• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical Modeling of A Micro Dual-mode Media Compatible Pressure Sensor*

    2015-05-06 07:47:21,,,,,
    傳感技術學報 2015年2期
    關鍵詞:壓阻雙模式電容式

    , , , , ,

    (1.College of Mechanical Engineering,Quzhou University,Quzhou 324000,China;2.The State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University,Hangzhou 310027,China)

    ?

    Analytical Modeling of A Micro Dual-mode Media Compatible Pressure Sensor*

    YUJianping1*,LIXin1,ZHANGYuliang1,YAOZhehe2,ZHOUZhaozhong1,2

    (1.College of Mechanical Engineering,Quzhou University,Quzhou 324000,China;2.The State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University,Hangzhou 310027,China)

    This paper presents the analytical modeling of a novel micro dual-mode pressure sensor which is capable of measuring static and transient pressure simultaneously under corrosive environment.The sensor is compromised of a LTCC-based(low temperature co-fired ceramic)piezoresistive measurement unit and a PDMS-based(polydimethylsiloxane)capacitive measurement unit.The use of piezoresistive unit is to accomplish static pressure measurement,while the capacitive measurement unit realizes transient pressure measurement.Mathematical models of the proposed piezoresistive and capacitive transduction were calculated respectively.FE analyses were also performed to help in assessing the impacts of sensor structure on measurement characteristics in the prototyping explore.

    piezoresistive;capacitive;pressure sensor;low temperature co-fired ceramic(LTCC);polydimethylsiloxane(PDMS)

    Pressure measurement provides crucial information for broad application circumstances that ranges from industrial process control,advanced manufacturing to biomedical applications,etc.For now,piezoresistive sensor is still the major type of sensor for pressure measurement,it provides advantages as simple structure,inexpensive cost with high sensitivity and suitable for static pressure measurement[1-3].Other than piezoresistive sensor,capacitive sensor is growing as another alternative for pressure measurement due to some certain advantages as higher measurement sensitivity,decreased temperature sensitivity,reduced power consumption,better stability and particularly suitable for transient pressure measurement[4-5].

    The majority of corrosive media compatible pressure sensors are based on piezoresistive transduction.A common feature among all these typical pressure sensors is the use of thick-film technology[6-7].Ceramic materials as the thick-film substrate allows applications in series harsh measuring conditions,such as high pressure,high temperature,direct contact to corrosive liquids,etc[8-9].However relatively high Young’s Modulus of ceramic materials and short gauge property of thick film resistors limit thick film ceramic sensors from wider applications.The typical prototype of media compatible pressure sensors based on capacitive transduction is the use of stainless steel(SS)as the material for diaphragm die and packaging housing.The use of SS provides the capability for measuring in harsh environments[10].For cost efficiency concern,most pressure sensors are still based on monolithic transduction.However,during recent years,there is a growing demand for static and transient pressure measurement at the same time,any pressure sensors of monolithic transduction would easily fall short for the requirement.

    In this work,the analytical modeling of a novel micro dual-mode pressure sensor for harsh environment is presented.The intrinsic features of this reported sensor includes:(i)the use of piezoresistive and capacitive transductions allows static and transient pressure measurement simultaneously;(ii)the usage of low temperature co-fired ceramic(LTCC)[11-12]as sensor substrate reveals quite a few advantages over some other traditional ceramic materials,i.e.,the easy-machining for three-dimensional structure,relatively lower Young’s Modulus and rigid mechanical strength;(iii)the use of polydimethylsiloxane(PDMS)[13]as the capacitive membrane shows phenomenal sensing flexibility.

    Fig.1 Cross-sectional schematic view of the dual-mode pressure sensor

    1 Pressure Sensor Device Structure

    Fig.1 illustrates the cross-sectional schematic view of the sensor.The sensor is compromised of a LTCC-based piezoresistive measurement unit and a PDMS-based capacitive measurement unit.

    The piezoresistive measurement unit was designed as a monolithic LTCC structure with thin membrane,a cylindrical cavity and the channel for pressure inlet.Four resistors(R1,R2,R3andR4)are symmetrically positioned on the upper surface of the thin membrane as shown in Fig.2,and parallelly connected to a common node asR0in the centre of the membrane.The use of piezoresistive unit is to accomplish static pressure measurement.

    Fig.2 Layout of resistors(R0,R1,R2,R3 and R4)on the upper surface of thin membrane

    Fig.3 Top view of sensing electrodes of the capacitive measurement unit

    The capacitive measurement unit realizes transient pressure measurement,which consists of two sensing electrodes on the bottom substrate,and one common electrode on the top PDMS flexible membrane as shown in Fig 3.Of some conventional designs,two sensing electrodes are patterned on the top membrane and bottom substrate respectively,however,the sensing electrode on the top membrane is quite fragile when the membrane is bent during measurement.Sensor structure in this paper on the other hand,would preclude this from happening.

    Of this sensor,piezoresistive measurement unit is in direct contact to corrosive measuring environment,which requires reasonable rigid mechanical strength and anti-corrosive capability.While capacitive measurement unit is in direct contact to the top surface of thin membrane,during the measurement,which should be tightly fit to the membrane.Based on the analysis,LTCC of excellent anti-corrosive capability and PDMS of outstanding sensing flexibility are chosen to be the materials for piezoresistive and capacitive measurement units respectively.

    2 Sensor Measurement Operation

    Shown in Fig.4,four resistors(R1,R2,R3andR4)share the same initial resistance.When a force is applied on the thin membrane,the bending of the membrane will deform the resistors,which resulting in the force-induced resistance variations.On the other hand,common nodeR0is located in the middle of thin membrane,the bending of the membrane would not induce any deformation of which,as a result,resistance of common node will not change even with the bending of the membrane.

    Fig.4 The schematic of the proposed piezoresistive measurement unit

    Consider LTCC as an ideal material,then the resistance variation of the four resistors can be expressed as:

    ΔR1=kpsR1

    (1)

    ΔR2=kpsR2

    (2)

    ΔR3=kpsR3

    (3)

    ΔR4=kpsR4

    (4)

    wherekrepresentstheresistivityofLTCCstructure,psisthestaticpressurevaluetobemeasured.

    Sincethefourresistorsaresymmetricallypositioned,amoreprecisevalueofpscanbeachievedfromthefollowingequation:

    (5)

    Fig.5 illustrates the schematic of the proposed capacitive measurement unit.As the external pressure applied to the top membrane,the applied pressure can be detected by the capacitanceCtof the capacitive measurement unit:

    1/Ct=1/Ct1+1/Ct2

    (6)

    whereCt1andCt2are the capacitances between the common electrode and two sensing electrodes.Since the two sensing electrodes are symmetrically patterned,the specific value of which can be defined as:

    (7)

    Fig.5 The schematic of the proposed capacitive measurement unit

    whereais the radius of the PDMS membrane,ε0is the permittivity in vacuum,εrandt0is the relative permittivity and thickness of the insulating layer,gandw(r,pt)are the original value and variation of air gap distance respectively,ris the position of measuring point,ptis the transient pressure value.

    In this design,the capacitive measurement unit is working in two different mode,including the normal mode and the touch mode.When the measurement is in low pressure range,before the top membrane reaches the bottom surface of the insulating layer,the capacitive measurement unit is operating in the normal mode.When the measurement is in ultra high pressure range,the top membrane would in direct contact to the insulating layer,the capacitive measurement unit is working in the touch mode.

    In the normal mode,the deflection of air gap distance can be obtained from equation(8):

    (8)

    whereDrepresents the flexural rigidity of the membrane.In the touch mode,the variation of air gap distance can be approximately assumed as:

    (9)

    whereap(pt) is the radius of the touching surface.

    3 FE Simulation Analysis

    In this section,based on the presented sensor model,static analysis and modal analysis were investigated.In the static analysis,strain simulation and stress simulation were proposed.In the modal analysis,resonant frequency and resonant amplitude of the sensor were both calculated.

    Static Analysis.The proposed sensor was in axial symmetrical model.Fig.6 and Fig.7 illustrated the equivalent strain and von mises stress distribution when the sensor was under 5kPa pressure,respectively.

    Fig.6 Equivalent strain simulation results of the sensor structure under 5 kPa pressure

    Fig.7 Von mises stress simulation results of the sensor structure under 5 kPa pressure

    From the simulation results,it could be concluded that the largest equivalent strain was about 3.5×10-4,and centralized in some certain areas on the membrane.The largest von mises stress was about 6.7×106N/m2,which appeared in the middle of the membrane.

    Modal Analysis.Modal analysis is the study of dynamic properties of structures under vibrational excitation.In this section,the natural mode shapes and frequencies of the proposed sensor during free vibration were determined.Fig.8 illustrated the first four mode shapes of this pressure sensor,as can be identified,the first four natural frequencies were 26 kHz,56 kHz,78 kHz and 97 kHz respectively,which should be avoid during the measuring.

    Fig.8 Modal analysis of the proposed pressure sensor

    4 Summary

    A dual-mode pressure sensor was considered for media compatible applications.The LTCC-based piezoresistive unit with significant media compatible capability was designed for static pressure measurement.The PDMS-based capacitive unit of outstanding sensing flexibility was designed for transient pressure measurement.Mathematical models of the proposed pressure sensor were calculated in this paper.FE analyses were also performed to help in assessing the impacts of sensor structure on measurement characteristics in the prototyping step.

    The novel proposed sensor was favorable for advanced industrial requirements.In the future,a testing prototype will be constructed,and sensor performance and reliability will be investigated.

    [1] Han J E,Kim D,Yun K S.All-Polymer Hair Structure with Embedded Three-Dimensional Piezoresistive Force Sensors[J].Sens and Actu A:Phys,2012,188(0):89-94.

    [2]Li H,Luo C X,Ji H,et al.Micro-Pressure Sensor Made of Conductive PDMS for Microfluidic Applications[J].Microelec Eng,2010,87(5-8):1266-1269.

    [3]董偉,曾鵬,巴龍.精密壓阻彈性體及力敏觸覺傳感器陣列[J].傳感技術學報,2009,22(11):1547-1552.

    [4]Dai C L,Lu P W,Chang C L,et al.Capacitive Micro Pressure Sensor Integrated with A Ring Oscillator Circuit on Chip[J].Sensors,2009,9(12):10158-10170.

    [5]Orthner M P,Buetefisch S,Magda J,et al.Development,Fabrication,and Characterization of Hydrogel Based Piezoresistive Pressure Sensors with Perforated Diaphragms[J].Sens and Actu A:Phys,2010,161(1-2):29-38.

    [6]Jacq C,Maeder T,Ryser P.High-Strain Response of Piezoresistive Thick-Film Resistors on Titanium Alloy Substrates[J].J Eur Ceram Soc,2004,24(6):1897-1900.

    [7]Wisitsoraat A,Patthanasetakul V,Lomas T,et al.Low Cost Thin Film Based Piezoresistive MEMS Tactile Sensor[J].Sens and Actu A:Phys,2007,139(1-2):17-22.

    [8]李晨,譚秋林,張文棟.基于氧化鋁陶瓷的電容式高溫壓力傳感器[J].傳感技術學報,2014,27(8):1038-1042.

    [9]劉勐,張威,郝一龍.用于高沖擊檢測硅基三軸集成壓阻式MEMS加速度芯片的建模與仿真[J].傳感技術學報,2012,25(1):11-19.

    [10]Ho S S,Rajgopal S,Mehregany M.Media Compatible Stainless Steel Capacitive Pressure Sensors[J].Sens and Actu A:Phys,2013,189(0):134-142.

    [11]Xiong J,Li Y,Hong Y,et al.Wireless LTCC-Based Capacitive Pressure Sensor for Harsh Environment[J].Sens and Actu A:Phys,2013,197(0):30-37.

    [12]Lei K F,Lee K F,Lee M Y.Development of A Flexible PDMS Capacitive Pressure Sensor for Plantar Pressure Measurement[J].Microelec Eng,2012,99(0):1-5.

    [13]Zhang W,Feng H,Sang S,et al.Structural Optimization of the Micro-Membrane for A Novel Surface Stress-Based Capacitive Biosensor[J].Microelec Eng,2013,106(0):9-12.

    2014-11-06 修改日期:2014-12-20

    微型雙模式耐蝕壓力傳感器設計及特性分析*

    余建平1*,李 欣1,張玉良1,姚喆赫2,周兆忠1,2

    (1.衢州學院機械工程學院,衢州 324000;2.浙江大學流體動力與機電系統(tǒng)國家重點實驗室,杭州 310027)

    本文提出一種微型雙模式耐蝕壓力傳感器設計并分析其測試特性,能夠?qū)崿F(xiàn)靜態(tài)力和瞬時力的同步測量。該傳感器由基于低溫共燒陶瓷的壓阻測量單元和基于硅橡膠的電容測量單元構成。并由壓阻測量單元實現(xiàn)靜態(tài)力的測量,電容測量單元實現(xiàn)瞬時力的測量。文中分別計算了壓阻測量單元和電容測量單元的數(shù)學分析模型,并通過有限元仿真研究傳感器的靜態(tài)特性和模態(tài)響應,考量傳感器結構參數(shù)對其測量性能的影響。

    壓阻式;電容式;壓力傳感器;低溫共燒陶瓷;硅橡膠

    TH823

    A

    1004-1699(2015)02-0193-05

    余建平(1986-),男,博士,衢州學院講師?,F(xiàn)主持國家自然科學基金1項,參與3項,主要研究方向為精密壓力檢測及多維微納位移測量,yujianping@zju.edu.cn;

    周兆忠(1968-),男,博士,教授,衢州學院機械工程學院院長,浙江大學機械電子控制工程博士后。主要研究方向為機電一體化技術,精密、超精密加工技術與裝備,zzz_2227@163.com。

    項目來源:國家自然科學基金項目(51405263,51275272)

    C:7230

    10.3969/j.issn.1004-1699.2015.02.008

    猜你喜歡
    壓阻雙模式電容式
    小直徑雙模式盾構機在復合地層中的施工應用與實踐
    基于FDC2214電容式傳感器的手勢識別裝置
    電子制作(2019年10期)2019-06-17 11:44:58
    電容式油量表設計
    電子測試(2018年18期)2018-11-14 02:30:28
    電容式蓄電池液位計設計
    碳納米管紗在應力下的壓阻效應:現(xiàn)象和影響因素
    新型炭材料(2018年2期)2018-05-02 07:28:30
    多晶硅應變因子計算研究
    電子世界(2017年3期)2017-03-01 01:15:42
    SOI壓阻傳感器的陽極鍵合結合面檢測
    基于域分解的雙模式PE
    雙模式盾構下穿巖溶地區(qū)河流施工技術
    建筑機械化(2015年7期)2015-01-03 08:09:05
    超聲波水位計在船閘自動控制中應用
    美女黄网站色视频| 国产av麻豆久久久久久久| a级一级毛片免费在线观看| 特级一级黄色大片| av天堂在线播放| 国产伦精品一区二区三区视频9| 日韩三级伦理在线观看| 一边摸一边抽搐一进一小说| 蜜桃亚洲精品一区二区三区| 国产精品永久免费网站| 特级一级黄色大片| 色在线成人网| or卡值多少钱| 狂野欧美白嫩少妇大欣赏| 99热这里只有精品一区| 亚洲欧美成人精品一区二区| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 亚洲av免费在线观看| 69av精品久久久久久| 最近的中文字幕免费完整| 久久久a久久爽久久v久久| 18+在线观看网站| 亚洲第一区二区三区不卡| 国产精品福利在线免费观看| 久久久精品94久久精品| 久久久国产成人免费| 亚洲图色成人| 国产黄片美女视频| 久久这里只有精品中国| 国产成人a∨麻豆精品| 麻豆精品久久久久久蜜桃| 黄色欧美视频在线观看| 成年女人看的毛片在线观看| 97超视频在线观看视频| 好男人在线观看高清免费视频| 日本三级黄在线观看| 欧美人与善性xxx| 午夜福利在线在线| 一级毛片久久久久久久久女| 国产单亲对白刺激| 久久久久国产精品人妻aⅴ院| 久久热精品热| 最好的美女福利视频网| 国产高清视频在线播放一区| 国产黄片美女视频| 91午夜精品亚洲一区二区三区| 一级黄色大片毛片| 人妻夜夜爽99麻豆av| 亚洲自偷自拍三级| 长腿黑丝高跟| 三级国产精品欧美在线观看| 亚洲专区国产一区二区| 色5月婷婷丁香| 亚洲成av人片在线播放无| 少妇高潮的动态图| 国产亚洲精品av在线| 亚洲性久久影院| 久久精品国产亚洲av涩爱 | 精品国内亚洲2022精品成人| 亚洲av电影不卡..在线观看| 国产精品久久电影中文字幕| 久久久国产成人精品二区| 欧美丝袜亚洲另类| 天堂网av新在线| 中文亚洲av片在线观看爽| 国产精品无大码| 色哟哟·www| 亚洲欧美日韩高清专用| 啦啦啦韩国在线观看视频| 在线天堂最新版资源| 男女做爰动态图高潮gif福利片| 亚洲av第一区精品v没综合| 亚洲av熟女| 高清毛片免费观看视频网站| 亚洲图色成人| 欧美最新免费一区二区三区| 成人国产麻豆网| 国产高清有码在线观看视频| 日本三级黄在线观看| 伦理电影大哥的女人| 亚洲国产精品sss在线观看| 中国国产av一级| 老司机影院成人| 久久久a久久爽久久v久久| 成人高潮视频无遮挡免费网站| av天堂在线播放| 黄色视频,在线免费观看| 一进一出抽搐动态| 中文资源天堂在线| 欧美一区二区精品小视频在线| 深夜精品福利| 精品欧美国产一区二区三| 中文字幕久久专区| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 精品日产1卡2卡| 国产黄片美女视频| 亚洲18禁久久av| 久久国内精品自在自线图片| 免费人成在线观看视频色| 12—13女人毛片做爰片一| 国产成人福利小说| 麻豆av噜噜一区二区三区| 网址你懂的国产日韩在线| 美女大奶头视频| 国产精品女同一区二区软件| 亚洲国产精品久久男人天堂| 国语自产精品视频在线第100页| 国产熟女欧美一区二区| 国产国拍精品亚洲av在线观看| 午夜免费激情av| 国产综合懂色| 91久久精品电影网| a级毛片a级免费在线| 午夜爱爱视频在线播放| 久久久久免费精品人妻一区二区| 蜜臀久久99精品久久宅男| or卡值多少钱| 狂野欧美白嫩少妇大欣赏| 真人做人爱边吃奶动态| 婷婷色综合大香蕉| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 成人毛片a级毛片在线播放| 国产av不卡久久| 好男人在线观看高清免费视频| 国产色婷婷99| 国产男靠女视频免费网站| 欧美日韩乱码在线| 干丝袜人妻中文字幕| 少妇的逼水好多| 日韩人妻高清精品专区| 日韩欧美免费精品| 别揉我奶头 嗯啊视频| 欧美最新免费一区二区三区| 有码 亚洲区| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 久久精品久久久久久噜噜老黄 | 亚洲精品粉嫩美女一区| 少妇熟女欧美另类| 成人永久免费在线观看视频| 欧美日韩在线观看h| 一夜夜www| 亚洲av电影不卡..在线观看| 三级国产精品欧美在线观看| 一个人免费在线观看电影| 午夜精品国产一区二区电影 | 国产探花极品一区二区| 欧美精品国产亚洲| 国产v大片淫在线免费观看| 99视频精品全部免费 在线| 亚洲熟妇熟女久久| 人妻久久中文字幕网| 亚洲成人av在线免费| 国产欧美日韩精品亚洲av| 日本黄色片子视频| 精品一区二区三区人妻视频| а√天堂www在线а√下载| 国产在视频线在精品| 成人毛片a级毛片在线播放| 欧美日韩乱码在线| 精品国内亚洲2022精品成人| 国内揄拍国产精品人妻在线| 午夜激情欧美在线| 伦理电影大哥的女人| 亚洲熟妇中文字幕五十中出| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 免费电影在线观看免费观看| 国产真实乱freesex| 欧美+日韩+精品| 日韩中字成人| 免费搜索国产男女视频| 欧美色视频一区免费| 久久人人爽人人片av| 久久九九热精品免费| 国产美女午夜福利| 亚洲国产精品久久男人天堂| 99久久精品一区二区三区| 国产精品一区二区三区四区免费观看 | 伦精品一区二区三区| 成人三级黄色视频| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 伊人久久精品亚洲午夜| 九九久久精品国产亚洲av麻豆| 麻豆国产av国片精品| 国产综合懂色| 全区人妻精品视频| 综合色av麻豆| 三级毛片av免费| 国产又黄又爽又无遮挡在线| 国产老妇女一区| 亚洲国产欧美人成| 久99久视频精品免费| 最近最新中文字幕大全电影3| 色综合色国产| 国产成年人精品一区二区| aaaaa片日本免费| 免费观看精品视频网站| av在线蜜桃| 国产精品,欧美在线| 国产精品久久视频播放| 男女那种视频在线观看| 国产毛片a区久久久久| 国产高清视频在线观看网站| 夜夜爽天天搞| 老女人水多毛片| 免费无遮挡裸体视频| 亚洲成人精品中文字幕电影| 黄色视频,在线免费观看| 老师上课跳d突然被开到最大视频| 看十八女毛片水多多多| 日日撸夜夜添| 人妻少妇偷人精品九色| 国产精品亚洲一级av第二区| 日韩三级伦理在线观看| 久久久久性生活片| 国产精品人妻久久久久久| 日产精品乱码卡一卡2卡三| 国产成人福利小说| 男人狂女人下面高潮的视频| 色综合色国产| 香蕉av资源在线| 乱系列少妇在线播放| 小蜜桃在线观看免费完整版高清| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月| 女人被狂操c到高潮| 国产免费男女视频| 久久精品夜夜夜夜夜久久蜜豆| 六月丁香七月| 成人美女网站在线观看视频| 久久国产乱子免费精品| 日本免费a在线| 免费看日本二区| 婷婷亚洲欧美| 亚洲18禁久久av| 午夜精品国产一区二区电影 | 性欧美人与动物交配| 精品一区二区三区av网在线观看| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区成人| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 亚州av有码| 色av中文字幕| 亚洲av二区三区四区| 91麻豆精品激情在线观看国产| 亚洲欧美清纯卡通| 亚洲中文日韩欧美视频| 天堂动漫精品| 午夜激情欧美在线| 看十八女毛片水多多多| 波多野结衣高清作品| 免费看av在线观看网站| 网址你懂的国产日韩在线| 亚洲av.av天堂| 精品一区二区三区视频在线| 国产伦在线观看视频一区| 久久久久久久久久黄片| 久久精品夜色国产| 免费看光身美女| 久久欧美精品欧美久久欧美| 国产片特级美女逼逼视频| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 欧美在线一区亚洲| 国产激情偷乱视频一区二区| 亚洲欧美成人综合另类久久久 | 丰满人妻一区二区三区视频av| videossex国产| 天堂网av新在线| 日本免费一区二区三区高清不卡| 免费人成视频x8x8入口观看| aaaaa片日本免费| 亚洲国产日韩欧美精品在线观看| 国产乱人视频| 一进一出好大好爽视频| 亚洲熟妇熟女久久| 亚洲最大成人av| 一级黄色大片毛片| 最好的美女福利视频网| 国产一区二区在线av高清观看| 欧美zozozo另类| 久久精品夜色国产| 久久精品国产鲁丝片午夜精品| 91在线观看av| 日韩国内少妇激情av| 亚洲精品日韩在线中文字幕 | 内地一区二区视频在线| 午夜精品一区二区三区免费看| 亚洲人成网站在线观看播放| 老熟妇乱子伦视频在线观看| 日韩国内少妇激情av| 99久久九九国产精品国产免费| 最近最新中文字幕大全电影3| 久久亚洲国产成人精品v| 亚洲一区高清亚洲精品| 亚洲第一电影网av| 亚洲欧美日韩高清在线视频| 国产探花在线观看一区二区| 成人高潮视频无遮挡免费网站| 悠悠久久av| 亚洲av成人av| 亚洲五月天丁香| 桃色一区二区三区在线观看| 啦啦啦韩国在线观看视频| 久久久久久久久中文| 国产亚洲av嫩草精品影院| 最后的刺客免费高清国语| 99久久精品国产国产毛片| 六月丁香七月| a级毛色黄片| 欧美人与善性xxx| 亚洲一区二区三区色噜噜| 深夜精品福利| 18禁在线无遮挡免费观看视频 | 亚洲人成网站在线播放欧美日韩| 久久久成人免费电影| 一边摸一边抽搐一进一小说| 亚洲性久久影院| 精品人妻视频免费看| 男插女下体视频免费在线播放| 国产久久久一区二区三区| av在线亚洲专区| 精品人妻偷拍中文字幕| 日韩强制内射视频| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 婷婷精品国产亚洲av在线| 日韩强制内射视频| 色av中文字幕| 特级一级黄色大片| 麻豆国产97在线/欧美| 99热6这里只有精品| 国产免费男女视频| 久久人人精品亚洲av| 99riav亚洲国产免费| 直男gayav资源| 一个人看的www免费观看视频| 日本免费一区二区三区高清不卡| 国产精品久久久久久亚洲av鲁大| 搡女人真爽免费视频火全软件 | 村上凉子中文字幕在线| 久久久久久久久久黄片| 亚洲人成网站在线观看播放| 成人特级黄色片久久久久久久| 欧美日本视频| 国产aⅴ精品一区二区三区波| av黄色大香蕉| 国产v大片淫在线免费观看| 成人综合一区亚洲| 你懂的网址亚洲精品在线观看 | 干丝袜人妻中文字幕| 九九爱精品视频在线观看| 亚洲中文日韩欧美视频| 日本黄色视频三级网站网址| 男人舔女人下体高潮全视频| 日日撸夜夜添| 国产成年人精品一区二区| 国产一区二区亚洲精品在线观看| 九九热线精品视视频播放| 12—13女人毛片做爰片一| 无遮挡黄片免费观看| 亚洲精品在线观看二区| 亚洲国产精品sss在线观看| 五月伊人婷婷丁香| 91午夜精品亚洲一区二区三区| 国产免费一级a男人的天堂| 精品一区二区三区视频在线观看免费| 亚洲人成网站在线播放欧美日韩| 国产成人精品久久久久久| 国产男靠女视频免费网站| www.色视频.com| 哪里可以看免费的av片| 日本a在线网址| 综合色丁香网| 久久韩国三级中文字幕| 一个人免费在线观看电影| 91在线精品国自产拍蜜月| 亚洲精品国产av成人精品 | 97超碰精品成人国产| 大香蕉久久网| 神马国产精品三级电影在线观看| 1000部很黄的大片| 草草在线视频免费看| 久久午夜福利片| 精品午夜福利视频在线观看一区| 18+在线观看网站| 欧美又色又爽又黄视频| 观看美女的网站| 成人性生交大片免费视频hd| 亚洲精品一卡2卡三卡4卡5卡| 国产男人的电影天堂91| 久久久国产成人免费| 国产亚洲精品综合一区在线观看| 三级男女做爰猛烈吃奶摸视频| 日韩精品青青久久久久久| 淫秽高清视频在线观看| 国产欧美日韩一区二区精品| 在线观看66精品国产| av在线天堂中文字幕| 99久国产av精品| 天天一区二区日本电影三级| 日本色播在线视频| 美女内射精品一级片tv| 尤物成人国产欧美一区二区三区| av福利片在线观看| 久久久成人免费电影| 毛片女人毛片| 日韩一区二区视频免费看| 在线观看av片永久免费下载| 午夜亚洲福利在线播放| 欧美另类亚洲清纯唯美| 日本黄大片高清| 欧美一区二区国产精品久久精品| 91精品国产九色| 欧美日韩综合久久久久久| 天堂√8在线中文| 亚洲四区av| 成人美女网站在线观看视频| 大型黄色视频在线免费观看| 18禁在线播放成人免费| 高清毛片免费看| 精品熟女少妇av免费看| 久久久精品欧美日韩精品| 直男gayav资源| 日韩一本色道免费dvd| 嫩草影院新地址| 国产久久久一区二区三区| 亚洲中文字幕日韩| 亚洲熟妇熟女久久| 91精品国产九色| 身体一侧抽搐| 日本免费a在线| 最近最新中文字幕大全电影3| 老熟妇仑乱视频hdxx| 亚洲七黄色美女视频| 99热这里只有是精品50| 日韩精品青青久久久久久| 天天躁日日操中文字幕| 国产欧美日韩精品一区二区| 无遮挡黄片免费观看| 日韩高清综合在线| 麻豆一二三区av精品| 少妇人妻一区二区三区视频| 女人十人毛片免费观看3o分钟| 黄色欧美视频在线观看| 日本色播在线视频| 男人的好看免费观看在线视频| 在线播放无遮挡| 日产精品乱码卡一卡2卡三| av视频在线观看入口| 国产 一区 欧美 日韩| 国产三级中文精品| 少妇猛男粗大的猛烈进出视频 | 最近中文字幕高清免费大全6| 丝袜喷水一区| 国产av在哪里看| 日韩高清综合在线| 亚洲成av人片在线播放无| 一区福利在线观看| av女优亚洲男人天堂| 欧美激情久久久久久爽电影| 国产一区二区亚洲精品在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产免费一级a男人的天堂| 久久综合国产亚洲精品| 丰满人妻一区二区三区视频av| 亚洲七黄色美女视频| 午夜激情福利司机影院| 国产白丝娇喘喷水9色精品| АⅤ资源中文在线天堂| 国产69精品久久久久777片| 国产老妇女一区| 欧美性猛交黑人性爽| 欧美极品一区二区三区四区| 欧美日韩一区二区视频在线观看视频在线 | 国产极品精品免费视频能看的| 俄罗斯特黄特色一大片| 国产v大片淫在线免费观看| 国产精品亚洲一级av第二区| 麻豆国产97在线/欧美| 一卡2卡三卡四卡精品乱码亚洲| 在线a可以看的网站| 久久久久久国产a免费观看| 国产v大片淫在线免费观看| 国产精品一区二区性色av| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| 男人舔奶头视频| 六月丁香七月| 看片在线看免费视频| 欧美bdsm另类| 精品一区二区三区视频在线| 久久久久国产网址| 十八禁网站免费在线| 天堂影院成人在线观看| 久久久午夜欧美精品| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 麻豆国产97在线/欧美| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 免费电影在线观看免费观看| 熟女人妻精品中文字幕| 欧美日韩国产亚洲二区| 亚洲av美国av| 啦啦啦啦在线视频资源| 成人av一区二区三区在线看| 国产精品一区www在线观看| 亚洲色图av天堂| 欧美一区二区亚洲| 亚洲中文日韩欧美视频| 我的女老师完整版在线观看| 久久久国产成人精品二区| 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 国产白丝娇喘喷水9色精品| 久久人人爽人人爽人人片va| 特大巨黑吊av在线直播| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 高清毛片免费观看视频网站| 特级一级黄色大片| 国产精品一及| 精品无人区乱码1区二区| 三级经典国产精品| 美女黄网站色视频| 性欧美人与动物交配| 免费观看在线日韩| 俄罗斯特黄特色一大片| 老女人水多毛片| 国产精品无大码| 最近在线观看免费完整版| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久大av| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 国内精品一区二区在线观看| 精品午夜福利在线看| 老司机午夜福利在线观看视频| av在线蜜桃| 日韩av在线大香蕉| 精品国内亚洲2022精品成人| 欧美精品国产亚洲| 国产伦精品一区二区三区四那| 亚洲熟妇熟女久久| 成人美女网站在线观看视频| 男女之事视频高清在线观看| 亚洲国产精品合色在线| 99久久无色码亚洲精品果冻| 婷婷精品国产亚洲av| 一边摸一边抽搐一进一小说| av福利片在线观看| 乱系列少妇在线播放| 97碰自拍视频| 成年免费大片在线观看| 亚洲成人中文字幕在线播放| 欧美中文日本在线观看视频| 天堂动漫精品| 日韩一区二区视频免费看| 乱人视频在线观看| 国产探花极品一区二区| 成人性生交大片免费视频hd| 日本五十路高清| 精品日产1卡2卡| 成人国产麻豆网| 亚洲成av人片在线播放无| 日本爱情动作片www.在线观看 | 深夜精品福利| 99热这里只有是精品50| 欧美精品国产亚洲| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 久久精品91蜜桃| 老司机影院成人| 亚洲中文字幕一区二区三区有码在线看| 精品午夜福利视频在线观看一区| 久久这里只有精品中国| 精品久久久久久久久久免费视频| 精品久久久久久久久av| 国产白丝娇喘喷水9色精品| 一边摸一边抽搐一进一小说| 永久网站在线| 最近2019中文字幕mv第一页| 久久中文看片网| 99热精品在线国产| 久久这里只有精品中国| 久久久久久久久久久丰满| 免费av毛片视频| 亚洲图色成人| 婷婷色综合大香蕉| av黄色大香蕉| 久久久精品94久久精品| 亚洲国产精品成人综合色| 91午夜精品亚洲一区二区三区| 老女人水多毛片| 亚洲av成人av| 亚洲丝袜综合中文字幕| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 国产片特级美女逼逼视频| 久久婷婷人人爽人人干人人爱| 国内精品久久久久精免费| 露出奶头的视频| 在线天堂最新版资源| 人妻少妇偷人精品九色|