• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical and Experimental Study of Nitrogen-rich Compounds of Biurea and 1-Amino-biurea

    2015-05-10 02:24:46-,-,-,-
    含能材料 2015年9期

    -, -, -, -

    (State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

    1 Introduction

    Biurea is widely used in food additive and contamination analysis, researchers have conducted a study of this compound[1-3]. Biurea is also used industrially as a high-temperature blowing agent for expanding plastics such as polypropylene. The thermal decomposition of biurea is currently being studied and the crystal structure has been determined in order to provide evidence to explain the mechanism of the solid-state decomposition[4].

    1-Amino-biurea is that we have just synthesized, with the amino substituted biurea end-group hydrogen atom[5]. Biurea and 1-amino-biurea both are thought to be useful materials and intermediates. As derivatives of hydrazine, they possess strong coordination capacity and reduction ability, and also play an important role as reducing agent in the metal complexes[6-7]. Since they are interesting azotic chain ligands with several lone-pair electron pairs that may coordinate with many metal ions and oxidizing groups as mono-dentate or multi-dentate ligands[8-12]. In addition, since this kind of derivatives may design a variety of energetic coordination compounds with explosive properties, they have gained more and more attentions as ligand with transition-metals especially in recent years in the areas of primary explosives, propellants, and high explosive[13-18].

    This paper reports X-ray crystal of 1-amino-biurea, since the crystal structure of biurea has been determined[4]. To our knowledge, neither theoretical investigations nor comparison between the calculated and experimental results for the biurea and 1-amino-biurea compounds are available, which attract our attention and prompt us to make a study. Therefore, this paper reports the preparation and quantum chemical calculations of the two compounds. In addition, a comparison between the calculated results and experimental ones is performed, which may helpful for providing insight into the structures and properties of the title compounds and their derivatives.

    2 Experimental and Computational Section

    General caution:title compounds are energetic materials and tend to explode under certain conditions. Appropriate safety precautions should be taken, especially when these compounds are prepared on a larger scale.

    2.1 Materials and Instruments

    All the reagents used in the synthesis of title compounds were analytical grade and purchased commercially from Sinopharm Chemical Reagent Co., Ltd.

    2.2 Synthesis of 1-amino-biurea

    The urea (0.2 g, 20 mmol) was slowly added to a mixture of carbohydrazide(1.8 g, 20 mmol) and acetone (50 mL) at room temperature. After vigorous stirring in autoclave at 110 ℃ for 4 h, the resulting clear solvent was removed in vacuum. The product was recrystallized from water, in 65.3% yield. The slightly yellow single crystal with dimensions of 0.52 mm×0.28 mm×0.2 mm suitable for X-ray measurement were obtained by recrystallization of the products with distilled water at room temperature for 1 w.

    2.3 X-ray crystallography

    A Bruker Smart 1000 CCD diffractometer with graphite mono-chromated MoKαradiation (λ=0.071073 nm) was applied for structure analyses of the title compounds. The data were collected at 294(2) K usingφandωscan modes. A semi-empirical absorption correction was made using SADABS software[19]. The structure was solved using the direct methods and successive Fourier difference syntheses (SHELXS-97)[20], refined using full-matrix least-squares onF2with anisotropic thermal parameters for all non-hydrogen atoms (SHELXL-97)[21]. Hydrogen atoms were added theoretically and refined with riding model position parameters and fixed isotropic thermal parameters. Detailed information concerning crystallographic data collection and structure refinement is summarized in Table 1.

    Table1Crystal data and structure refinement details of 1-amino-biurea

    chemicalformulaC2H7N5O2formulamass133.13temperature/K294(2)crystalsystemOrthorhombicspacegroupP2(1)/nZ4a/?9.194(1)b/?4.756(1)c/?12.665(2)V/?3553.80(2)density(calculated)/g·cm-31.597absorptioncoefficient/mm-10.137F(000)/?280θrangefordatacollection/(°)3.22to29.25h,k,andlrange0to12,0to6,-17to1reflectionmeasured1050independentreflection(Rint)854refinementmethodFull-matrixleast-squaresonF2data/restraints/parameters854/3/96goodness-of-fitonF20.897finalR1andwR2[I>2σ(I)]R1=0.0385,wR2=0.08491)R1andwR2indices(alldata)R1=0.0588,wR2=0.09191)largestdiff.peakandhole/e,?-30.318,-0.211

    2.4 Computational methods

    Based on crystal data, the structure optimization on the biurea and 1-amino-biurea compounds were carried out using the density functional theory (DFT) with the B3LYP method[22-23]employing the 6-31G**and cc-pVTZ basis sets[24-26]. In addition, the harmonic vibrational frequencies and infrared intensity were predicted at the B3LYP/cc-pVTZ level of theory DFT-B3LYP denoted the combination of the Becke′s three parameters hybrid functional with the Lee-Yang-Parr (LYP) correlation functional. The DFT method deals with the electron correlation but is still computationally economic. Because the B3LYP method was more widely used and tested, the hybrid density functional of B3LYP with the cc-pVTZ basis set was used for the calculations. The structure of 1-amino-biurea was fully optimized and the natural bond orbital analysis was performed on the optimized structure. The crystal structure of 1-amino-biurea obtained from the X-ray diffraction was used for the computation. All electronic structure calculations were performed with the Gaussian 03 program package.

    3 Results and Discussion

    3.1 The crystal structure of 1-amino-biurea

    The crystal structure of 1-amino-biurea is shown in Fig.1. The shape of the 1-amino-biurea molecule can be explained by considering the following interactions. The repulsion of the lone pairs on the adjacent N atoms will be very strong due to theirp-πnature and a rotation about the N—N bond will reduce this interaction. However, as the N—N bond rotates the two C atoms start to approach each other. Thus final contact distance between these two C atoms was 3.380 ?(1-amino-biure), while 3.385 ? in biurea[4]. The further rotation about the N—C bonds may be imposed by the geometry of the hydrogen-bonding system.

    Fig.1Molecular structure and atom label of 1-amino-biurea

    Fig.2The packing of the molecule of 1-amino-biurea in crystal lattice

    The obtained selected bond lengths and bond angles of 1-amino-biurea are summarized in Table 2. According to the bond lengths data of the compound, it can be concluded that the bond lengths of the N—N and C—N of the compounds are 1.386-1.409? and 1.330-1.364?, which are shorter than the general lengths (1.450 and 1.470?). At the same time, the bond lengths of CO of 1-amino-biurea are the same 1.247?, which are longer than the general length (1.230?). So, the bond lengths of N—N, C—N, and CO tend to a homogeneous value, which is the result from thep-πconjugate effect between double bond of CO and thepelectronics of N atoms. From the data of bond angles, we can find that N(2)—N(1)—H(1A), N(2)—N(1)—H(1B) bond angles of 1-amino-biurea are close to 109°28′, so N(1) atom adoptssp3hybridized and H(1A), H(1B), N(2) form chemical bonds, and the othersp3hybrid orbital on a pair of lone pair electrons. Else N, C atoms of 1-amino-biurea are adoptedsp2hybridized, since the other bond angles are close to 120°.

    Table2Selected bond lengths and bond angles of 1-amino-biurea

    bondlength/?crystaldataB3LYP/6-31G**B3LYP/cc-pVTZO(1)—C(1)1.247(3)1.2231.217O(2)—C(2)1.247(3)1.2201.214N(1)—N(2)1.409(4)1.4071.403N(2)—C(1)1.337(4)1.3651.360N(3)—N(4)1.391(3)1.3931.388N(3)—C(1)1.364(4)1.4071.405N(4)—C(2)1.364(4)1.4101.404N(5)—C(2)1.330(4)1.3261.359bondangle/(°)crystaldataB3LYP/6-31G**B3LYP/cc-pVTZC(1)—N(2)—N(1)122.18(2)120.74121.55C(1)—N(3)—N(4)119.93(3)119.89120.77C(2)—N(4)—N(3)121.53(2)120.11121.08O(1)—C(1)—N(2)122.93(3)124.25124.49O(1)—C(1)—N(3)119.25(3)120.57120.32N(2)—C(1)—N(3)117.69(2)115.16115.18O(2)—C(2)—N(4)118.33(3)119.95119.98O(2)—C(2)—N(5)123.22(3)125.29125.03N(5)—C(2)—N(4)118.45(2)114.76114.92C(1)—N(3)—N(4)—C(2)109.6(3)133.63127.77N(1)—N(2)—C(1)—N(3)-177.8(3)-170.54-171.89N(4)—N(3)—C(1)—N(2)-13.7(4)-16.97-15.99N(3)—N(4)—C(2)—N(5)-10.6(4)-16.86-19.06N(1)—N(2)—C(1)—O(1) 0.1(5) 7.81 6.54N(4)—N(3)—C(1)—O(1)168.3(3)164.61165.51N(3)—N(4)—C(2)—O(2)168.8(3)163.86163.83

    Table3H-bond lengths and bond angles of 1-amino-biurea

    D—H…Ad(D—H)/?d(H…A)/?d(D…A)/?∠DHA/(°)N(1)—H(1B)…N(5)0.8866(10)2.274(18)3.095(4)158(4)N(2)—H(2)…O(1)0.8762.102.905156.2N(3)—H(3)…O(2)0.862.022.839(3)159.2N(4)—H(4)…O(1)0.862.082.877(3)153.6N(5)—H(5A)…N(1)0.862.253.056(4)155.9N(5)—H(5B)…O(2)0.862.162.957(3)154.9

    3.2 Quantum chemical calculation of biurea and 1-amino-biurea

    The calculated data of 1-amino-biurea and biurea from B3LYP methods are shown in Table 2 and Table 4, respectively. The molecular structure and atom labels of biurea are shown in Fig.3. We can find the computational results obtained at B3LYP/6-31G**and B3LYP/cc-pVTZ level of theories are very similar. The B3LYP/ cc-pVTZ calculations give a remarkably good description of both of the molecular geometry, in which all bond distances of biurea deviate by less than 0.124 ? from experimental values, and the largest bond-angle error of biurea is 6.9°, while all bond distances of 1-amino-biurea deviate by less than 0.153 ? from experimental values, and the largest bond-angle error of 1-amino-biurea is 18.17°. These tiny differences are because that the gaseous molecule have been calculated in an ideal state of the most stable structure, and the calculation process does not take into account the interaction between molecules, while in the crystal structure exists in intermolecular hydrogen bonding, van der Waals effect.

    The preferable sites for coordination in the title compounds are investigated from the theoretical results of Mulliken populations, NBO atomic charges and MESP under level of B3LYP/cc-pVTZ. These methods are proved to be accurate to predict to preferable coordination positions[27-29].

    Fig.3The molecular structure and atom label of biurea

    Table4Selected bond lengths and bond angles of biurea

    bondlength/?crystaldataB3LYP/6-31G**B3LYP/cc-pVTZO(1)—C(1)1.248(17)1.2211.215N(1)—C(1)1.362(2)1.4121.405N(1)—N(1A)1.386(2)1.3931.387N(2A)—C(1A)1.324(2)1.3601.357bondangle/(°)crystaldataB3LYP/6-31G**B3LYP/cc-pVTZN(2A)—C(1A)—N(1A)117.96(13)114.55114.91O(1A)—C(1A)—N(2A)123.19(13)125.45125.10O(1)—C(1)—N(1)118.84(14)119.93119.93C—N(1)—N(1A)120.93(14)120.03121.05N(1A)—N(1)—C(1)—O(1)169.25(12)161.59163.65N(1)—N(1A)—C(1A)—N(2A)-12.2(2)-21.41-19.10

    The harmonic vibrationalfrequencies and their infrared intensity of biurea and 1-amino-biurea are predicted at the B3LYP/ cc-pVTZ level of theory mentioned above, which all yield real frequencies for it. The predicted frequencies and intensities for biurea and 1-amino-biurea are listed in Table 5 and Table 6, respectively. All theoretical frequencies reported here are listed as calculated. Only the main vibrational frequencies of some functional groups have been assigned.

    According toTable 5, the vibrational frequencies can be divided into three main absorption regions. Low frequency of less than 700 cm-1is the N—H bond of the rocking vibration absorption; medium frequency range of 900 cm-1to 1800 cm-1is N(2)—H bond of the swing plane symmetry vibration at approximately 900 cm-1, N(1)—H bond of the rocking vibration at about 1500 cm-1, N(2)—H bond of the shear vibration at about 1700 cm-1, as well as CO stretching vibration around 1800 cm-1; high frequency area of 3450 cm-1to 3650 cm-1is the N—H bond stretching vibration absorption area.

    These characteristic absorption bandsshowed in Table 6 are shifted to lower wave number compared to the free ligand, and this indicates that the N atom of the hydrazine group and the carbonyl atom coordinate to the center cation. The important bands observed in the range of 1797 cm-1to 1358 cm-1and 783 cm-1to 634 cm-1are assigned to the symmetric stretching vibration and deformation vibration of the C—O bond. There are absorption peaks around 913 cm-1and 951 cm-1, which are assigned to the symmetric vibration of the C—N bond.

    Table5A full vibrational assignment of biurea based on the B3LYP/ cc-pVTZ level of theory

    frequency/cm-1Intensity/km·mol-1frequency/cm-1Intensity/km·mol-167 3.995123.581 3.31082 3.3100 0.11094 0.113440.21198 4.6235307.81385334.030215.31402108.1310 3.61438 6.3430 8.9148047.152054.61589246.5539 5.9160698.555070.41797803.3566 8.0179781.6577113.4354229.0651 6.9354413.074155.3360620.277364.9360856.177916.33742148.5950 0.1374211.8

    Table6A full vibrational assignment of 1-amino-biurea based on the B3LYP/ cc-pVTZ level of theory

    frequency/cm-1intensity/km·mol-1frequency/cm-1intensity/km·mol-156 1.6102633.777 0.91090 2.978 1.91189 7.399 1.2122313.019227.71299116.9222114.51358 1.724045.91394225.231513.9142831.232316.4147534.342815.61523257.847592.21599153.152497.2170925.054032.61776363.9574110.31797427.863431.03461 1.1703 2.03526 3.773166.9353420.477665.0354621.078312.4360535.491343.0364046.795116.2373879.6

    Thecorrected factor of the vibrational frequencies calculated based on B3LYP/ cc-pVTZ level is 0.9614[30]. The corrected values of the calculated vibrational frequencies are basically in accordance with the experimental ones (biurea: 1570, 1660, 3160, 3430 cm-1)[31].

    The selected Mulliken charge distribution data of biurea and 1-amino-biurea crystal are listed in Tables 7 and 8, respectively. Charge distribution of the carbon and hydrogen atoms are positively charged, nitrogen and oxygen atoms with a negative charge. This is mainly due to nitrogen and oxygen atoms of electro-negativity are relatively large, more capable to attract electrons. Since every N and O atom of biurea and 1-amino-biurea have a lone electron pair, all of them may be a potential coordination site. In biurea molecule, O atoms of the CO(N)-group have the most Mulliken charge of -0.3470e, followed by N(2A) atoms of the NH2(C)-group (-0.2371e) and the next is N(2) atom (-0.2371e). While, O(1) atom (-0.3700e) has the most Mulliken charge, secondly O(2) atoms(-0.3449e) of the CO(N) group and thirdly N(5) atoms (-0.2399e) of the NH2(C) group of 1-amino-biurea. Herein, O, N(2A) and N(2) atoms of biurea and O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination sites. Expressed as bi-dentate ligand, which is nitrogen atom and carbonyl oxygen atom also participates in coordination.

    Table7Selected Mulliken charge of biurea crystal at the B3LYP/ cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.3469N(1)-0.1613N(2)-0.2371C(1)0.2435H(1)0.1644H(2A)0.1662H(2B)0.1712O(1A)-0.3470N(1A)-0.1613N(2A)-0.2371C(1A)0.2435H(1A)0.1644H(2AA)0.1662H(2BA)0.1712

    Table8Selected Mulliken charge of 1-amino-biurea crystal at the B3LYP/ cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.3700O(2)-0.3449N(1)-0.2382N(2)-0.1213N(3)-0.1665N(4)-0.1599N(5)-0.2399C(1)0.2557C(2)0.2434H(1A)0.1508H(1B)0.1557H(2)0.1723H(3)0.1619H(4)0.1650H(5A)0.1715H(5B)0.1645

    The structures optimized by natural bond orbital (NBO) analysis, its atomic charge distribution of biurea in Table 9 and 1-amino-biurea in Table 10 are obtained. NBO atomic theory of orthogonal approach to determine the asymmetry between the atomic orbitals[22, 32], as compared with the Mulliken charge that it is given nothing to do with the basis set of basic NBO charge. Charge distribution was the same as the above-mentioned compounds, namely carbon, hydrogen atoms are positively charged, nitrogen and oxygen atoms with a negative charge. According to Table 9, all the N atoms in biurea molecule, NH2(C) based on the N (2) and N(2A) atom have the most NBO charge (-0.8159e), followed by O atoms of the CO(N)-group of biurea(-0.6339e). From Table 10, we can see that of all the atoms of 1-amino-biurea, N(5) atoms of the NH2(C)-group has the most NBO charge (-0.8172e), secondly O(1) atom (-0.6449e) and thirdly O(2) atoms(-0.6314e) of the CO(N)-group of 1-amino-biurea. O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination sites. Therefore, NBO charge conformed the biurea ligand with metal ions of coordination is O, N(2), N(2A) atoms while, O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination sites.

    Table9Selected NBO charge of biurea crystal at the B3LYP/cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.6339N(1)-0.4937N(2)-0.8159C(1)0.7646H(1)0.3801H(2A)0.3995H(2B)0.3992O(1A)-0.6339N(1A)-0.4937N(2A)-0.8159C(1A)0.7646H(1A)0.3801H(2AA)0.3995H(2BA)0.3992

    Table10Selected NBO charge of 1-amino-biurea crystal at the B3LYP/cc-pVTZ level

    atomcharge/eatomcharge/eO(1)-0.6449O(2)-0.6314N(1)-0.6183N(2)-0.4575N(3)-0.4889N(4)-0.4917N(5)-0.8172C(1)0.7421C(2)0.7644H(1A)0.3466H(1B)0.3453H(2)0.3941H(3)0.3792H(4)0.3814H(5A)0.3991H(5B)0.3978

    The molecular electrostatic potential (MESP) surface for biurea and 1-amino-biurea molecules calculated at B3LYP/cc-pVTZ level of theory, are given in Fig.4 and Fig.5, respectively. The red and blue color means positive and negative molecular electrostatic potential. It should be noted that the largest negative value of MESP does not necessarily correspond to the atom with the largest negative charge. In some cases, calculations of MESP allow to predict successfully the coordination sites in molecules[33]. From Fig.4 and Fig.5, it can be seen that, the nuclei naturally display the positive electrostatic potential (shown in red) on all molecules. The strong negative electrostatic potential (shown in blue) region associates with the lone pair of the carbonylgroup, which keep with the preceding NBO charges on atoms. In Fig.4, the highest negative values of the electrostatic potential are located near the N(2), N(2A) and O atoms of the carbonyl group of the biurea, and only a shallow minimum appears between the nitrogen atoms of the two amino groups. Again the negative potential occupies mainly on O(1), O(2) and N(5) atoms of the 1-amino-biurea, which may be attracted to the electrophiles. Therefore, the possible coordination sites in biurea molecule would be the O, N(2) and N(2A) atoms, while, O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination site.

    In order to study the possible coordination sites in biurea and 1-amino-biurea molecule under formation of complex compounds, three calculations have been carried out, what we can obtain that O, N(2) and N(2A) atoms of biurea are the most probable coordination sites, while O(1), O(2) and N(5) atoms of 1-amino-biurea are the most probable coordination site.

    Fig.4MESP surface for biurea molecule calculated at B3LYP/cc-pVTZ level of theory

    Fig.5MESP surface for 1-amino-biurea molecule calculated at B3LYP/cc-pVTZ level of theory

    4 Conclusion

    (1) The single crystal of 1-amino-biurea is cultured with slow evaporation method. The molecular structure and crystal structure of 1-amino-biurea are determined by X-ray single crystal diffraction analysis.

    (2) DFT B3LYP method with cc-pVTZ basis set is employed to optimize the geometries of biurea and 1-amino-biurea compounds for the first time. The crystal structures of title compounds obtained from the X-ray diffraction are used for the computation with the Gaussian 03 program package. The computational results obtained at B3LYP/cc-pVTZ level of theories give a remarkably good description of the molecular geometry.

    (3) Quantum-chemical calculations of Mulliken charge distribution and the NBO analysis result and molecular electrostatic potential for title compounds using B3LYP/ cc-pVTZ levels of theory show that the O, N(2) and N(2A) atoms of biurea are the most probable coordination site, while O(1), O(2) and N(5) atoms of 1-amino-biurea are preferable sites for metal coordination.

    [1] Anklam E, Callede M B de la. Semicarbazide: occurrence in food products and state-of-the-art in analytical methods used for its determination[J].AnalBioanalChem, 2005, 382(4): 968-977.

    [2] Pereira A S, Donato J L, Nucci G D. Implications of the use of semicarbazide as a metabolic target of nitrofurazone contamination in coated products[J]FoodAdditivesandContaminants, 2004(1), 21: 63-69.

    [3] Mulder P P J, Beumera B, Van Rhijn J A. The determination of biurea: A novel method to discriminate between nitrofurazone and azodicarbonamide use in food products[J].AnalyticaChimicaActa,2007, 586(1-2) : 366-373.

    [4] Brown B S, Russell P R. The crystal and molecular structure of biurea[J].ActaCryst, 1976, B32: 1056-1058.

    [5] Gehlen L H, Dase G. Eine einfache synthese von 1-acyl-5-aminoformyl-carbohydraziden[J].EurJOrgChem, 1961, 646(1): 78-81.

    [6] Wu B D, Li Y, Wang S W, et al. Preparation, crystal structure, thermal decomposition, and explosive properties of a novel energetic compound [Zn(N2H4)2(N3)2]n: a new high-nitrogen material (N=65.60%)[J].ZAnorgAllgChem, 2011, 637(3-4): 450-455.

    [7] Qi S Y, Li Z M, Zhang T L, et al. Crystal Structure, thermal analysis and sensitivity property of [Zn(CHZ)3](ClO4)2[J].ActaChimSinica, 2011, 69(8): 987-992.

    [8] Talawar M B, Agrawal A P, Chhabra J S, et al. Studies on lead-free initiators: synthesis, characterization and performance evaluation of transition metal complexes of carbohydrazide[J].JHazardMater, 2004(1-3), 113: 57-65.

    [9] Wu B D, Zhang J G, Zhang T L, et al. Two environmentally friendly energetic compounds, [Mn(AZT)4(H2O)2](PA)2·4H2O and [Co(AZT)2(H2O)4](PA)2, based on 3-Azido-1,2,4-triazole (AZT) and picrate (PA) [J].EurJInorgChem, 2012, 8: 1261-1268.

    [10] Sun Y H, Zhang T L, Zhang J G, et al. Kinetics of flash pyrolysis of [Co(CHZ)3](ClO4)2and [Ni(CHZ)3](ClO4)2[J].ActaPhysChimSin, 2006, 22(6): 649-652.

    [11] Li Z M, Zhang G T, Zhang T L, et al. Synthesis, structural investigation and properties of a novel energetic coordination polymer [Pb(tza)2]n[J].ActaChimSinica, 2011, 69(10): 1253-1258.

    [12] Liang Y H, Zhang J G, Cui Y, et al. Two novel nitrogen-rich energetic coordination compounds M2(DAT)5(H2O)3(TNR)2(M=Zn and Co): synthesis, characterization, thermal properties and sensitivity[J].ChinJStructChem, 2013, 31(3): 327-338.

    [13] Zhang T L, Yang Y M, Zhang J G, et al. Preparation and molecular structure of [Pb2(TNR)(NO3)2(H2O)] [J].ChinJInorgChem, 2002, 18: 305-308

    [14] Zhang J G, Li Z M, Zang Y, et al. Synthesis, structural investigation and thermal properties of a novel manganese complex Mn2(DAT)2Cl4(H2O)4(DAT=1,5-diaminotetrazole)[J].JHazardMater, 2010, 178(1-3): 1094-1099.

    [15] Bushuyev O S, Brown P, Maiti A, et al. Ionic polymers as a new structural motif for high-energy-density materials[J].JAmChemSoc, 2012, 134(3): 1422-1425.

    [16] Bushuyev O S, Peterson G R, Brown P, et al. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics[J].ChemEurJ, 2013, 19(5): 1706-1711.

    [17] Wang S J, Tian Y W, You L X, et al. Synthesis, crystal structure and properties of a novel coordination polymer based on a trinuclear Mn(Ⅱ) cluster: [Mn3(bpta)2(bip)2]n[J].ChinJStructChem, 2013, 32(11): 1633-1638.

    [18] Li Z M, Zhang T L, Zhang J G, et al. Synthesis, structure and thermal behaviors of a magnesium(Ⅱ) complex with tetrazole-1-acetic acid[J].ChinJStructChem, 2013, 32(7): 981-988.

    [19] Sheldrick G M, ADABS, Version 2.03[CP]. University of G?ttingen: Germany, 1996.

    [20] Sheldrick G M, SHELXS-97, Program for the solution of crystal structure[CP]. University of Gottingen: Germany, 1997.

    [21] Sheldrick G M, SHELXL-97, Program for the solution of crystal structure[CP]. University of Gottingen: Germany, 1997.

    [22] Becke A D, Density-functional thermochemistry 3. The role of exact exchange[J].JChemPhys, 1993, 98: 5648-5652.

    [23] Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J].PhysRevB, 1988, 37(2): 785-789.

    [24] Dunning T H. Gaussian-basis sets for use in correlated molecular calculations .1. the atoms boron through neon and hydrogen[J].JChemPhys, 1989, 90(2): 1007-1023.

    [25] Kendall R A, Dunning T J, Harrison R J. Electron-affinities of the 1st-row atoms revisited-systematic basis-sets and wave-fuctions[J].JChemPhy, 1992, 96: 6796-6806.

    [26] Woon D E, Dunning T J. Gaussian-basis sets for use in correlated molecular calculations 3. the atoms aluminum through argon [J].JChemPhys, 1993, 98(2): 1358-1371.

    [27] Zhang J G, Zhang T L, Yu K B. The preparation, molecular structure, and theoretical study of carbohydrazide (CHZ)[J].StructChem, 2006, 17(3): 249-254.

    [28] Zhang J G, Zhang T L, Ma G X, et al. The crystal and computed structures of 1,2,4-triazol-5-one (TO)[J].JHeterocyclicChem, 2006, 43(2): 53-508.

    [29] Xu C X, Yin X, Jin X, et al. Two coordination polymers with 3-hydrazino-4-amino-1,2,4-triazole as ligand: synthesis, crystal structures, and non-isothermal kinetic analysis[J].JCoordChem, 2014, 67(11): 2004-2015.

    [30] Anthony P S, Leo R. Harmonic vibrational frequencies: an evaluation of hartree-fock, m?ller-plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors[J].JPhysChem, 1996, 100 (41): 16502-16513.

    [31] Kirilin A D, Belova L O, Knyazev S P, et al. Organosilyl isocyanates. reactions with hydrazine, 1,1-dimethylhydrazine, and 1-methyl-1-[2-(1-methylhydrazino)-ethyl]-hydrazine and structural and electronic characteristics[J].RussJGeneChem, 2005, 75(12) : 1930-1934.

    [32] Reed A E, Weinstock R B, Weinhold F. Natural- population analysis[J].JChemPhys,1985, 83: 735-746.

    [33] Alcami M, Mo O, Yanez M. Enhanced Al+binding-energies of Some azoles-a theoretical-study of azole-X+(X=Na, K, Al) Complexes[J].JPhysChem, 1992, 96(7): 3022-3029.

    一二三四在线观看免费中文在| 国产精品久久久av美女十八| 国产精品免费一区二区三区在线 | 欧美成人免费av一区二区三区 | 亚洲精品久久成人aⅴ小说| 美女高潮到喷水免费观看| 精品一区二区三卡| 在线观看舔阴道视频| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 国产又爽黄色视频| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 女性生殖器流出的白浆| 麻豆乱淫一区二区| svipshipincom国产片| 午夜亚洲福利在线播放| 欧美黄色片欧美黄色片| 人妻 亚洲 视频| 在线永久观看黄色视频| 99re6热这里在线精品视频| 黑丝袜美女国产一区| 亚洲精品在线美女| 午夜免费成人在线视频| 亚洲欧美色中文字幕在线| 两个人免费观看高清视频| 91精品三级在线观看| 黄色视频,在线免费观看| 夜夜爽天天搞| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 亚洲av片天天在线观看| 一二三四在线观看免费中文在| 国产精品影院久久| 久久久精品免费免费高清| 亚洲熟妇熟女久久| 久久中文字幕人妻熟女| 99精国产麻豆久久婷婷| 18禁观看日本| 欧美+亚洲+日韩+国产| 欧美黑人精品巨大| 亚洲av电影在线进入| a级毛片在线看网站| 无人区码免费观看不卡| 成人18禁在线播放| 美女福利国产在线| 亚洲欧洲精品一区二区精品久久久| 18在线观看网站| 午夜福利免费观看在线| 久久国产精品影院| 9色porny在线观看| 国产男女内射视频| 国产亚洲欧美精品永久| 成人三级做爰电影| 久久热在线av| 国产在视频线精品| 久久久久久免费高清国产稀缺| 午夜亚洲福利在线播放| 青草久久国产| 99热网站在线观看| 中文字幕最新亚洲高清| 亚洲国产欧美网| 午夜两性在线视频| 村上凉子中文字幕在线| 99国产精品免费福利视频| 18禁美女被吸乳视频| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频 | 99久久人妻综合| 久久中文看片网| 99国产精品一区二区蜜桃av | 久久国产乱子伦精品免费另类| 一本一本久久a久久精品综合妖精| 18禁美女被吸乳视频| 麻豆国产av国片精品| 法律面前人人平等表现在哪些方面| 欧美大码av| 水蜜桃什么品种好| 精品亚洲成a人片在线观看| 1024香蕉在线观看| 男女免费视频国产| 免费在线观看亚洲国产| 精品一区二区三区av网在线观看| 岛国在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 国产又爽黄色视频| 国产欧美亚洲国产| 国产伦人伦偷精品视频| 99在线人妻在线中文字幕 | 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| 亚洲精品中文字幕在线视频| 日韩欧美一区视频在线观看| 国产精品自产拍在线观看55亚洲 | 丝袜在线中文字幕| 久久久精品免费免费高清| 老熟妇乱子伦视频在线观看| 久久久久久久精品吃奶| 色婷婷久久久亚洲欧美| 99热网站在线观看| 日本wwww免费看| 国产精品亚洲av一区麻豆| 一级毛片女人18水好多| 亚洲自偷自拍图片 自拍| 国产高清视频在线播放一区| 国产精品国产av在线观看| 精品免费久久久久久久清纯 | 99国产极品粉嫩在线观看| tube8黄色片| 国产不卡一卡二| 欧美午夜高清在线| 亚洲成av片中文字幕在线观看| 亚洲av成人av| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 91精品国产国语对白视频| 久久婷婷成人综合色麻豆| 亚洲第一青青草原| 色精品久久人妻99蜜桃| 亚洲成人国产一区在线观看| 欧美日韩亚洲综合一区二区三区_| 日本一区二区免费在线视频| 久久午夜综合久久蜜桃| 成年人午夜在线观看视频| 精品久久久久久,| 亚洲人成77777在线视频| 日本wwww免费看| 窝窝影院91人妻| 欧美日韩亚洲高清精品| 精品人妻熟女毛片av久久网站| 国产成人影院久久av| 欧美日韩福利视频一区二区| xxx96com| 热re99久久精品国产66热6| 午夜福利乱码中文字幕| 精品久久久久久久毛片微露脸| 热99re8久久精品国产| 国产精品电影一区二区三区 | 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 正在播放国产对白刺激| 国产精品乱码一区二三区的特点 | av一本久久久久| 成人永久免费在线观看视频| 12—13女人毛片做爰片一| av视频免费观看在线观看| 欧美老熟妇乱子伦牲交| 精品免费久久久久久久清纯 | 757午夜福利合集在线观看| 老熟女久久久| 国产一区二区三区综合在线观看| 嫁个100分男人电影在线观看| 国产精品免费大片| 亚洲自偷自拍图片 自拍| 嫩草影视91久久| 高清视频免费观看一区二区| 丝袜人妻中文字幕| 亚洲avbb在线观看| 99国产精品一区二区三区| 国产在线一区二区三区精| 亚洲成av片中文字幕在线观看| 午夜福利在线观看吧| 亚洲精品国产一区二区精华液| 一本综合久久免费| 天堂动漫精品| 国产单亲对白刺激| 悠悠久久av| 国产蜜桃级精品一区二区三区 | 新久久久久国产一级毛片| 国产亚洲精品久久久久5区| 老司机午夜福利在线观看视频| netflix在线观看网站| 国产视频一区二区在线看| 久久精品熟女亚洲av麻豆精品| 丁香欧美五月| 亚洲专区中文字幕在线| 9热在线视频观看99| 免费观看精品视频网站| 国产精品永久免费网站| svipshipincom国产片| 99精品久久久久人妻精品| 午夜福利,免费看| 成年人免费黄色播放视频| 久久亚洲真实| 国产成人免费观看mmmm| 我的亚洲天堂| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 久久人妻福利社区极品人妻图片| 99国产精品免费福利视频| a级毛片在线看网站| 久久草成人影院| 午夜日韩欧美国产| 老司机靠b影院| 热99久久久久精品小说推荐| 最近最新中文字幕大全免费视频| 老司机午夜十八禁免费视频| 男女高潮啪啪啪动态图| 757午夜福利合集在线观看| 久久国产乱子伦精品免费另类| 丝袜美腿诱惑在线| 我的亚洲天堂| 一区福利在线观看| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲av熟女| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 18禁黄网站禁片午夜丰满| 午夜日韩欧美国产| 三上悠亚av全集在线观看| 国产精品国产av在线观看| 久久久久久人人人人人| 麻豆乱淫一区二区| 欧美日韩瑟瑟在线播放| 成年版毛片免费区| 亚洲av成人一区二区三| 麻豆乱淫一区二区| 亚洲精品一二三| 久久久久精品人妻al黑| 国产成人精品久久二区二区91| 18禁裸乳无遮挡动漫免费视频| 亚洲七黄色美女视频| 亚洲精品中文字幕一二三四区| 搡老乐熟女国产| 国产精品国产高清国产av | 69av精品久久久久久| 国产高清国产精品国产三级| 在线观看www视频免费| av有码第一页| 国产成人免费观看mmmm| 99国产精品99久久久久| 亚洲精品在线观看二区| 国产精品 国内视频| 国精品久久久久久国模美| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久| 久久久久久久久久久久大奶| 久久久久视频综合| 亚洲午夜理论影院| 乱人伦中国视频| 国产精品.久久久| 精品无人区乱码1区二区| 91在线观看av| 日韩成人在线观看一区二区三区| 国产成人精品无人区| 法律面前人人平等表现在哪些方面| 一级a爱视频在线免费观看| 日韩欧美三级三区| 免费人成视频x8x8入口观看| 午夜福利欧美成人| 少妇裸体淫交视频免费看高清 | 亚洲专区国产一区二区| 亚洲成av片中文字幕在线观看| 久9热在线精品视频| 精品国产国语对白av| 好男人电影高清在线观看| 他把我摸到了高潮在线观看| 青草久久国产| 国产亚洲欧美精品永久| 亚洲一区中文字幕在线| 午夜激情av网站| 麻豆成人av在线观看| 老司机靠b影院| 免费黄频网站在线观看国产| 一a级毛片在线观看| 91麻豆精品激情在线观看国产 | 久久中文字幕人妻熟女| 亚洲av美国av| 久久久国产成人免费| netflix在线观看网站| 亚洲第一av免费看| 在线观看午夜福利视频| 怎么达到女性高潮| 久久国产乱子伦精品免费另类| 亚洲五月天丁香| 自拍欧美九色日韩亚洲蝌蚪91| 国产在视频线精品| 久久国产乱子伦精品免费另类| 波多野结衣av一区二区av| tube8黄色片| 国产不卡一卡二| 欧美黑人欧美精品刺激| 不卡av一区二区三区| 国产又爽黄色视频| 国产亚洲精品久久久久5区| 久久久久久久精品吃奶| 久久九九热精品免费| 欧美黄色淫秽网站| 亚洲午夜精品一区,二区,三区| 欧美在线黄色| 最近最新免费中文字幕在线| 黄片播放在线免费| 伊人久久大香线蕉亚洲五| 日本a在线网址| 欧美精品av麻豆av| 亚洲全国av大片| 18禁美女被吸乳视频| 久久ye,这里只有精品| 成人av一区二区三区在线看| 国产有黄有色有爽视频| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| 国产精品.久久久| 老司机福利观看| 久久久精品区二区三区| 国产精品一区二区在线观看99| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 欧美日韩亚洲综合一区二区三区_| 免费av中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 交换朋友夫妻互换小说| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| tocl精华| 中文字幕高清在线视频| 精品一区二区三卡| tocl精华| 欧美乱码精品一区二区三区| 亚洲美女黄片视频| 老司机影院毛片| 亚洲av欧美aⅴ国产| 在线观看免费日韩欧美大片| 最新在线观看一区二区三区| 久久ye,这里只有精品| 九色亚洲精品在线播放| 国产成人欧美| videos熟女内射| 十八禁网站免费在线| 国产极品粉嫩免费观看在线| 曰老女人黄片| 在线免费观看的www视频| 国产精品美女特级片免费视频播放器 | 亚洲成人手机| 成年动漫av网址| 久9热在线精品视频| 不卡av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日韩一卡2卡3卡4卡2021年| 欧美精品亚洲一区二区| 久久香蕉国产精品| 国产男女内射视频| ponron亚洲| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 天堂动漫精品| 亚洲色图综合在线观看| 在线免费观看的www视频| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| avwww免费| 99精国产麻豆久久婷婷| 国产欧美日韩综合在线一区二区| 久久久久精品国产欧美久久久| av不卡在线播放| 午夜免费成人在线视频| 国产高清激情床上av| 国产精品.久久久| 青草久久国产| 久久国产精品人妻蜜桃| 日韩免费av在线播放| 免费观看人在逋| 国产在线精品亚洲第一网站| 免费看a级黄色片| 又大又爽又粗| 王馨瑶露胸无遮挡在线观看| 他把我摸到了高潮在线观看| 很黄的视频免费| 午夜两性在线视频| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频 | 国产人伦9x9x在线观看| 91字幕亚洲| 亚洲aⅴ乱码一区二区在线播放 | 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 亚洲av日韩在线播放| 色播在线永久视频| 国产不卡av网站在线观看| 午夜成年电影在线免费观看| 精品人妻在线不人妻| svipshipincom国产片| 久久狼人影院| 日韩一卡2卡3卡4卡2021年| 老司机靠b影院| 亚洲欧美一区二区三区黑人| 久久ye,这里只有精品| 午夜免费成人在线视频| 高清毛片免费观看视频网站 | 亚洲精品国产色婷婷电影| 国产男靠女视频免费网站| 国产熟女午夜一区二区三区| 中文亚洲av片在线观看爽 | 激情在线观看视频在线高清 | 欧美性长视频在线观看| a级片在线免费高清观看视频| 国产麻豆69| 精品少妇一区二区三区视频日本电影| videosex国产| 亚洲色图综合在线观看| 亚洲视频免费观看视频| 51午夜福利影视在线观看| 少妇的丰满在线观看| 久久人人97超碰香蕉20202| 黄片大片在线免费观看| 亚洲国产精品合色在线| 黄色视频,在线免费观看| 亚洲 欧美一区二区三区| 91麻豆精品激情在线观看国产 | av国产精品久久久久影院| 国产精品国产av在线观看| 欧美成人免费av一区二区三区 | 精品视频人人做人人爽| 国产成人精品在线电影| 国产成人av教育| 久久精品亚洲精品国产色婷小说| 久久久久视频综合| 久久久精品区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 一区在线观看完整版| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 婷婷丁香在线五月| 婷婷精品国产亚洲av在线 | 免费在线观看影片大全网站| 一级,二级,三级黄色视频| 99国产精品一区二区三区| 久久精品人人爽人人爽视色| 99精品欧美一区二区三区四区| 又紧又爽又黄一区二区| 在线观看一区二区三区激情| 人妻一区二区av| 国产激情久久老熟女| 久久精品国产a三级三级三级| 99riav亚洲国产免费| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀| 国产精品永久免费网站| 国产在线观看jvid| 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 成人免费观看视频高清| 人人澡人人妻人| 亚洲,欧美精品.| 久久人妻av系列| avwww免费| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 久久久精品国产亚洲av高清涩受| 超碰97精品在线观看| 亚洲精品中文字幕在线视频| 日本黄色视频三级网站网址 | 热99re8久久精品国产| 久热爱精品视频在线9| 18禁美女被吸乳视频| 午夜日韩欧美国产| 亚洲 国产 在线| 女人高潮潮喷娇喘18禁视频| 91国产中文字幕| 精品福利观看| 日韩人妻精品一区2区三区| 国产精品国产高清国产av | 亚洲欧美日韩高清在线视频| 欧美午夜高清在线| 正在播放国产对白刺激| 免费少妇av软件| 别揉我奶头~嗯~啊~动态视频| 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲视频免费观看视频| 国产精品欧美亚洲77777| 好看av亚洲va欧美ⅴa在| 丰满的人妻完整版| 欧美成人免费av一区二区三区 | 国产精品免费一区二区三区在线 | 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 黄色毛片三级朝国网站| 黄片小视频在线播放| 99久久综合精品五月天人人| 国产精品综合久久久久久久免费 | 熟女少妇亚洲综合色aaa.| 好男人电影高清在线观看| 久久久久国内视频| 国产精品久久久久成人av| 黄色视频不卡| 丰满迷人的少妇在线观看| 亚洲国产看品久久| 99热网站在线观看| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 亚洲一区二区三区不卡视频| 天堂√8在线中文| 国产精品 欧美亚洲| 免费看a级黄色片| 欧美日韩一级在线毛片| 国产亚洲av高清不卡| а√天堂www在线а√下载 | 黄色视频不卡| 人人澡人人妻人| 国产蜜桃级精品一区二区三区 | 欧美黑人精品巨大| 国产精品一区二区在线不卡| 美女高潮喷水抽搐中文字幕| av国产精品久久久久影院| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| 免费高清在线观看日韩| 热99国产精品久久久久久7| 免费人成视频x8x8入口观看| 美女国产高潮福利片在线看| 69av精品久久久久久| 亚洲专区国产一区二区| 久久九九热精品免费| 日韩免费av在线播放| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 两性夫妻黄色片| ponron亚洲| 成人国语在线视频| 午夜福利乱码中文字幕| 制服人妻中文乱码| 一二三四社区在线视频社区8| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 99国产精品99久久久久| 国产精品av久久久久免费| 老熟妇乱子伦视频在线观看| 男人的好看免费观看在线视频 | 黄色成人免费大全| 两性夫妻黄色片| 大型黄色视频在线免费观看| 在线观看免费午夜福利视频| 亚洲少妇的诱惑av| 精品久久久久久电影网| 成人国产一区最新在线观看| 成人黄色视频免费在线看| av线在线观看网站| 亚洲综合色网址| 日韩欧美三级三区| xxxhd国产人妻xxx| 大香蕉久久网| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 9热在线视频观看99| 亚洲一码二码三码区别大吗| 久久精品亚洲熟妇少妇任你| 亚洲国产精品一区二区三区在线| 一级a爱视频在线免费观看| 亚洲一区二区三区欧美精品| 亚洲精品在线观看二区| 国产日韩一区二区三区精品不卡| 少妇裸体淫交视频免费看高清 | 午夜免费成人在线视频| 久久影院123| 免费女性裸体啪啪无遮挡网站| 婷婷成人精品国产| 欧美另类亚洲清纯唯美| 90打野战视频偷拍视频| 亚洲欧美激情在线| 中文字幕色久视频| 亚洲精品粉嫩美女一区| 国产精品98久久久久久宅男小说| 亚洲欧美激情综合另类| 一本一本久久a久久精品综合妖精| 不卡av一区二区三区| 精品熟女少妇八av免费久了| av视频免费观看在线观看| 韩国av一区二区三区四区| 久久性视频一级片| 99re在线观看精品视频| 真人做人爱边吃奶动态| 99riav亚洲国产免费| 亚洲国产毛片av蜜桃av| 精品少妇久久久久久888优播| 交换朋友夫妻互换小说| 人人妻,人人澡人人爽秒播| 中文字幕最新亚洲高清| 男女之事视频高清在线观看| 国产欧美日韩一区二区三区在线| 久久久久精品国产欧美久久久| 久久人妻福利社区极品人妻图片| 丝袜在线中文字幕| 欧美国产精品一级二级三级| 免费高清在线观看日韩| 国产一区二区三区视频了| 免费久久久久久久精品成人欧美视频| 人人妻人人澡人人爽人人夜夜| 成人特级黄色片久久久久久久| 精品午夜福利视频在线观看一区| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 成年女人毛片免费观看观看9 | 最新美女视频免费是黄的| 久久精品国产亚洲av高清一级| 国产欧美日韩一区二区三区在线| 欧美精品av麻豆av| 亚洲七黄色美女视频| 日韩制服丝袜自拍偷拍| 欧美久久黑人一区二区| 在线看a的网站| 国产在线一区二区三区精| 我的亚洲天堂| a级毛片在线看网站| 久久久国产欧美日韩av| 怎么达到女性高潮| 麻豆av在线久日| 亚洲第一av免费看| 在线国产一区二区在线| 制服诱惑二区|