highly energetic particles.This loss is reflected in the spin evolution of pulsars.The study of the spin evolution of pulsars helps in understanding the interior and the exterior of NSs (Urpin &Konenkov 1997;Staff et al.2012;Barsukov et al.2013).

    In this work,we utilize the piecewise polytropic EOSs to study the various important properties of NSs.Several pieces of the relativistic polytropes are ensured to be thermodynamically continuous while mimicking various phase transitions at high densities.We further put various constraints on these EOSs obtained from observations.We show that the fractional moment of inertia (FMI) obtained from theory cannot explain all the observed glitches.We also investigate how FMI varies with rotational frequency.Finally,we demonstrate the deviation of the observed braking indices from their theoretical estimates.

    The paper has been organized in the following manner.In Section 2,we briefly describe the structure of non-rotating and rotating NSs and the ways to estimate several NS properties like mass,radius,tidal deformability,FMI and braking index.In Section 3,we present the results obtained for the various EOSs used in the paper and discuss their implications.The several observational measurements used as constraints in this work have been listed in this section.Finally,in Section 4,we end the paper by presenting the conclusions of this work.

    2.Formalism

    The equilibrium configurations of NSs are usually calculated in two steps.The EOS of high-density matter is estimated at first,which is thereafter utilized for NS structure calculations in accordance with the principles of general relativity.In this work,we have constructed a few well-known EOSs based on the piecewise polytropic formalism (in Read et al.2009;Lackey 2021) for mimicking various phase transitions at high densities.

    2.1.Structure of Non-rotating NSs

    The structures of static and spherical NSs are governed by the following Tolman–Oppenheimer–Volkov(TOV)equations(Oppenheimer &Volkoff 1939;Tolman 1939):

    where M(r) is the enclosed mass of the NS within a radius r,and ν(r) is the metric potential.

    2.2.Fractional Moment of Inertia of Slowly Rotating NSs

    Assuming the NS to be rotating slowly,the moment of inertia (MOI) can be calculated within Hartle-Thorne’s approximation (Hartle 1967;Hartle &Thorne 1968).Under this condition,the metric takes the following form

    where ω(r)is the frame dragging frequency.The NSs assume a nearly-spherical shape,and the MOI can be obtained as

    where Ω is the spin frequency of the NS.The crustal MOI has the same form

    where Rcis the core-crust transition radius.The FMI is now defined as the ratio ΔI/I.

    2.3.Tidal Deformability

    An NS experiences a tidal gravitational field in the presence of a companion.The tidal deformability parameter is defined as(Hinderer et al.2010)

    where Qijis the induced quadrupole moment,due to the tidal fieldεij.The tidal deformability can be expressed in terms of the Love number k2and the NS radius R as

    The Love number k2is given by

    where C=M/R is the compactness parameter,and yRsatisfies

    The dimensionless tidal deformability can be defined as

    2.4.Pulsar Braking Index

    NSs emit electromagnetic energy via magnetic dipole radiation (MDR).This comes at the expense of the rotational kinetic energy,and hence the NSs are spinning down constantly with time.The pulsar braking index is related to the spin frequency as

    In terms of spin period (P) and its derivatives,

    If we consider the MOI to be frequency independent,n=3(Kaspi et al.1994).However,the MOI varies with spin frequency,and hence it also varies with time (Glendenning et al.1997).Assuming the MOI to be frequency dependent we have (Hamil et al.2015)

    2.5.Fractional Moment of Inertia of Fast Spinning NSs

    For the special case of fast spinning NSs we calculate the equilibrium NS configurations in an axially symmetricspacetime.In this case the infinitesimal line element is given by

    where N,A,B and N?are the metric functions dependent on r and θ.The numerical computations for solving the Einstein field equations are performed with suitable adaptation of LORENE libraries3https://lorene.obspm.fr/(Gourgoulhon 2011).The NS assumes a spheroidal shape,and the MOI for a rotation frequency Ω is given by

    R(θ) is the NS radius in the θ direction and U is defined as

    The baryon density profile is θ dependent,and so must be the core-crust transition radius Rc.We can therefore write the crustal MOI as

    ΔI/I is defined as the FMI.

    3.Results and Discussions

    The NS interior is broadly divided into two major regions,i.e.,the crust and the core.The crust is primarily composed of nucleons,and is well understood because of its near-nuclear density.The core is highly compressed to many times the nuclear density,and despite extensive research,its composition and interactions are not precisely known.It is expected that the high-density matter in the NS core may show multiple phase transitions due to the sequential onset of exotic particles.

    Following the seminal approach of Read et al.(2009);Lackey (2021),we have utilized the low density SLy EOS for the crust (Douchin &Haensel 2001),and the core is modeled with a variety of piecewise polytropes to emulate the expected phase transitions at high densities.This includes the ALF4(Alford et al.2005),AP3 (Akmal et al.1998),BBB2 (Baldo et al.1997),GNH3(Glendenning 1985),WFF3(Wiringa et al.1988) and SLy (Douchin &Haensel 2001) EOSs.ALF4 is a hybrid EOS with mixed Akmal-Pandharipande-Ravenhall(APR) nuclear matter and color-flavor locked quark matter EOS,AP3,and WFF3 are based on the variational method,BBB2 is a non-relativistic EOS and SLy is a potential-method EOS,with all of them modeling the npeμ matter.On the other hand,GNH3 is based on relativistic mean field theory,and takes into account the contribution of hyperons as well.The polytropic parameters of all the EOSs used in this work are taken from Read et al.(2009) and Lackey (2021).

    There have been several efforts to constrain the NS EOS with astronomical observations and simulations.While the most common constraint is the measurement of the mass (see C0–C3 in Table 1),there has been good progress on the much awaited simultaneous estimation of the radius (see C4-C7 in Table 1).These serve as stringent limits on the allowed mass–radius configurations of stationary NSs.Figure 1 shows the mass–radius curves for various EOSs with the shaded regions depicting the various mass–radius constraints.WFF3 does not satisfy any,ALF4,BB2,SLy and GNH3 satisfy only some,and AP3 satisfies most of the mass–radius constraints.The inclusion of hyperons in GNH3 makes it a soft EOS,and this shows up in the comparatively large radii of the allowed configurations.The mass and radius obtained for the various EOSs match the results given in Read et al.(2009)and Lackey(2021).Any valid EOS must explain the existence of the most massive NS PSR J0348+0432,and hence C0 is a necessary constraint to comply with.It can be seen that the maximum allowed mass with ALF4,BBB2 and WFF3 is not high enough to satisfy the C0 constraint,hence we no longer include these EOSs in further discussions.

    Table 1 NS Mass and Radius Constraints from Various Astronomical Observations

    Figure 1.The mass–radius relations for the ALF4,AP3,BBB2,GNH3,WFF3 and SLy EOSs.The shaded regions depict the imposed mass–radius constraints from astronomical observations (see Table 1).

    Figure 2.The dimensionless tidal deformability,Λ,as a function of NS mass for several EOSs.

    LIGO-Virgo’s paradigmatic observation of the merger of two NSs (GW170817) quantified the response of NS matter toward a strong tidal gravitational field.It has been shown by Kumar et al.(2017),De et al.(2018),Ferreira &Providência(2021),Tan et al.(2021),Burgio et al.(2021)and many others that the determination of tidal deformability has been crucial in constraining the high-density EOS.The tidal deformability constraints utilized in this work are tabulated in Table 2.InFigure 2,we plot Λ as a function of the NS mass.GNH3 satisfies none,and AP3 and Sly satisfy all of the three deformability constraints.As expected from previous discussions,the NSs described by the soft GNH3 EOS will have smaller compactness,and hence a larger Λ.The compliance of all the EOSs with the imposed constraints is summarized in Table 3.It can be seen that AP3 satisfies the maximum number of constraints.It explains the existence of the massive pulsar PSR J0348+0432(Antoniadis et al.2013).

    Figure 3.The FMI as a function of NS masses (left) and radii (right) for several piecewise polytropic EOSs resembling the realistic EOSs:AP3,GNH3 and SLy.

    Figure 4.Distribution of the FMI obtained from different glitch observations cataloged by the Jodrell Bank Observatory.The dashed lines signify the FMI obtained for the various EOSs for a canonical NS.

    Table 2 Gravitational Wave Constraints on the Dimensionless Tidal Deformability Λ

    Table 3 Compliance of various EOSs with the Imposed Mass (C1–C3),Mass–Radius(C4–C7) and Tidal Deformability Constraints (C8–C10)

    We now discuss some other properties of NSs viz.,FMI and braking index.There are times when an NS suddenly spins up.Such an event is called a pulsar glitch (Radhakrishnan &Manchester 1969),and their observations help in various ways to probe the interiors of NSs (Link et al.1992;Gügercino?lu 2017;Haskell 2017).Presently,the most favorable model to explain the occurrence of a pulsar glitch is based on pinning of superfluid vortices in the NS crust(Haskell&Melatos 2015).It is believed that glitches occur due to the transfer of angular momentum from the interior to the outer crust.The ratio of the MOI of the crust and the core,i.e.,FMI,can be estimated from observations of pulsar glitches (Basu et al.2018)

    where τiis the characteristic age of the pulsar,tiis the time preceding the last glitch and Δν/ν is the fractional rise in the spin frequency.As mentioned in Sections 2.2 and 2.5,FMI can also be estimated for a given EOS for both slowly rotating and fast rotating NSs.

    Figure 3 displays the FMI as a function of the NS mass and radius in the slow rotation limit.The crust-core transition density for every EOS ranges from 6.659×1013to 2.014×1014g cc?1.It is seen that FMI is the lowest for GNH3.Since FMI can bededuced from observations,it can be utilized to constrain the NS as well.However,the FMI estimated for a particular EOS cannot explain all the glitches observed.Many studies suggest that in order to explain some of the glitches,the participation of superfluidity in the core along with crustal superfluid must be invoked (Andersson et al.2012;Basu et al.2018).Although there has been some progress in theorizing superfluidity inside NS cores(Andersson&Comer 2001;Takatsuka et al.2006),we do not explore this in the present work.Figure 4 shows the distribution of FMIs of 384 glitches from the Jodrell Bank pulsar glitch catalog.4https://www.jb.man.ac.uk/~pulsar/glitches/gTable.htmlSince FMI cannot be estimated for the first glitch,we exclude the first glitch of every multiple glitching pulsar and also the pulsars with only one glitch.Assuming a canonical NS,for a fraction of glitches ˉf,the observed FMI is larger than what is estimated under the slow rotation approximation (see the dotted lines in Figure 4).The values offˉobtained for the various EOSs are summarized in Table 4.It can again be seen that AP3 explains the most number of glitches,while GNH3 explains the least.For these glitches,it is expected that there is a contribution of superfluidity in the NS cores.It is important to point out that we have excluded the effect of entrainment.Presently,the FMI does not put very strong constraints on the EOS.Future advancements in theoretical studies along with better observational facilities may allow us to use FMI as a constraint for the NS EOS.

    Table 4 The Fraction of Glitches Which Cannot be Explained with the Estimated FMI from the EOSs for a Canonical NS

    Figure 5.The FMI as a function of NS mass for different rotation frequencies.M⊙is the solar mass and the frequencies are mentioned in the legends.The calculations for the slowly rotating case are performed with in the Hartle–Thorne approximation(as discussed in Section 2.2).The results for the fast rotating cases are calculated exactly with a suitable adaptation of LORENE libraries (see Section 2.5).

    Table 5 The Braking Index Values Obtained from Several Pulsar Observations

    In a first,we explore the variation of FMI at very high rotation rates.Figure 5 plots the FMI as a function of NS masses at different frequencies.The FMI does not vary with the frequency in the slow rotation approximation.We demonstrate a monotonic increment in the FMI with an increase in the spin frequency.We have limited our calculations up to 700 Hz,which is close to the spin frequency of the fastest spinning radio pulsar observed at 716 Hz (Hessels et al.2006).At this frequency,Sly shows the least deviation.The centrifugal force on a spinning object is proportional to its distance from the rotation axis.The crust is the outermost region,and hence with an increase in spin frequency,ΔI changes relatively faster than I.This leads to an overall increment of the ratio ΔI/I.

    Figure 6.The braking index as a function of NS rotation frequency for the various EOSs.

    Another quantity that we have explored is the pulsar braking index.NSs are constantly radiating electromagnetic energy via MDR.This comes at the expense of the rotational kinetic energy,and hence the NSs are continuously slowing down.The braking index quantifies the rate of decrease of spin frequency.Considering the MOI to be frequency dependent,the braking index is given by Equation(16).The braking indexes of several pulsars have been estimated with the help of long baseline timing programs and other astronomical observations,and some of them are summarized in Table 5.It is evident that for many of these young pulsars,the braking index is much lower than 3.The braking index obtained for a 1.4 M⊙NS as a function of rotational frequency is displayed in Figure 6.The braking index varies very slowly and deviates a lot from the observations.Thus,an MDR model with a varying MOI may not be sufficient to explain the observed pulsar braking indices.It is shown by Lyne et al.(2013),Tauris &Konar (2001),Johnston &Karastergiou (2017) and many others that the braking index depends on various factors like the temporal evolution of the magnetic field strength and the inclination angle between the magnetic and rotational axes.Although the braking indices of young pulsars are expected to be less than three,several estimations demonstrate that it can be greater than three as well (Archibald et al.2016;Parthasarathy et al.2020).Even decades after the discovery of pulsars,the braking index is still not understood very well.The measurements of braking index presently do not provide strong constraints for the NS EOS.Future advancements in pulsar emission theory and its relation with the NS EOS will help in utilizing such observations in constraining the NS EOS.

    4.Conclusions

    In order to understand the interior structure of NSs,it is necessary that we constrain the EOS with the maximum possible number of constraints from nuclear experiments and astronomical observations.In this work,we utilized several piecewise polytropic EOSs to check their compliance with astronomical observations.We demonstrated that a significant fraction of glitches cannot be explained with the FMI obtained for any of the EOSs.We modeled the NS crust as a solid spheroidal shell to calculate the FMI at high frequencies.We showed that the FMI increases monotonically with an increase in the rotation rate.Furthermore,we investigated the variation of braking index in the MDR model,and showed that it cannot explain the observed data.The FMI and the braking index cannot be used to constrain the NS EOS but,with advancements in observational facilities,it may be possible in the near future.

    Acknowledgments

    This work is partly supported by the SPARK program of IIT Roorkee (India).J.S.acknowledges various discussions with V.B.Thapa.We thank P.Arumugam for his comments during the preparation of this manuscript.The authors especially thank the anonymous referee for their constructive comments which have improved the presentation of this article.

    ORCID iDs

    老熟女久久久| 18禁动态无遮挡网站| 毛片女人毛片| 91精品伊人久久大香线蕉| 亚洲婷婷狠狠爱综合网| 人人妻人人添人人爽欧美一区卜 | 国产精品.久久久| 久久久精品94久久精品| 国产 一区精品| 国产精品无大码| av播播在线观看一区| 又大又黄又爽视频免费| 草草在线视频免费看| 2022亚洲国产成人精品| 亚洲真实伦在线观看| 亚洲欧美成人综合另类久久久| www.色视频.com| 久久精品久久久久久噜噜老黄| 亚洲精品日韩av片在线观看| 国产黄色免费在线视频| 欧美最新免费一区二区三区| 熟女av电影| 亚洲精品一二三| 日韩成人伦理影院| 国产午夜精品一二区理论片| 久久精品熟女亚洲av麻豆精品| 秋霞伦理黄片| 秋霞伦理黄片| 成人综合一区亚洲| 久久毛片免费看一区二区三区| 欧美97在线视频| 秋霞伦理黄片| 人人妻人人爽人人添夜夜欢视频 | 国产淫语在线视频| 亚洲av中文av极速乱| 久久久国产一区二区| 春色校园在线视频观看| 在线观看一区二区三区激情| 国产精品一区二区性色av| 国产精品人妻久久久影院| 丰满少妇做爰视频| 成人综合一区亚洲| 亚洲国产av新网站| 免费大片18禁| 久久久久国产精品人妻一区二区| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 3wmmmm亚洲av在线观看| av国产精品久久久久影院| 麻豆乱淫一区二区| 国产成人精品福利久久| 亚洲av.av天堂| 少妇猛男粗大的猛烈进出视频| 午夜精品国产一区二区电影| 国产av码专区亚洲av| 七月丁香在线播放| av不卡在线播放| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲美女视频黄频| 国产亚洲精品久久久com| 少妇精品久久久久久久| 男人舔奶头视频| 国产亚洲91精品色在线| 2021少妇久久久久久久久久久| 亚洲美女搞黄在线观看| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 少妇熟女欧美另类| 欧美+日韩+精品| 国产精品成人在线| 高清不卡的av网站| 在线观看人妻少妇| 男女边摸边吃奶| av一本久久久久| 免费在线观看成人毛片| 国产精品.久久久| 国产伦精品一区二区三区视频9| 六月丁香七月| 国产色婷婷99| 日韩av不卡免费在线播放| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 国产av一区二区精品久久 | 午夜老司机福利剧场| 直男gayav资源| 网址你懂的国产日韩在线| 草草在线视频免费看| 欧美日韩国产mv在线观看视频 | 99久久精品热视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久v下载方式| 国产欧美亚洲国产| 最新中文字幕久久久久| 久久午夜福利片| 18禁动态无遮挡网站| 免费看光身美女| 少妇人妻一区二区三区视频| 综合色丁香网| 国产爽快片一区二区三区| 国产一区二区三区综合在线观看 | 国产亚洲欧美精品永久| 久久精品夜色国产| 色5月婷婷丁香| 国产精品国产三级专区第一集| 亚洲精品国产色婷婷电影| 国产美女午夜福利| 亚洲欧美日韩东京热| 哪个播放器可以免费观看大片| 深爱激情五月婷婷| 在线亚洲精品国产二区图片欧美 | 春色校园在线视频观看| 久久这里有精品视频免费| 日韩欧美 国产精品| 亚州av有码| 2021少妇久久久久久久久久久| 在线观看一区二区三区激情| 婷婷色麻豆天堂久久| 国产男女内射视频| 国产亚洲一区二区精品| 欧美激情极品国产一区二区三区 | 欧美性感艳星| 纯流量卡能插随身wifi吗| www.av在线官网国产| 欧美日韩在线观看h| 亚洲av电影在线观看一区二区三区| 最近2019中文字幕mv第一页| 国产成人午夜福利电影在线观看| 精品人妻视频免费看| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 在线精品无人区一区二区三 | 国产亚洲一区二区精品| 欧美+日韩+精品| 99热国产这里只有精品6| 美女福利国产在线 | 免费观看在线日韩| 国产精品三级大全| 亚洲av综合色区一区| 日韩成人伦理影院| 黄片wwwwww| 啦啦啦视频在线资源免费观看| 中文字幕亚洲精品专区| 日本免费在线观看一区| 免费av中文字幕在线| 久久久久精品性色| 人人妻人人看人人澡| 欧美亚洲 丝袜 人妻 在线| www.色视频.com| 久久久久视频综合| 欧美变态另类bdsm刘玥| 亚洲国产精品999| 大陆偷拍与自拍| 国产精品福利在线免费观看| 亚洲精品日韩av片在线观看| 日韩中文字幕视频在线看片 | 色视频www国产| 亚洲三级黄色毛片| 成人免费观看视频高清| 国产精品一区二区性色av| 国产一区二区在线观看日韩| 国产亚洲最大av| 男男h啪啪无遮挡| 久久精品夜色国产| 精品国产三级普通话版| 国产精品爽爽va在线观看网站| 美女cb高潮喷水在线观看| 色视频www国产| a级一级毛片免费在线观看| 三级国产精品欧美在线观看| 99热网站在线观看| 黑人高潮一二区| av一本久久久久| 欧美精品国产亚洲| 一本色道久久久久久精品综合| 搡老乐熟女国产| 欧美成人a在线观看| 亚洲欧美日韩另类电影网站 | 男女免费视频国产| 日本av免费视频播放| 五月玫瑰六月丁香| 国产精品久久久久久av不卡| 国产亚洲一区二区精品| 99热这里只有是精品50| 欧美+日韩+精品| 欧美精品人与动牲交sv欧美| 亚洲av福利一区| 亚洲综合精品二区| 亚洲三级黄色毛片| 边亲边吃奶的免费视频| 免费大片18禁| 日韩欧美一区视频在线观看 | 久久 成人 亚洲| 国产成人精品一,二区| 中文欧美无线码| 一区二区三区乱码不卡18| 国产av一区二区精品久久 | 亚洲成人一二三区av| 99精国产麻豆久久婷婷| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 男女啪啪激烈高潮av片| 夜夜骑夜夜射夜夜干| kizo精华| xxx大片免费视频| 欧美3d第一页| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| 欧美一级a爱片免费观看看| 国产真实伦视频高清在线观看| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 国产欧美另类精品又又久久亚洲欧美| 中文字幕制服av| 人妻夜夜爽99麻豆av| 天美传媒精品一区二区| 久热这里只有精品99| 成人国产麻豆网| 精品人妻熟女av久视频| 波野结衣二区三区在线| 人人妻人人添人人爽欧美一区卜 | 欧美日韩精品成人综合77777| av不卡在线播放| 国产成人freesex在线| av又黄又爽大尺度在线免费看| 色视频www国产| 国产免费福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品不卡视频一区二区| 中文精品一卡2卡3卡4更新| 91精品国产九色| 国产女主播在线喷水免费视频网站| 91久久精品国产一区二区成人| 亚洲av中文字字幕乱码综合| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 亚洲精品乱码久久久久久按摩| 亚洲成人手机| 久久精品国产亚洲av涩爱| 高清av免费在线| 99热这里只有精品一区| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 免费av不卡在线播放| 国产精品精品国产色婷婷| 在线观看人妻少妇| 久久99热这里只有精品18| 成年免费大片在线观看| 在线观看av片永久免费下载| 国产精品熟女久久久久浪| 九草在线视频观看| 深爱激情五月婷婷| 18+在线观看网站| 99久久中文字幕三级久久日本| 亚洲精品中文字幕在线视频 | 肉色欧美久久久久久久蜜桃| 国产精品av视频在线免费观看| 日韩av免费高清视频| 日本一二三区视频观看| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 国产午夜精品久久久久久一区二区三区| 丰满乱子伦码专区| 中文字幕精品免费在线观看视频 | 80岁老熟妇乱子伦牲交| av.在线天堂| 九色成人免费人妻av| 丰满少妇做爰视频| 观看免费一级毛片| 国产精品久久久久久久电影| 精品一区二区免费观看| 卡戴珊不雅视频在线播放| videos熟女内射| 亚洲欧美精品自产自拍| 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 日本免费在线观看一区| 性色avwww在线观看| 欧美+日韩+精品| 亚洲欧洲日产国产| 老女人水多毛片| 日韩中字成人| 91精品国产九色| 国产黄色免费在线视频| 久久精品夜色国产| 久久久亚洲精品成人影院| 国产在视频线精品| 精品国产一区二区三区久久久樱花 | 免费观看性生交大片5| 亚洲人成网站在线观看播放| 黑人高潮一二区| 99久久人妻综合| 亚洲天堂av无毛| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 成年人午夜在线观看视频| av福利片在线观看| 久久韩国三级中文字幕| 成人高潮视频无遮挡免费网站| 中国国产av一级| 免费人成在线观看视频色| 国产成人免费观看mmmm| 久久久久久人妻| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| av播播在线观看一区| 亚洲无线观看免费| 九色成人免费人妻av| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 免费黄网站久久成人精品| 欧美日韩在线观看h| 99热6这里只有精品| 亚洲av欧美aⅴ国产| 婷婷色综合www| av天堂中文字幕网| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 我要看日韩黄色一级片| 国产精品不卡视频一区二区| 成人漫画全彩无遮挡| 午夜免费观看性视频| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| 十分钟在线观看高清视频www | 亚洲三级黄色毛片| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 国产真实伦视频高清在线观看| 人妻系列 视频| 久久久亚洲精品成人影院| 亚洲国产精品成人久久小说| 两个人的视频大全免费| 国产 精品1| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 插阴视频在线观看视频| 日本-黄色视频高清免费观看| 性色avwww在线观看| 欧美最新免费一区二区三区| 天天躁日日操中文字幕| 国产在线免费精品| 久久 成人 亚洲| 欧美激情极品国产一区二区三区 | 国产成人精品久久久久久| 亚洲va在线va天堂va国产| 久久女婷五月综合色啪小说| 好男人视频免费观看在线| 岛国毛片在线播放| 亚洲婷婷狠狠爱综合网| 国产熟女欧美一区二区| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| 亚洲成色77777| 欧美成人a在线观看| 成人亚洲精品一区在线观看 | 亚洲,欧美,日韩| 在线观看国产h片| 人人妻人人看人人澡| 亚洲精品国产色婷婷电影| 另类亚洲欧美激情| 一级二级三级毛片免费看| 久久亚洲国产成人精品v| 国产精品欧美亚洲77777| 精品视频人人做人人爽| 欧美少妇被猛烈插入视频| 国产在线男女| 国产高清国产精品国产三级 | 午夜福利视频精品| 99精国产麻豆久久婷婷| 国产精品熟女久久久久浪| 男女免费视频国产| 狂野欧美激情性bbbbbb| 在线观看免费日韩欧美大片 | 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 成年免费大片在线观看| av国产免费在线观看| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 精品一品国产午夜福利视频| av一本久久久久| 亚洲欧美成人精品一区二区| 久久99热这里只频精品6学生| 一个人看视频在线观看www免费| 免费观看性生交大片5| 黄色一级大片看看| 亚洲高清免费不卡视频| 亚洲第一区二区三区不卡| 国产精品久久久久成人av| 插逼视频在线观看| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| 国产精品熟女久久久久浪| 日韩欧美 国产精品| 亚洲人与动物交配视频| 日本av免费视频播放| 18禁动态无遮挡网站| 搡女人真爽免费视频火全软件| 亚洲图色成人| av又黄又爽大尺度在线免费看| 男女无遮挡免费网站观看| 少妇的逼好多水| 国产av一区二区精品久久 | 精品一品国产午夜福利视频| 久久久精品94久久精品| 在线精品无人区一区二区三 | 三级国产精品欧美在线观看| 亚洲精品成人av观看孕妇| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| www.色视频.com| 亚洲人成网站高清观看| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 日韩成人av中文字幕在线观看| 人妻制服诱惑在线中文字幕| 一级毛片我不卡| 久久人妻熟女aⅴ| 在线免费十八禁| 久久精品人妻少妇| 国产无遮挡羞羞视频在线观看| 日韩中字成人| tube8黄色片| 国产精品三级大全| 亚洲久久久国产精品| 卡戴珊不雅视频在线播放| 插逼视频在线观看| 最近2019中文字幕mv第一页| 久久国产乱子免费精品| 97在线人人人人妻| 日韩av免费高清视频| 欧美高清成人免费视频www| 免费大片18禁| 欧美最新免费一区二区三区| 成年人午夜在线观看视频| freevideosex欧美| 国产91av在线免费观看| 日韩中文字幕视频在线看片 | 91精品国产国语对白视频| 九九在线视频观看精品| 日韩 亚洲 欧美在线| 欧美精品一区二区免费开放| 精品亚洲乱码少妇综合久久| 国产成人精品婷婷| 亚洲无线观看免费| 王馨瑶露胸无遮挡在线观看| 91久久精品电影网| 一级av片app| 亚洲国产av新网站| h视频一区二区三区| 爱豆传媒免费全集在线观看| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 伦理电影大哥的女人| 国产免费视频播放在线视频| 国产黄片美女视频| 嫩草影院入口| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频 | 久久6这里有精品| 精品酒店卫生间| 国产免费视频播放在线视频| 日日摸夜夜添夜夜添av毛片| 男女边吃奶边做爰视频| 欧美极品一区二区三区四区| 亚洲美女视频黄频| 国产淫片久久久久久久久| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 亚洲av日韩在线播放| 久久国内精品自在自线图片| 亚洲经典国产精华液单| 日本av手机在线免费观看| 国产毛片在线视频| 亚洲av电影在线观看一区二区三区| 亚洲欧美成人精品一区二区| 国产男女内射视频| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 一级av片app| 我的老师免费观看完整版| 最后的刺客免费高清国语| 五月开心婷婷网| 校园人妻丝袜中文字幕| 欧美+日韩+精品| 超碰av人人做人人爽久久| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 欧美97在线视频| 国产成人精品婷婷| 大又大粗又爽又黄少妇毛片口| 97超视频在线观看视频| 国产色爽女视频免费观看| 亚洲一级一片aⅴ在线观看| 一级爰片在线观看| av又黄又爽大尺度在线免费看| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看| 日日啪夜夜爽| 美女国产视频在线观看| 纯流量卡能插随身wifi吗| 一区二区av电影网| 久久久精品免费免费高清| 亚洲色图综合在线观看| 1000部很黄的大片| 嘟嘟电影网在线观看| 黑人高潮一二区| 色5月婷婷丁香| 亚洲,一卡二卡三卡| 三级经典国产精品| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 在现免费观看毛片| 边亲边吃奶的免费视频| 亚洲欧美一区二区三区国产| 午夜福利高清视频| 99热6这里只有精品| 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 寂寞人妻少妇视频99o| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 丝袜脚勾引网站| 午夜日本视频在线| 日本黄色片子视频| 国产精品无大码| 国产91av在线免费观看| 日韩不卡一区二区三区视频在线| 又爽又黄a免费视频| 国产成人免费观看mmmm| 少妇精品久久久久久久| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 亚洲国产欧美人成| 人人妻人人看人人澡| 久久影院123| 国产成人freesex在线| 少妇猛男粗大的猛烈进出视频| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 免费观看的影片在线观看| 永久网站在线| 日韩 亚洲 欧美在线| 久久99精品国语久久久| 欧美3d第一页| 日韩精品有码人妻一区| 久久精品国产a三级三级三级| 18禁裸乳无遮挡动漫免费视频| 亚洲三级黄色毛片| 欧美少妇被猛烈插入视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲av男天堂| 91狼人影院| 亚洲四区av| 日本色播在线视频| 秋霞伦理黄片| 97热精品久久久久久| 自拍偷自拍亚洲精品老妇| 久久久久久久亚洲中文字幕| 亚洲色图综合在线观看| 久久久久久九九精品二区国产| av线在线观看网站| 美女xxoo啪啪120秒动态图| 国产免费福利视频在线观看| 在线免费观看不下载黄p国产| 自拍偷自拍亚洲精品老妇| 中文字幕亚洲精品专区| 国产精品一及| 在线观看一区二区三区激情| 97超视频在线观看视频| 久热这里只有精品99| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三 | 五月开心婷婷网| 欧美日韩国产mv在线观看视频 | 下体分泌物呈黄色| 一区二区三区精品91| 熟妇人妻不卡中文字幕| 色吧在线观看| 精品视频人人做人人爽| 偷拍熟女少妇极品色| 成人亚洲精品一区在线观看 | av专区在线播放| 一级二级三级毛片免费看| 成人免费观看视频高清| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久噜噜| 久久久久人妻精品一区果冻| 黄色一级大片看看| 插阴视频在线观看视频| 国产乱人视频| 欧美成人精品欧美一级黄| 99久久精品热视频| 欧美97在线视频| 成人漫画全彩无遮挡| 国产欧美亚洲国产| 97热精品久久久久久| 交换朋友夫妻互换小说| 青春草国产在线视频| 国内揄拍国产精品人妻在线| 亚洲第一av免费看| 国产高清国产精品国产三级 | 美女福利国产在线 | 国产精品一区二区在线不卡|