• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The transport properties of the PTCDIs series molecules sandwiched between bulk electrodes

    2015-05-04 07:29:08WANGBingWANGWeiweiDAIZhenxiangZHENGGanhongMAYongqing
    關(guān)鍵詞:第一性塊體電荷

    WANG Bing, WANG Wei-wei, DAI Zhen-xiang, ZHENG Gan-hong, MA Yong-qing

    (Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science,Anhui University, Hefei 230601, China)

    ?

    The transport properties of the PTCDIs series molecules sandwiched between bulk electrodes

    WANG Bing, WANG Wei-wei, DAI Zhen-xiang*, ZHENG Gan-hong, MA Yong-qing

    (Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science,Anhui University, Hefei 230601, China)

    The transport properties of the perylene tetracarboxylic diimides (PTCDIs) series molecules PTCDI-Cn(n=0,6) were investigated via first-principles calculations. Our calculation technique was the combination of density functional theory with non-equilibrium Green’s function formalism method. The corresponding molecular-junctions consisted of the PTCDI series molecules sandwiched between three different kinds of bulk electrodes, including Li, Al, and graphene. Based on our calculation results, even sandwiched between two bulk electrodes, the PTCDI-Cn(n=0, 6) molecules also exhibited some interesting properties including negative differential resistance and the rectification effect. These transport properties were systematically analyzed via the calculated transmission spectra and the projected densities states. These calculations suggested these molecules might have great potential utilities in future molecular-scale devices.

    electronic transport; first-principles calculation; PTCDI series; rectification

    0 Introduction

    With the rapid increase of electronic industrial level, integration of chip element becomes very high and the size of chip element becomes increasingly small. But it will encounter many physical laws limit when the device size shrinks to tens of nanometers or smaller. Recently, molecular devices have aroused considerable attention due to their tiny size and diversity of chemical synthesis[1-4]. In other words, these molecular-scale systems exhibit great potential advantage on alternatives to traditional devices. Consequently, many scientists try to make a design of molecular machines from a chemical point of view[5-8]. Some possible molecules used to manufacture devices in nanoscale[9-10]. Many experimental and theoretical works have been proved to demonstrate numerous interesting properties. These properties include negative differential resistance (NDR), rectification[11], the switching behaviors[12], and so on. Among these potential utilities, molecular-scale rectifier is one of the most crucial electronic elements which will be utilized to future logic circuits and high-speed memory elements.

    Due to the low cost and commercial availability, perylene tetracarboxylic diimides (PTCDIs) are the most potential molecules for organic electronic applications, and thus the PTCDI molecule and its potential device utilities have been attracted great attention in these decades. Experimentally, Tao et al. have studied the large gate modulation in the current of a room temperature single molecule transistor consisting of the PTCDI molecule[13]. Their investigations have suggested PTCDI may be used as an excellent candidate for resonance tunneling field effect transistors. In particular, it is proved that the millimeter nano-scale band of an asymmetric molecular PTCDI with alkyl side grows by a self-assembly method and the PTCDI’s length has a controllability[14-16]. Recently, Chueh et al. have probed the device performance of n-type PTCDI-C8 organic field-effect transistors with solution-based gelatin dielectric experimentally[17]. Using graphene as source/drain electrodes, one high-performance organic complementary inverter consisting of PTCDI-C13 molecule has been reported[18]. Theoretically Luo et al. have calculated the transport properties of the PTCDI molecular junctions in aqueous solution[19]. Zhu et al. have also probe the spin-filter, spin-valve, and switching effect in the PTCDI molecular junctions contacted with graphene leads[20]. In our previous work, the transport properties of the PTCDIs molecules have been investigated theoretically, in which the PTCDIs molecules are sandwiched between two atomic-scale nanowire electrodes. Some interesting properties including rectification behavior etc. have been discovered. However, the transport properties of molecular-junctions are closely related to the used electrodes. For example, the C59N molecule exhibits the rectifying behavior in carbon nanotube one-dimension electrode junctions, while there is no observable rectification in three-dimension metal-electrode junctions[21]. Accordingly, it is of fundamental and practical importance to investigate the transport properties of these PTCDI series molecules via the bulk electrodes, and especially it is also very necessary to probe whether these molecules still exhibit the rectification behavior when the molecules are sandwiched between two bulk electrodes. So, in the current theoretical calculations, three kinds of electrodes Al, Li, and graphene electrodes are adopted to further explore the transport properties of these molecules. These three kinds of electrodes are often used as the contact electrodes sandwiching the single molecule to fabricate molecular junctions experimentally and theoretically[18,20,22]. For example, Pan et al. paired an Au electrode with, respectively, Li, Pb, Ag electrodes sandwiching the oligo phenylene ethynylene (OPE) molecule to fabricate molecular junctions[22].

    In the current work, via the first-principles method, the transport properties of PTCDI-Cn(n=0,6) molecular junctions are probed theoretically. Our calculation methods are based on the combination density functional theory with non-equilibrium Green’s function formalism (NEGF) method, and in the calculations these PTCDI series molecules are sandwiched between two bulk electrodes including Li, Al, and graphene. Our calculation results clearly suggest that, even in case of bulk electrodes, the PTCDI-C6molecule also exhibits rectification behavior. And then, based on our serially theoretical work, the PTCDI-C6molecule can present rectification properties in case of both nanowire and bulk electrodes. Accordingly, our systematic investigations suggest that these molecules present great potential utilities in the future molecular-scale devices.

    1 Models and methodology

    Fig.1 shows the schematic models of the molecular devices we constructed. The PTCDI-C6molecule is sandwiched between the different bulk electrodes Al, Li, Graphene, which are referred to as models A, B and C respectively. Model M is referred to the PTCDI molecule sandwiched with two Al electrodes. LE, SC, and RE present the left electrode, the scattering region and the right electrode respectively. The molecule PTCDI-Cn(n=0,6) with S atoms ends are sandwiched between two bulk electrodes. Bulk electrode materials include Al, Li and graphene. For convenience, these three different structures are referred as model A, model B and model C. In order to make a comparison, as shown in Fig.1, we have also calculated the molecule-junction consisting of PTCDI and the electrodes Al, which was called as model M. S atoms are placed in the hollow site of the bulk electrode surface. To systematically investigate the possible existence of the rectification behavior of PTCDI series molecule in case of the bulk electrodes, two kinds of crystal orientations are also considered, in which the Al(100) electrode is used in model A and the Li(111) electrode is adopted in model B. In practical calculations, these molecular junctions are divided into three parts from left to right: the left electrode (LE), the scattering region (SE) and the right electrode (RE).

    The scattering region includes parts of the surface layers which are sufficient to screen the perturbation of the molecule. Before the transport properties calculations, the scattering regions in these models are fully optimized and the force on these atoms is minimized to be smaller than 0.05 eV·?, while keeping all the electrode atoms fixed. The electronic transport properties are explored by the first-principles non-equilibrium Green function technique (NEGF)[23-24]. The solution of poisson equation, with appropriate boundary conditions under a suitable voltage, determines the Hartree potential. The properties of the left and right electrode regions are obtained from the isolated calculations with periodic boundary conditions in all directions. The region between the two electrodes is described with open boundary conditions in the transport direction and periodic boundary conditions in the directions perpendicular to the transport direction. In our calculations, the singleζpolarized basis set (SZP) is used for Al and Li atoms, while doubleζpolarized (DZP) for other atoms. The exchange-correlation potential is described by the local density approximation (LDA). The current under a finite bias is obtained by the Landauer-Büttiker formula[25]

    (1)

    wherefL(E) andfR(E)aretheFermi-DiracfunctionsfortheleftandrightelectrodesunderthebiasvoltageVb,μLandμRpresents the electrochemical potentials for the left and right electrodes, which is related to the applied voltageVbvia the following formula,μL(Vb)=μL(0)+eVb/2,μR(Vb)=μR(0)-eVb/2.Forsimplicity,μL(0)andμR(0) are set to zero. The energy region between -eVb/2 and -eVb/2, which contributes to the current integral above, is often referred to as the bias window.T(E) is the transmission coefficient.

    2 Results and analysis

    The calculated current-voltage (I-V) curves in one bias range [-2.4 V, 2.4 V] in steps of 0.2 V for the four models are provided in Fig.2. As for model A shown in Fig.2b, under lower bias, it is found that the current is very small and that to a certain extent there exists one linear variation trend between the applied voltage and the corresponding current.

    The current rises rapidly at the higher bias, showing a nonlinear variation behavior. Especially, when the applied bias is up to 1.2 V, the current in the positive voltage is larger than that in the negative voltage, and one evident rectifying behavior appears. Similar rectification behaviors can be observed in the model B and C, as shown in Fig.2c and Fig.2d. In the case of these three bulk electrodes, PTCDI-C6molecule exhibits nonlinear transport properties in the whole calculated voltage region and displays asymmetricalI-Vcurves under the positive and negative voltages. In particular, the rectification properties can be observed in all cases. But for model M in Fig.2a, it can be observed that, for the PTCDI molecule, the current under negative voltage is approximately as large as that under the corresponding positive voltage. TheI-Vcurve is almost symmetric, and there is no obvious rectifying phenomenon. Therefore, for the PTCDI molecule, there are no obvious rectification properties sandwiched between both the atomic Au nanowire electrode and the Al(100) bulk electrodes. However, for the PTCDI-C6molecule, there exists obvious rectification phenomenon in both atomic nanowire electrode[20]and bulk electrodes. More interestingly, regardless of the bulk electrode or the atomic nanowire electrode, the PTCDI-Cn(n=0, 6) both display NDR behavior when the applied bias increases up to one certain value. The NDR effect regardless of the used electrode indicates that these PTCDI series molecules have great potential applications in high-speed switches and memory etc. About the NDR behavior in the molecular junctions, it can be analyzed using our “significant energy regions” models in detail[26].

    To systematically explore the transport properties of these junctions, the rectification ratioR(|Vb|) is calculated using the formulaR|Vb|)=I(+|Vb|)/I(-|Vb|).AsshowninFig.3,itcanbeobservedthatthereexistsobviousrectifyingeffectinthecaseofmodelsA-Cinthecalculatedvoltageregions.Moreover,inthecalculatedvoltageregions,thelargestrectificationratioformodelsAis10.9whenthevoltageis1.8V,modelBis36.2incaseof2.2V,and26.7formodelCincaseof1.6V,respectively.Therefore,therectificationratioisfoundtobesensitivetotheelectrodematerialandtheappliedvoltage,originatingfromthedifferentelectricalconductivityoftheseelectrodes,theelectronicsstructureofmolecules,andthecouplingbetweenthem.

    In our first-principles theoretical calculations, the current through molecular junctions are obtained from the Landauer-Buttiker formula mentioned above. Therefore, the magnitude of the current in fact depends on the transmission coefficient in the integral regions, i.e., the size of the integral area in the bias windows. As for the rectification behavior, it means that there exists the current through the device and that the corresponding current in the opposite voltage is very small or negligible. Therefore, via calculating and analyzing the transmission spectra as a function of the applied voltage, it will obtain clear and intuitive knowledge on the transport properties of these junctions. Taking model B about the Li(111) electrodes as one example, we thus calculate the energy dependence transmission spectra, as shown in Fig.4. In Fig.4, The dotted line indicates the Fermi energy which is shifted to zero and the region between two black solid lines present the bias window. Since the transmission peaks are intimately associated with the electronic structure of the electrodes, the orbitals of the central molecule, and the coupling between the molecule and electrodes. As for the equilibrium caseVb=0,itisclearlyobservedthattherearefiveobvioustransmissionpeaksintheprobedenergyrange.OneisjustabovetheFermilevel,whichissettozero.Suchapeakiscloselyassociatedwiththelowestunoccupiedmolecularorbital(LUMO),andthetransmissionneartheFermilevelismainlycontributedfromthispeak.Asthevoltageincreasesfrom0to2.4V,thesetransmissionpeakswillbeshifteddowngradually.Asaresult,moreandmoretransmissionpeakswillenterthebiaswindowandcontributethecurrentcorrespondingly.Thereisoneverysmalltransmissionpeakinthebiaswindowatthevoltagewhenthevoltageincreasesuptoabout1.0V.Whenthevoltageis1.6V,asthepeaksareshiftedmore,andthentherearenoticeabletransmissionpeaksenterthebiaswindow.Consequently,thetransmissionspectracontributetothecurrentarecorrespondinglylargerthanthatunderlowbias.However,whenthevoltageischangedfrom0to-2.4V,thetransmissionpeaksareshiftedupcorrespondingly.Andlittletransmissionpeakswillbeshiftedintothebiaswindow.Asaconsequence,thecurrentundernegativevoltagesissuppressedcorrespondingly,andeventuallytherectificationhappens.

    In order to further investigate the transport properties these PTCDI series molecules sandwiched with bulk electrodes, taking the case of Li(111) as an example, the projected densities of states (PDOSs) of these junctions onto the central region have also been calculated. The PDOSs are presented in Fig.5, in which Fig.5a corresponding to the equilibrium caseVb=0 V and Fig.5b presents the case of 1.6 V and Fig. 5c for -1.6 V. The PDOSs are projected onto the PTCDI-C6molecule, the left surface atoms, and the right surface atoms respectively. As shown in Fig.5a, it can be observed that there exist three PDOSs overlapping region for the PDOSs of the PTCDI-C6molecule, the left surface atoms, and the right surface atoms. In comparison with the zero-voltage transmission spectra shown in Fig.4, such these state overlapping regions correspond well to the transmission peaks. This illustrates that the strong overlap of states from the electrodes and the molecule in these energy regions, and thus the transmission peaks appear. In other energy regions, though there exist the electronic states from the electrodes, the lack of molecular states directly results in the absence of the transmission peaks. As for the case of 1.6 V, presented in Fig. 5b, there are also some states overlapping regions. In these energy regions, there also exist corresponding transmission peaks originated from these states as shown in Fig.4. However, in the case of -1.6 V indicated in Fig.5c, in our probed energy region it is easily found that the states overlapping regions are nearly negligible in the bias window [-0.8,0.8]. As a consequence, the transmission and the corresponding current in this energy region are both suppressed, which eventually leads to the rectification behavior in these molecular junctions.

    3 Conclusion

    In summary, based on ab initio non-equilibrium Green’s function method, we have probed the transport properties the PTCDI-Cn(n=0, 6) molecules sandwiched between three different kinds of bulk electrodes. Our calculation results indicate that these molecules exhibit some interesting transport properties including NDR and rectification. Via analyzing the transmission spectra and the projected densities states, these transport properties are systematically analyzed. Our theoretical investigations suggest these molecules may have significant potential utilities in the future molecular-scale devices.

    [1] Joachim C, Gimzewski J K, Aviram A. Electronics using hybrid molecular and mono-molecular devices[J]. Nature, 2000, 408 (6812): 541-548.

    [2] Emberly E, Kirczenow G. The smallest molecular switch[J]. Phys Rev Lett, 2003, 91 (18): 188301-188304.

    [3] Nitzan A, Ratner M A. Electron transport in molecular wire junctions[J]. Science, 2003, 300 (5624):1384-1389.

    [4] Pati R, Senapati L, Ajayan P M, et al. First-principles calculations of spin-polarized electron transport in a molecular wire: molecular spin valve[J]. Phys Rev B, 2003, 68 (10): 100407-100410.

    [5] Basch H, Cohen R, Ratner M A. Interface geometry and molecular junction conductance: geometric fluctuation and stochastic switching[J]. J Am Chem Soc, 2005, 5 (9): 1668-1675.

    [6] Ke S H, Baranger H U, Yang W T. Molecular conductance: chemical trends of anchoring groups[J].J Am Chem Soc, 2004, 126 (48): 15897-15904.

    [7] Ke S H, Baranger H U, Yang W T. Models of electrodes and contacts in molecular electronics[J].Chem Phys, 2005, 123 (11): 114701-114708.

    [8] Xue Y Q, Ratner M A. Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport[J]. Phys Rev B, 2003, 68(11): 115406-115423.

    [9] Dai Z X, Shi X Q, Zheng X H, et al. Ab initio investigations of the transport properties of a Ge7cluster[J]. Phys Rev B, 2007, 75 (15): 155402-155405.

    [10] Pemmaraju C, Rungger I, Sanvito S. Ab initio calculation of the bias-dependent transport properties of Mn12molecules[J]. Phys Rev B, 2009, 80 (10): 104422-104430.

    [11] Zhao J, Zeng C G, Cheng X, et al. Single C59N molecule as a molecular rectifier[J]. Phys Rev Lett, 2005, 95 (4): 045502-045505.

    [12] Zhao P, Wang P J, Zhang Z, et al. Negative differential resistance in a carbon nanotube-based molecular junction[J]. Phys Lett A, 2010, 374 (9): 1167-1171.

    [13] Xu X, Yang X, Zang L, et al. Large gate modulation in the current of a room temperature single molecule transistor[J]. J Am Chem Soc, 2005, 127 (8): 2386-2387.

    [14] Ni Y, Yao K, Tang C, et al. Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads[J]. RSC Advances, 2014, 4 (36): 18522-18528.

    [15] Saraiva-Souza A, Sumpter B G, Meunier V, et al. Electrical rectification in betaine derivatives[J].J Phys Chem C, 2008, 112 (31): 12008-12011.

    [16] Delgado M C R, Kim E G, Filho D A S, et al. Tuning the charge-transport parameters of perylene diimide single crystals via end and/or core functionalization: a desnity functional theory investigation[J]. J Am Chem Soc, 2010, 132 (10): 3375-3387.

    [17] Mao L, Gan J, Hwang J, et al. The role of water in the device performance of n-type PTCDI-C8organic field-effect transistors with solution-based gelatin dielectric[J]. Org Electron, 2014, 15 (4): 920-925.

    [18] Jeong Y J, Jang J, Nam S, et al. High-performance organic complementary inverters using monolayer graphene electrodes[J]. ACS Applied Materials & Interfaces, 2014, 6 (9): 6816-6824.

    [19] Cao H, Ma J, Luo Y. Field effects on the statistical behavior of the molecular conductance in a single molecular junction in aqueous solution[J]. Nano Research, 2010, 3 (5): 350-355.

    [20] Ni Y, Yao K, Tang C, et al. Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads[J]. RSC Advances, 2014, 4 (36):18522-18528.

    [21] Yuan S, Wang S, Mei Q, et al. Effects of electrodes and nitrogen-atom locations on electron transport in C59N molecular junctions: a first-principles study[J]. J Phys Chem C, 2014, 118 (1): 617-626.

    [22] Pan J B, Zhang Z H, Ding K H, et al. Current rectification induced by asymmetrical electrode materials in a molecular device[J]. Appl Phys Lett, 2011, 98 (9): 92102-92104.

    [23] Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport [J]. Phys Rev B, 2002, 65 (16): 165401-165417.

    [24] Taylor J, Guo H, Wang J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Phys Rev B, 2001, 63 (24): 245407-245419.

    [25] Datta S. Electronic transport in mesoscopic systems[M]. New York: Cambridge University Press, 1997: 52-53.

    [26] Shi X Q, Zheng X H, Dai Z X, et al. Changes of coupling between the electrodes and the molecule under external bias bring negative differential resistance[J]. Phys Chem B, 2005, 109 (8): 3334-3339.

    (責(zé)任編輯 鄭小虎)

    連接在塊體電極之間的PTCDI系列分子體系的輸運(yùn)性質(zhì)

    王 兵,汪偉偉,戴振翔*,鄭贛鴻,馬永青

    (安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽省信息材料與器件重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230601)

    通過采用密度泛函理論與非平衡格林函數(shù)的相結(jié)合的第一性原理方法,對(duì)四甲酰二亞胺系列分子PTCDI-Cn(n=0,6)的電荷輸運(yùn)性質(zhì)進(jìn)行了理論計(jì)算.在計(jì)算中,PTCDI-Cn(n=0,6)分子分別與Al,Li以及石墨烯3種塊體電極組成三明治結(jié)構(gòu)分子結(jié).從電流-電壓曲線可知PTCDI-C6分子結(jié)體系中出現(xiàn)了負(fù)微分電阻以及整流等輸運(yùn)性質(zhì).結(jié)合透射譜以及投影態(tài)密度,對(duì)其輸運(yùn)性質(zhì)進(jìn)行了相應(yīng)的分析.計(jì)算結(jié)果表明這類PTCDI系列分子在將來的分子尺度器件中具有較大的應(yīng)用價(jià)值.

    電荷輸運(yùn);第一性原理計(jì)算;PTCDI系列分子;整流

    10.3969/j.issn.1000-2162.2015.06.008

    Foundation item:Supported by the National Natural Science Foundation of China (11204001,11174004), Anhui Provincial Natural Science Foundation (2013KJS030026, 1208085QA07,1308085MA04), the Higher Educational Natural Science Foundation of Anhui Province (2013KJT010021,KJ2013A031),Anhui University Scientific Research Fund (KYXL2012017, KYXL2013009, 201410357005), “211 Project” of Anhui University (SZJYKC2013020, kyx12013009)

    O433.2 Document code:A Article ID:1000-2162(2015)06-0045-08

    Received date:2015-03-31

    Author’s brief:WANG Bing (1989-), male, born in Huainan of Anhui Province, master degree candidate of Anhui University;* DAI Zhen-xiang (corresponding author), associate professor of Anhui University, tutor for postgraduate, E-mail:physdai@ahu.edu.cn.

    猜你喜歡
    第一性塊體電荷
    連續(xù)分布電荷體系電荷元的自能問題*
    電荷知識(shí)知多少
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計(jì)算
    一種新型單層人工塊體Crablock 的工程應(yīng)用
    電荷守恒在化學(xué)解題中的應(yīng)用
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    缺陷和硫摻雜黑磷的第一性原理計(jì)算
    一種Zr 基塊體金屬玻璃的納米壓入蠕變行為研究
    上海金屬(2015年3期)2015-11-29 01:09:58
    塊體非晶合金及其應(yīng)用
    欧美高清成人免费视频www| 搡老妇女老女人老熟妇| 日本wwww免费看| 看非洲黑人一级黄片| 日韩欧美精品v在线| 欧美日韩精品成人综合77777| 边亲边吃奶的免费视频| 在线观看av片永久免费下载| 亚洲真实伦在线观看| 欧美xxⅹ黑人| 国产爱豆传媒在线观看| 亚洲av中文av极速乱| 亚洲av中文av极速乱| av在线观看视频网站免费| 国产一区二区三区av在线| 亚洲国产精品sss在线观看| 91av网一区二区| av免费观看日本| 精品久久久久久久久亚洲| 26uuu在线亚洲综合色| 免费av毛片视频| 777米奇影视久久| 91久久精品国产一区二区三区| 日韩av免费高清视频| 舔av片在线| 听说在线观看完整版免费高清| 91在线精品国自产拍蜜月| 久久韩国三级中文字幕| 日本一二三区视频观看| 亚洲av免费高清在线观看| 日韩亚洲欧美综合| 水蜜桃什么品种好| 最后的刺客免费高清国语| 久久午夜福利片| 欧美zozozo另类| 午夜福利在线观看吧| 国模一区二区三区四区视频| 亚洲综合精品二区| av女优亚洲男人天堂| 午夜激情欧美在线| 99久国产av精品| 伊人久久国产一区二区| 亚洲av成人精品一区久久| 国产色爽女视频免费观看| 久久精品熟女亚洲av麻豆精品 | kizo精华| 日本熟妇午夜| 国产老妇女一区| 身体一侧抽搐| 午夜日本视频在线| 亚洲成人中文字幕在线播放| 精品国产三级普通话版| 精品国产三级普通话版| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 日韩av在线大香蕉| 男人和女人高潮做爰伦理| 日韩亚洲欧美综合| 欧美丝袜亚洲另类| 少妇熟女欧美另类| 国产一级毛片在线| 国产免费又黄又爽又色| 亚洲精品一二三| 精品少妇黑人巨大在线播放| 九九在线视频观看精品| ponron亚洲| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品专区欧美| 国产精品日韩av在线免费观看| 青青草视频在线视频观看| 一二三四中文在线观看免费高清| 亚洲va在线va天堂va国产| 精品欧美国产一区二区三| 婷婷色av中文字幕| 国产乱人偷精品视频| 亚洲人成网站在线观看播放| 成年版毛片免费区| 国产高潮美女av| 亚洲成人中文字幕在线播放| av又黄又爽大尺度在线免费看| 听说在线观看完整版免费高清| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 韩国av在线不卡| 熟妇人妻不卡中文字幕| 免费观看精品视频网站| 中文资源天堂在线| 高清午夜精品一区二区三区| 久久热精品热| 亚洲欧洲国产日韩| 久久精品夜夜夜夜夜久久蜜豆| 青春草视频在线免费观看| 国产淫语在线视频| 免费看不卡的av| 欧美区成人在线视频| 天堂中文最新版在线下载 | 久久久久久久久久成人| 亚洲色图av天堂| 成人毛片a级毛片在线播放| 国产不卡一卡二| 日本猛色少妇xxxxx猛交久久| 两个人视频免费观看高清| 久久久色成人| 天堂俺去俺来也www色官网 | av福利片在线观看| 蜜臀久久99精品久久宅男| 亚洲一级一片aⅴ在线观看| 欧美性猛交╳xxx乱大交人| 性插视频无遮挡在线免费观看| 午夜福利视频1000在线观看| 婷婷色av中文字幕| 男女那种视频在线观看| 久久久欧美国产精品| 欧美区成人在线视频| 国产精品国产三级专区第一集| 国产伦精品一区二区三区视频9| 一级毛片久久久久久久久女| 美女cb高潮喷水在线观看| 嘟嘟电影网在线观看| 欧美97在线视频| 中国美白少妇内射xxxbb| 国产成人精品久久久久久| 男人舔女人下体高潮全视频| 日本猛色少妇xxxxx猛交久久| 久久韩国三级中文字幕| 欧美3d第一页| 免费人成在线观看视频色| 波野结衣二区三区在线| 日本黄大片高清| 日韩伦理黄色片| 国产精品日韩av在线免费观看| 两个人视频免费观看高清| 亚洲人与动物交配视频| 色视频www国产| 久久久a久久爽久久v久久| 少妇高潮的动态图| 国产永久视频网站| 成人国产麻豆网| 最近视频中文字幕2019在线8| 国内精品宾馆在线| 人妻少妇偷人精品九色| 超碰97精品在线观看| 亚洲在线自拍视频| 日韩国内少妇激情av| 日韩av不卡免费在线播放| 国产 亚洲一区二区三区 | 综合色av麻豆| 国精品久久久久久国模美| 秋霞在线观看毛片| 乱码一卡2卡4卡精品| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区免费观看| 日韩av不卡免费在线播放| 最近最新中文字幕免费大全7| 亚洲精品久久午夜乱码| 精品人妻熟女av久视频| 国产乱人偷精品视频| 九草在线视频观看| 婷婷色麻豆天堂久久| 亚洲精品乱久久久久久| 一个人观看的视频www高清免费观看| 人妻少妇偷人精品九色| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 国产精品福利在线免费观看| 综合色av麻豆| 婷婷色综合www| 99久国产av精品| 赤兔流量卡办理| 欧美xxⅹ黑人| 日韩制服骚丝袜av| 成人午夜高清在线视频| 青春草国产在线视频| 夜夜爽夜夜爽视频| 美女脱内裤让男人舔精品视频| 精品久久久久久久久亚洲| 国产视频首页在线观看| av国产久精品久网站免费入址| 女的被弄到高潮叫床怎么办| 日日摸夜夜添夜夜添av毛片| 亚洲国产高清在线一区二区三| 在线观看一区二区三区| 偷拍熟女少妇极品色| 麻豆成人午夜福利视频| 午夜久久久久精精品| 国产精品1区2区在线观看.| 街头女战士在线观看网站| 一级毛片电影观看| 久久久久九九精品影院| 欧美 日韩 精品 国产| 免费看不卡的av| 午夜福利在线在线| 成人特级av手机在线观看| 一本久久精品| 中文字幕制服av| 日本熟妇午夜| 久久久午夜欧美精品| 国产精品三级大全| 97热精品久久久久久| 韩国高清视频一区二区三区| 成年女人在线观看亚洲视频 | 免费大片黄手机在线观看| 2022亚洲国产成人精品| 丰满人妻一区二区三区视频av| 欧美丝袜亚洲另类| 亚洲不卡免费看| 免费看不卡的av| 永久免费av网站大全| 亚洲av免费在线观看| 亚洲婷婷狠狠爱综合网| 女的被弄到高潮叫床怎么办| 国产成人一区二区在线| 国产乱人视频| 亚洲熟妇中文字幕五十中出| 欧美日韩国产mv在线观看视频 | 99久久中文字幕三级久久日本| 观看美女的网站| 国产美女午夜福利| 精品一区二区三卡| 纵有疾风起免费观看全集完整版 | 亚洲va在线va天堂va国产| 精品亚洲乱码少妇综合久久| 色5月婷婷丁香| 日韩av不卡免费在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久久久九九精品影院| 免费黄网站久久成人精品| 人妻一区二区av| 久久久午夜欧美精品| 激情五月婷婷亚洲| 国产精品久久久久久精品电影小说 | 亚洲在线观看片| 在线天堂最新版资源| 日韩精品有码人妻一区| 听说在线观看完整版免费高清| 国产亚洲av嫩草精品影院| 九九爱精品视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲av国产av综合av卡| 床上黄色一级片| 午夜精品在线福利| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩东京热| 久久久久久九九精品二区国产| 免费看a级黄色片| 日韩成人av中文字幕在线观看| 日韩亚洲欧美综合| 午夜久久久久精精品| 国产一级毛片七仙女欲春2| 五月伊人婷婷丁香| 亚洲婷婷狠狠爱综合网| 国产在视频线在精品| 成人毛片60女人毛片免费| 日日撸夜夜添| 精品久久久久久久末码| 极品少妇高潮喷水抽搐| 亚洲av日韩在线播放| 亚洲成人精品中文字幕电影| 听说在线观看完整版免费高清| 日韩欧美精品免费久久| 18禁动态无遮挡网站| 日本三级黄在线观看| 波野结衣二区三区在线| 看非洲黑人一级黄片| 国产黄色小视频在线观看| 亚洲精品456在线播放app| 国产伦在线观看视频一区| av国产免费在线观看| 青青草视频在线视频观看| 久久草成人影院| 九草在线视频观看| 亚洲真实伦在线观看| 久久97久久精品| 亚洲久久久久久中文字幕| 色综合色国产| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| www.色视频.com| 美女cb高潮喷水在线观看| 成人美女网站在线观看视频| 国产精品一区二区性色av| 91久久精品国产一区二区三区| 免费看av在线观看网站| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 97热精品久久久久久| 一级毛片aaaaaa免费看小| 国产永久视频网站| 少妇人妻一区二区三区视频| 美女内射精品一级片tv| 蜜桃久久精品国产亚洲av| av在线蜜桃| 男女边吃奶边做爰视频| 三级国产精品片| 国产成人freesex在线| 国内揄拍国产精品人妻在线| 亚洲国产最新在线播放| 老师上课跳d突然被开到最大视频| 成人亚洲精品一区在线观看 | 亚洲精品乱码久久久v下载方式| 永久网站在线| 激情五月婷婷亚洲| 三级毛片av免费| 日韩,欧美,国产一区二区三区| 亚洲精品日韩av片在线观看| 精品久久久精品久久久| 成人二区视频| 精品久久久久久久人妻蜜臀av| 亚洲av不卡在线观看| av在线播放精品| 国产成年人精品一区二区| 久久久久精品久久久久真实原创| 国产成人精品久久久久久| 少妇的逼水好多| 国产伦理片在线播放av一区| 精品国产一区二区三区久久久樱花 | 嫩草影院精品99| 秋霞在线观看毛片| www.av在线官网国产| 18禁裸乳无遮挡免费网站照片| 久久精品国产鲁丝片午夜精品| 91久久精品电影网| 免费看美女性在线毛片视频| 国产一级毛片在线| 看十八女毛片水多多多| 亚洲内射少妇av| 国产一级毛片在线| 亚洲第一区二区三区不卡| 午夜激情久久久久久久| 女人被狂操c到高潮| 国产有黄有色有爽视频| 噜噜噜噜噜久久久久久91| 精品人妻一区二区三区麻豆| 两个人的视频大全免费| 亚洲欧美日韩卡通动漫| 成人美女网站在线观看视频| freevideosex欧美| 嫩草影院入口| 午夜精品一区二区三区免费看| av免费观看日本| 久久国内精品自在自线图片| 中国美白少妇内射xxxbb| 久久精品夜夜夜夜夜久久蜜豆| 18禁裸乳无遮挡免费网站照片| 国产精品不卡视频一区二区| 热99在线观看视频| 久久久久精品性色| 亚洲在久久综合| 99久久中文字幕三级久久日本| 少妇熟女欧美另类| 九草在线视频观看| 午夜激情久久久久久久| 亚洲一区高清亚洲精品| 精品国产一区二区三区久久久樱花 | av卡一久久| 国产在线男女| 男女下面进入的视频免费午夜| 在线免费十八禁| 十八禁网站网址无遮挡 | 成人无遮挡网站| 青春草视频在线免费观看| 美女大奶头视频| 好男人在线观看高清免费视频| 十八禁网站网址无遮挡 | 欧美日韩国产mv在线观看视频 | 欧美日韩国产mv在线观看视频 | 最近手机中文字幕大全| 亚洲精华国产精华液的使用体验| 日韩不卡一区二区三区视频在线| 国产片特级美女逼逼视频| 亚洲最大成人中文| 亚洲自偷自拍三级| 国产精品伦人一区二区| 插逼视频在线观看| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 国产亚洲5aaaaa淫片| 嫩草影院入口| 国产综合懂色| freevideosex欧美| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 亚洲欧美成人综合另类久久久| 午夜爱爱视频在线播放| 一个人看的www免费观看视频| 国产成人福利小说| 亚洲精品国产av蜜桃| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 日韩电影二区| 日本午夜av视频| 99久久精品国产国产毛片| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久久久久久性| 国产老妇女一区| 在线观看美女被高潮喷水网站| 丝袜喷水一区| eeuss影院久久| 国产黄色视频一区二区在线观看| 国产成人精品福利久久| 淫秽高清视频在线观看| videos熟女内射| 国产不卡一卡二| 国产美女午夜福利| 国产高清不卡午夜福利| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 91aial.com中文字幕在线观看| 国产在视频线精品| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 国产亚洲5aaaaa淫片| 亚洲精品国产av成人精品| 欧美不卡视频在线免费观看| 美女国产视频在线观看| 99热这里只有是精品在线观看| 三级男女做爰猛烈吃奶摸视频| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 黄片无遮挡物在线观看| 久久久久精品性色| 三级经典国产精品| 97在线视频观看| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 国产美女午夜福利| 国产老妇女一区| 91在线精品国自产拍蜜月| 成人欧美大片| 日韩不卡一区二区三区视频在线| 麻豆精品久久久久久蜜桃| 日本免费在线观看一区| 两个人视频免费观看高清| 国产在线男女| 亚洲av成人av| 99热这里只有精品一区| 国产极品天堂在线| 成年人午夜在线观看视频 | 国产午夜精品久久久久久一区二区三区| 好男人在线观看高清免费视频| h日本视频在线播放| 视频中文字幕在线观看| 成年女人在线观看亚洲视频 | 日韩av免费高清视频| 天堂影院成人在线观看| 亚洲熟女精品中文字幕| 在线免费观看不下载黄p国产| 色网站视频免费| 日日摸夜夜添夜夜爱| 日韩成人伦理影院| 国产国拍精品亚洲av在线观看| 精品久久久久久久久久久久久| av免费观看日本| 99热这里只有是精品在线观看| 精品一区二区三区人妻视频| 成人无遮挡网站| 大香蕉久久网| av一本久久久久| 国产探花在线观看一区二区| 久久久久久伊人网av| 国产高清国产精品国产三级 | 男人舔女人下体高潮全视频| 99热这里只有是精品在线观看| 我的老师免费观看完整版| 嫩草影院入口| 大香蕉久久网| 欧美性猛交╳xxx乱大交人| 夜夜爽夜夜爽视频| 免费不卡的大黄色大毛片视频在线观看 | 国产欧美日韩精品一区二区| 爱豆传媒免费全集在线观看| 久久久久久久国产电影| 97人妻精品一区二区三区麻豆| 最近的中文字幕免费完整| 91久久精品电影网| 亚洲va在线va天堂va国产| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 久久久欧美国产精品| 97在线视频观看| 丝袜喷水一区| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线播| 亚洲成人精品中文字幕电影| 久久精品国产亚洲网站| 日韩精品青青久久久久久| 久99久视频精品免费| 肉色欧美久久久久久久蜜桃 | 久久人人爽人人爽人人片va| 国产高清三级在线| av免费在线看不卡| 高清在线视频一区二区三区| 精品国产三级普通话版| 欧美成人精品欧美一级黄| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 亚洲精品aⅴ在线观看| 午夜精品在线福利| 一级毛片黄色毛片免费观看视频| 视频中文字幕在线观看| 亚洲在久久综合| 久久综合国产亚洲精品| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 国产激情偷乱视频一区二区| 高清av免费在线| 中文字幕久久专区| 国产 亚洲一区二区三区 | 亚洲av电影不卡..在线观看| 黄片wwwwww| 亚洲国产成人一精品久久久| 97人妻精品一区二区三区麻豆| 韩国高清视频一区二区三区| 亚洲自拍偷在线| a级毛色黄片| 国产黄频视频在线观看| 亚洲国产色片| 色综合色国产| 91在线精品国自产拍蜜月| 国产成人午夜福利电影在线观看| 亚洲国产欧美人成| 国产又色又爽无遮挡免| av一本久久久久| 日日摸夜夜添夜夜添av毛片| 色综合站精品国产| 91精品一卡2卡3卡4卡| 色综合站精品国产| 亚洲人成网站在线观看播放| 亚洲精品国产成人久久av| 久久久久久久久中文| 最近视频中文字幕2019在线8| 国产在线男女| 美女xxoo啪啪120秒动态图| 免费看不卡的av| 在线观看美女被高潮喷水网站| 欧美+日韩+精品| 久久97久久精品| 久久精品国产亚洲av涩爱| 欧美性感艳星| 久久精品国产亚洲av涩爱| 综合色丁香网| 看免费成人av毛片| 国产黄色小视频在线观看| 少妇高潮的动态图| 免费观看无遮挡的男女| 亚洲经典国产精华液单| 国产精品久久视频播放| 一级毛片黄色毛片免费观看视频| 美女cb高潮喷水在线观看| 精品熟女少妇av免费看| 一区二区三区免费毛片| h日本视频在线播放| 最近手机中文字幕大全| 永久网站在线| 好男人在线观看高清免费视频| av在线蜜桃| 一级黄片播放器| 2022亚洲国产成人精品| 亚洲一区高清亚洲精品| 91av网一区二区| 中文字幕亚洲精品专区| 男女下面进入的视频免费午夜| 国产单亲对白刺激| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| 久久99热这里只有精品18| 日韩欧美国产在线观看| 丰满人妻一区二区三区视频av| 在线观看人妻少妇| 国产男人的电影天堂91| 成人综合一区亚洲| 色哟哟·www| 久久久久免费精品人妻一区二区| 免费大片18禁| www.av在线官网国产| 一二三四中文在线观看免费高清| 免费av不卡在线播放| 一级毛片我不卡| 国产午夜福利久久久久久| 午夜精品在线福利| 日韩人妻高清精品专区| 99热这里只有是精品在线观看| 精品久久久久久久久亚洲| av线在线观看网站| 爱豆传媒免费全集在线观看| 国产欧美日韩精品一区二区| 久久精品综合一区二区三区| 国产亚洲精品av在线| 国产av国产精品国产| 在线a可以看的网站| 99久国产av精品国产电影| 91久久精品电影网| 青春草国产在线视频| 精华霜和精华液先用哪个| 亚洲精品国产av蜜桃| 亚洲综合色惰| 亚洲丝袜综合中文字幕| 成人特级av手机在线观看| 日韩国内少妇激情av| 欧美成人a在线观看| 精品国产一区二区三区久久久樱花 | 人妻少妇偷人精品九色| 国产极品天堂在线| 成人亚洲精品av一区二区| 热99在线观看视频| 国产 一区 欧美 日韩| 亚洲国产欧美人成| 亚洲性久久影院| 69av精品久久久久久| 亚洲电影在线观看av| 在线 av 中文字幕|