• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrothermal synthesis and optical properties of CeO2 microstructures

    2015-05-04 07:29:08MENGFanmingFANZhenghuaSHIGuoliLIUDaorui
    關(guān)鍵詞:光致發(fā)光光度計水熱法

    MENG Fan-ming, FAN Zheng-hua, SHI Guo-li, LIU Dao-rui

    (School of Physics and Materials Science, Anhui University, Hefei 230601, China)

    ?

    Hydrothermal synthesis and optical properties of CeO2microstructures

    MENG Fan-ming, FAN Zheng-hua, SHI Guo-li, LIU Dao-rui

    (School of Physics and Materials Science, Anhui University, Hefei 230601, China)

    CeO2microstructures had been successfully synthesized by a facile hydrothermal process with Ce(NO3)3·6H2O as cerium source, urea as precipitant and polyvinyl pyrrolidone (PVP, K-30) as surfactant. The obtained products were characterized by X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), Raman spectrum, UV-visible absorption spectrum and photoluminescence (PL) spectrum. It was found that the obtained CeO2had fluorite cubic structure, and Raman spectroscopy and PL spectrum reflected the existence of the oxygen vacancies and Ce3+ions in the CeO2microstructures. Furthermore, the CeO2sample showed strong UV absorption and room temperature photoluminescence (PL), the absorption edge and Raman peak position was shifted to lower frequency which was likely associated with the surface Ce3+ions and oxygen vacancies in the sample.

    optical property; CeO2microstructures; hydrothermal method; synthesis; X-ray technique

    0 Introduction

    In recent years, many researches have been directed toward the morphology controlling synthesis of rare-earth compounds because of their unique electronic, optical, chemical properties[1-3]. Among the family of rare-earth compounds, ceria (CeO2), as one of the most important rare-earth oxide materials, has been widely applied in catalysis[4], fuel cell[5], gas sensor[6]and as oxygen storage capacity (OSC) medium[7-8]. For example, it can be used for reducing the emission of the toxic pollutants from auto-exhaust, due to its high oxygen storage capacity and low potential between Ce3+and Ce4+[9]. However, most of excellent properties depend strongly on both morphology and size. CeO2have different morphologies such as nanoparticles, nanotubes, nanorodes, nanosheets and hollow nanocrystals that have been prepared by various methods[10-16]. Furthermore, many methods have been used to prepare complex three-dimensional (3D) structures, including the thermal oxidation process[17], the thermal reduction process[18], self-assembly of building blocks though hydrophobic interaction[19]and template-assisted synthesis[20]. To obtain high quality powder of cerium oxide, one of simple and cheap approach that has been widely employed to prepare rare-earth oxides is the thermal decomposition of cerium carbonates or carbonate hydroxides. The morphology and crystal size of cerium oxide can be easily controlled by using carbonates or carbonate hydroxides as decomposition precursors. Meanwhile, as it is very difficult for materials with isotropic structures to grow into anisotropic nanocrystal without any template, the use of surfactant as the capping agent or template is popular in solution synthesis of CeO2nanostructures[10, 15, 18, 20-21]. The surfactant can change the micro-environment of the reaction and adjust the growth habit of the particles, leading to the formation of final products with desirable morphology.

    Herein, we have developed a two-step procedure to synthesize CeO2microstructures. The cerium carbonate hydroxide (CeOHCO3) precursor was prepared via a simple surfactant-assist hydrothermal method with Ce(NO3)3·6H2O as cerium source, urea as precipitant and polyvinyl pyrrolidone (PVP, K-30) as surfactant. The CeO2was obtained by thermal decomposition of cerium carbonate hydroxides. The optical properties of CeO2microstructures were discussed by various techniques.

    1 Experimental procedure

    1.1 Materials preparation

    All chemical reagents were of analytical grade purity and used without any further purification. The as-synthesized CeOHCO3sample was synthesized by changing the dosages of Ce(NO3)3·6H2O and HNO3. The growth of sample was performed by dissolving 1.736 9 g (4 mmol) Ce(NO3)3·6H2O in one mixed solution of 15 mL distilled water and 0.45 g PVP with magnetic stirring for 30 min, and dissolving 20 mmol CO(NH2)2in another mixed solution of 15 mL distilled water and 0.45 g PVP with magnetic stirring for 30 min, followed by the mixture of the two aqueous solutions under vigorous stirring for another 1 h, forming a homogeneous solution. Then 1 mL HNO3was added dropwise to the obtained solution. The mixed solution was transferred to a 50 mL Teflon-lined stainless steel autoclave and heated at 200 ℃ for 24 h. After the autoclave was naturally cooled to room temperature, the precipitate was collected by centrifugation, washed with distilled water and ethanol, and then dried at 70 ℃ for 12 h. CeO2microstructures were obtained by calcining as-synthesized CeOHCO3simple at 500 ℃ for 5 h, accompanied by a color change from white to slight yellow.

    1.2 Characterizations

    The crystal phase of sample was analyzed by X-ray diffractometer (XRD, XD-3) with CuKαradiation. The thermal behavior of as-synthesized products was carried out by simultaneous thermo-gravimetric analysis apparatus (TG-DTA, 449F3, Germany). Fourier transform infrared (FT-IR) spectra were recorded by Fourier transform infrared microscopy on-line system using KBr pellet (VERTEX80+HYPERION2000, Germany). The morphology was examined by scanning electron microscope (SEM, S-4800, Japan) and transmission electron microscope (TEM, JEM-2100, Japan). The Raman spectrum was recorded by an in Via-Reflex Raman spectrometer system using a laser with 532 nm excitation at room temperature. UV-Vis absorption spectroscopy was measured by an ultraviolet-visible-near-Infrared spectrophotometer (U-4100, Japan). Photoluminescence (PL) spectrum was obtained by a fluorescence spectrophotometer (HORIBA FluoroMax-4P, HORIBA Jobin Yvon) using excitation light of 340 nm.

    2 Results and discussion

    2.1 Structures and morphology analysis

    Fig.1 shows the XRD patterns of the sample obtained under hydrothermal reaction, along with the sample calcined at 500 ℃ for 5 h. As shown in Fig.1a, all the peaks can be indexed to hexagonal structure CeOHCO3(JCPDS Card #41-0013). The sharp diffraction peaks in the XRD pattern demonstrated that the product have a good crystallinity. After a heat treatment, the hexagonal CeOHCO3structure was completely converted into fluorite cubic structure CeO2(JCPDS Card #81-0792). The diffraction peaks in Fig.1b of calcined sample indicated that the CeO2were refined after the heat treatment.

    Thermal behavior of CeOHCO3microstructure was investigated using TG/DTA. TG curve for calcining in air (Fig.2a) shows 2.4% weight loss up to 400 ℃ which conforms that very little water remains in the sample after drying and a major weight loss happens rapidly in the range of 400—600 ℃, nearly keeps constant as the temperature exceed 700 ℃, which is ascribed to the loss of CO2and H2O from carbonaceous, surfactant-based material trapped within the sample. The total weight loss is about 22.5%, which is consistent with the theoretical value 23.1% calculated from the equation: 4CeOHCO3+O2→ 4CeO2+4CO2+2H2O. DTA curve (Fig.2b) shows a sharp endothermic band centered at about 460 ℃. It is well corresponding to that of the rapid weight loss in the TG curve. It suggests that an endothermic reaction involving the thermal decomposition of CeOHCO3to CeO2occurs by post-heat-process.

    Fig.3 shows the FT-IR spectra of the as-synthesized CeOHCO3and CeO2obtained by calcining sample. Compared with the spectrum of the annealing sample, the spectral feature of CeOHCO3precursor is more prolific. As shown in Fig.3 as-synthesized sample, the bands in the range of 700—1 100, 1 200—1 700 and 3 000—3 700 cm-1, corresponding to carbon-involved species, carbonate species and O—H stretching of physical absorbed H2O or surface —OH groups, respectively. Vantomme et al.[22]reported that the peak 1 410 and 1 490 cm-1are assigned to the bending vibration of C—H bands and O—C—O stretching of the surfactant. The peaks at 1 070, 840, 723 cm-1are attributed toνC—O,δCO32-andνasCO2, respectively[18]. After heat-treatment, such bands originating from the organic groups or carbonate species become weaker or disappear, while the bands due to the stretching of Ce—O were seen clearly. This conclusion is in agreement with the TG/DTA result.

    Fig.4 shows the scanning electron microscope (SEM) images of the as-synthesized CeOHCO3sample and the CeO2obtained by calcining sample. As shown in Fig 4a, CeOHCO3microstructures obtained displayed thin strip shape of several μm in length, about 1 μm in width, several dozen nm in thickness accompany with spherical of 1—3 μm in diameter. We can see further that the microstructures were formed by many short strip sheets which put up well-organized. Fig.4b shows the scanning electron microscope (SEM) images of CeO2microstructures obtained by calcining at 500 ℃. Obviously, it can be seen that the post heat-treatment process does not ruin the morphology of the products and the CeO2microstructures almost keep the same morphology of its counterpart. SEM images distinctly exhibit the three-dimensional structures and the texture of the CeO2microstructures[21].

    2.2 Optical properties

    Raman spectroscopy is a very important characterization tool to investigate the changes in the local structures. Fig.5 illustrates the Raman spectra of the CeO2sample. One strong Raman peak centered at about 462.5 cm-1dominates the spectra from the sample, which related to the F2gmode of CeO2cube structure[23-24]. This mode corresponds to symmetric breathing mode of the oxygen ions around each Ce4+cation[25].The F2gmode is very sensitive to any disorder in oxygen sub lattice due to thermal, doping and grain-size induced effect[26]. From description of the position of the Raman peak of the CeO2sample, it is found that the position of the CeO2sample is shifted to lower frequencies compared with bulk CeO2. The F2gpeak of bulk CeO2is at 464 cm-1[27]. Compared with the bulk one, the F2gRaman peak position of CeO2microstructures are 1.5 cm-1shifted to lower frequency. Meng et al.[28]have obtained a red-shifted in pure ceria. They attributed the red-shifting to the size distribution, defects, and variations in phonon relaxation. The peak near 260 cm-1can be contributed to disorder in the oxygen sub-lattice[29]. The shoulder peaks ranging from 560 to 600 cm-1can be contributed to the presence of Ce3+ions and oxygen vacancies[30]. It is likely that Ce3+ions and oxygen vacancies in the sample are responsible for the changes in the Raman scattering.

    Fig.6 shows the UV-Vis absorption spectra of CeO2nanostructures. The sample exhibits a strong absorption below 400 nm with two peaks in the UV region that originated from the charge-transfer transitions from O 2p to Ce 4f[31]. The direct band gap energy (Eg) for the ceria nanostructure were determined by fitting the absorption data to the direct transition equation[32]: (αhν)2= (hν-Eg), whereαis the absorption coefficient,hνthe photon energy,Egthe direct band gap. The plot (αhν)2versushνis given in inset Fig.6, the extrapolation of linear portion of the curve towards absorption equal to zero givesEgfor direct transition. The estimated direct band gap of the cerium oxide was found to be 3.02 eV, compared with bulk ceria energy band of 3.19 eV, which suggests that the energy band of ceria occurs red-shifting.

    It was found that at the outermost nanocrystals surface, Ce4+ions coexist with Ce3+ones when the cluster size decreases. At the same time, there is an electrostatic potential effect due to a cerium valence change, which results in the red-shift of the absorption edge. Thus, the charge transition of Ce ion (Ce3+-Ce4+) may play an important role in the decrease of band gap for cerium oxide sample. Chen et al.[33]have observed a red-shifted phenomenon for the CeO2nanoneedles, which is attributed to the shape effect. Chen et al.[34]found that the red-shift of optical band gap of CeO2film is orrelated with the increase of Ce3+ions content, and defects are directly proportional to the concentration of Ce3+ions. Furthermore the Raman and PL results indicate the microstructures possess high oxygen vacancies. The localized states of band gap result from the defects will advance with the increase of Ce3+ions, leading to red-shift. More investigations need to be carried out in order to clarify the origin of this phenomenon.

    Fig.7 shows the room temperature photoluminescence (PL) spectrum of CeO2microstructures at room temperature at an excitation wavelength of 340 nm. It is obvious that at 400—500 nm there is a wide emission band. Generally, the broad PL emission peaks are observed because there are many defects energy level between Ce 4f and O 2p level. It is known that CeO2is a wide band gap semiconductor, whose Ce 4f energy levels localize at forbidden band and lie about 3 eV above the valence band (O 2p) with width of 1.2 eV[35]. Its defect levels localized between the Ce 4f band and O 2p band can lead to wider emission bands. For example, Maensiri et al.[36]observed a wide PL emission band from 325 to 550 nm in CeO2nanoparticles, and the considered the surface defects are responsible for the broad emission. Sun et al.[37]also observed two emission peaks centered at 415 and 435 nm from the flowerlike CeO2nanoparticles, which were attributed to the hopping from different defect levels to O 2p band. Thus, the blue emission band for our sample is ascribed to hipping from different defect levels to O 2p band. This conclusion is in agreement with the Raman scattering result.

    3 Conclusions

    In summary, CeO2microstructures were synthesized in aqueous solution by a facile hydrothermal method using Ce(NO3)3·6H2O as cerium source and CO(NH2)2as precipitant. CeOHCO3microstructures were considered to be formed by the self-assembly of the small size nanocrystal. The CeO2microstructures showed a broad strong emission in the near UV region, which may mainly originate from defect state existing extensively between the Ce 4f band and O 2p band. The controllable morphologies, microstructures, and optical properties of CeO2should make the nanomaterials excellent candidates for applications in oxygen transportation, catalysts, fuel cells, ultraviolet blocks and luminescent materials.

    [1] Yin S, Shinozaki M, Sato T. Synthesis and characterization of wire-like and near-spherical Eu2O3-doped Y2O3phosphors by solvothermal reaction[J]. J Lumin, 2007, 126: 427-433.

    [2] Yin S, Akita S, Shinozaki M, et al. Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction[J]. J Mater Sci, 2008, 43: 2234-2239.

    [3] Lu F, Meng F M, Wang L N, et al. Morphology-selective synthesis method of nanopolyhedra and square-like CeO2nanoparticles[J]. Mater Lett, 2012, 73: 154-156.

    [4] Zhang B, Cheng J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder[J]. J Mater Sci Technol, 2013, 29: 594-600.

    [5] Liang S, Hu J, Cao A, et al. 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal[J]. Chem Mater, 2007, 19: 1648-1655.

    [6] Zhou K, Yang Z, Yang S. Highly reducible CeO2nanotubes[J]. Chem Mater, 2007, 19: 1215-1217.

    [7] Imagawa H, Suda A, Yamamura K, et al. Monodisperse CeO2nanoparticles and their oxygen storage and release properties[J]. J Phys Chem C, 2011, 115: 1740-1745.

    [8] Sukonket T, Khan A, Saha B, et al. Influence of the catalyst preparation method, surfactant amount, and steam on CO2reforming of CH4over 5Ni/Ce0.6Zr0.4O2catalysts[J]. Energ Fuel, 2011, 25: 864-877.

    [9] Masson S, Holliman P, Kalaji M, et al. The production of nanoparticulate ceria using reverse micelle sol gel techniques[J]. J Mater Chem, 2009, 19: 3517-3522.

    [10] Li C R, Cui M Y, Sun Q T, et al. Nanostructures and optical properties of hydrothermal synthesized CeOHCO3and calcined CeO2with PVP assistance[J]. J Alloy Compd, 2010, 504: 498-502.

    [11] Gu H, Soucek M D. Preparation and characterization of monodisperse cerium oxide nanoparticles in hydrocarbon solvents[J]. Chem Mater, 2007, 19: 1103-1110.

    [12] Chen W, Joly A G, Kowalchuk C M, et al. Luminescence, and dynamics of Eu2O3nanoparticles in MCM-41[J]. J Phys Chem B, 2002, 106: 7034-7041.

    [13] Xu G, Jiang W, Qian M, et al. Hydrothermal synthesis of lead zirconate titanate nearly free-standing nanoparticles in the size regime of about 4 nm[J]. Cryst Growth Des, 2009, 9: 13-16.

    [14] Qi R J, Zhu Y J, Cheng G F, et al. Sonochemical synthesis of single-crystalline CeOHCO3rods and their thermal conversion to CeO2rods[J]. Nanotechnology, 2005, 16: 2502-2506.

    [15] Meng F M, Wang L N, Cui J B, et al. Experimental and theoretical investigations of the origin of magnetism in undoped CeO2[J]. Sci Adv Mater, 2015, 7: 663-669.

    [16] Chen G, Zhu F, Sun X, et al. Benign synthesis of ceria hollow nanocrystals by a template-free method[J]. CrystEngComm, 2011, 13: 2904-2908.

    [17] Chen A, Peng X, Koczkur K, et al. Super-hydrophobic tin oxide nanoflowers[J]. Chem Commun, 2004, 17: 1964-1965.

    [18] Sun C W, Sun J, Xiao G L, et al. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres[J]. J Phys Chem B, 2006, 110: 13445-13452.

    [19] Kempaiah D M, Yin S, Sato T. A facile and quick solvothermal synthesis of 3D microflower CeO2and Gd:CeO2under subcritical and supercritical conditions for catalytic applications[J]. CrystEngComm, 2011, 13: 741-746.

    [20] Yu R, Yan L, Zheng P, et al. Controlled synthesis of CeO2flower-like and well-agligned nanorod hierarchical architectures by a phosphate-assisted hydrothermal route[J]. J Phys Chem C, 2008, 112: 19896-19900.

    [21] Zhang D, Li F, Gu J, et al. Controlled synthesis of Ce(OH)CO3flowers by a hydrothermal method and their thermal conversion to CeO2flowers[J]. Particuology, 2012, 10: 771-776.

    [22] Vantomme A, Yuan Z, Du G, et al. Surfactant-assisted large-scale preparation of crystalline CeO2nanorods[J]. Langmuir, 2005, 21: 1132-1135.

    [23] Weber W, Hass K, McBride J. Raman study of CeO2: second-order scattering, lattice dynamics, and particle-size effects[J]. Phys Rev B, 1993, 48: 178-185.

    [24] Spanier J, Robinson R, Zhang F, et al. Size-dependent properties of CeO2-ynanoparticles as studied by Raman scattering[J]. Phys Rev B, 2001, 64: 245407-245414.

    [25] Tiseanu C, Parvulescu V I, Boutonnet M, et al. Surface versus volume effects in luminescent ceria nanocrystals synthesized by an oil-in-water microemulsion method[J]. Phys Chem, 2011, 13: 17135-17145.

    [26] Ferreira N S, Abra?ado L G, Macêdo M A. The effects of Cr-doping on the room temperature ferromagnetism of chemically synthesized CeO2-δnanoparticles[J]. Physica B, 2012, 407: 3218-3221.

    [28] Meng F M, Wang L N, Cui J B. Controllable synthesis and optical properties of nano-CeO2via a facile hydrothermal route[J]. J Alloy Compd, 2013, 556: 102-108.

    [29] Meng F M, Wang L N. Hydrothermal synthesis of monocrystalline CeO2nanopoles and their room temperature ferromagnetism[J]. Mater Lett, 2013, 100: 86-88.

    [30] McBride J R, Hass K C, Poindexter B D, et al. Raman and x-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd, Eu, Gd, and Tb[J]. J App Phy, 1994, 76: 2435-2441.

    [31] Pal S G, Kaur P, Kaur S, et al. Conversion of Ce3+to Ce4+ions after gamma ray irradiation on CeO2-PbO-B2O3glasses [J]. Physica B, 2013, 408: 115-118.

    [32] Tsunekawa S, Fukuda T, Kasuya A. Blue shift in ultraviolet absorption spectra of monodisperse CeO2-xnanoparticles[J]. J App Phy, 2000, 87: 1318.

    [33] Chen H I, Chang H Y. Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation[J]. Solid State Commun, 2005, 133: 593-598.

    [34] Chen M Y, Zu X T, Xiang X, et al. Effects of ion irradiation and annealing on optical and structural properties of CeO2films on sapphire[J]. Physica B, 2007, 389: 263-268.

    [35] Hogartw C A, AL-Dhhan Z T. Optical absorption in thin films of cerium dioxide and cerium dioxide containing silicon monoxide[J]. Physica Status Solidi A, 1986, 137: K157-K160.

    [36] Phoka S, Laokul P, Swatsitang E, et al. Synthesis, structural and optical properties of CeO2nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route[J]. Mater Chem Phys, 2009, 115: 423-428.

    [37] Sun C, Li H, Chen L. Study of flowerlike CeO2microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solid, 2007, 68: 1785-1790.

    (責(zé)任編輯 鄭小虎)

    CeO2微結(jié)構(gòu)的水熱合成和光學(xué)性質(zhì)

    孟凡明, 范拯華, 史國利, 劉道瑞

    (安徽大學(xué) 物理與材料科學(xué)學(xué)院,安徽 合肥 230601)

    以Ce(NO3)3·6H2O作為鈰源、尿素作為沉淀劑、K-30型PVP作為表面活性劑,采用水熱法成功制備二氧化鈰微結(jié)構(gòu).采用X射線衍射儀(XRD)、熱重/差熱分析(TG/DTA)、傅里葉變換紅外譜(FT-IR)、掃描電子顯微鏡(SEM)、拉曼光譜(Raman)、紫外可見近紅外分光光度計(UV-Vis)和熒光分光光度計(PL)對此CeO2樣品進行表征,結(jié)果表明:制備的CeO2樣品具有螢石立方結(jié)構(gòu),樣品中存在氧空位和Ce3+離子,樣品具有較強的紫外吸收和室溫光致發(fā)光性能.吸收邊和拉曼峰位的移動與樣品中氧空位和Ce3+離子有關(guān).

    光學(xué)性質(zhì); CeO2微結(jié)構(gòu);水熱法;合成;X射線技術(shù)

    10.3969/j.issn.1000-2162.2015.06.007

    Foundation item:Supported by Anhui Provincial Natural Science Foundation (1508085SME219) , College Students Innovation Training Program of Anhui University of China (201510357349)

    TQ174 Document code:A Article ID:1000-2162(2015)06-0037-08

    Received date:2015-06-29

    Author’s brief:MENG Fan-ming (1966-), male, born in Hefei of Anhui province, professor of Anhui University.

    猜你喜歡
    光致發(fā)光光度計水熱法
    原子吸收分光光度計實驗室的建設(shè)與管理
    云南化工(2021年6期)2021-12-21 07:31:26
    水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
    光致發(fā)光與變色纖維發(fā)展趨勢
    原子吸收分光光度計火焰發(fā)射法測定鈉的含量
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    水熱法制備BiVO4及其光催化性能研究
    白果形鎢酸鉛的可控合成及光致發(fā)光特性
    水熱法在無機非金屬粉體材料制備中的應(yīng)用
    河南科技(2014年10期)2014-02-27 14:09:08
    中文字幕人妻熟人妻熟丝袜美| 久久女婷五月综合色啪小说| 精品国产一区二区三区久久久樱花| 午夜av观看不卡| 日韩av免费高清视频| 午夜老司机福利剧场| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 国产成人精品久久久久久| 亚洲天堂av无毛| 国产高清国产精品国产三级| 人妻少妇偷人精品九色| 精品一品国产午夜福利视频| 午夜福利在线观看免费完整高清在| 精品久久久久久电影网| 丰满少妇做爰视频| 乱码一卡2卡4卡精品| www.av在线官网国产| 一级,二级,三级黄色视频| 五月玫瑰六月丁香| 国产精品久久久久成人av| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 一区二区三区精品91| 国产精品欧美亚洲77777| 大香蕉97超碰在线| 精品一区二区三卡| 亚洲精品自拍成人| 搡老乐熟女国产| 乱系列少妇在线播放| 色吧在线观看| 嫩草影院入口| 国产亚洲av片在线观看秒播厂| 国产精品.久久久| 欧美日韩精品成人综合77777| 成人漫画全彩无遮挡| 51国产日韩欧美| 日韩电影二区| 在线观看av片永久免费下载| 国产精品三级大全| 韩国av在线不卡| 国产在线男女| 亚洲精品aⅴ在线观看| 黑人高潮一二区| 精品少妇内射三级| 老女人水多毛片| 国产高清不卡午夜福利| 极品人妻少妇av视频| 高清不卡的av网站| 晚上一个人看的免费电影| 午夜福利,免费看| 亚洲真实伦在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品人妻一区二区三区麻豆| 成人亚洲精品一区在线观看| 人人妻人人澡人人看| 中文字幕av电影在线播放| 嘟嘟电影网在线观看| 内射极品少妇av片p| 久久人妻熟女aⅴ| 亚洲精品日韩在线中文字幕| 观看av在线不卡| 少妇人妻久久综合中文| 丰满乱子伦码专区| 嫩草影院入口| 国产精品99久久99久久久不卡 | 免费不卡的大黄色大毛片视频在线观看| 亚洲精品乱久久久久久| 日本爱情动作片www.在线观看| 日韩 亚洲 欧美在线| 亚洲av不卡在线观看| 在线观看免费视频网站a站| www.av在线官网国产| 中文欧美无线码| 成人漫画全彩无遮挡| 免费在线观看成人毛片| 久久精品国产鲁丝片午夜精品| 亚洲第一av免费看| 日韩在线高清观看一区二区三区| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久噜噜老黄| 久久影院123| 99九九在线精品视频 | 久久女婷五月综合色啪小说| 99久久中文字幕三级久久日本| 国产免费一区二区三区四区乱码| 丁香六月天网| 婷婷色麻豆天堂久久| 国产高清国产精品国产三级| 丝袜在线中文字幕| 欧美区成人在线视频| 日韩大片免费观看网站| 午夜激情福利司机影院| 成年人免费黄色播放视频 | 日韩一区二区三区影片| 久久久国产精品麻豆| 久久久久久久久大av| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 久久久久久久久久成人| 国产一区二区在线观看av| 日韩欧美精品免费久久| 国产免费又黄又爽又色| 久久99精品国语久久久| 毛片一级片免费看久久久久| 丝袜喷水一区| 汤姆久久久久久久影院中文字幕| 久久青草综合色| 如何舔出高潮| 老女人水多毛片| 亚洲av电影在线观看一区二区三区| 国产视频首页在线观看| 亚洲国产最新在线播放| 下体分泌物呈黄色| 十八禁高潮呻吟视频 | 各种免费的搞黄视频| 国产亚洲最大av| 狂野欧美激情性bbbbbb| av有码第一页| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久久电影| 男人舔奶头视频| 亚洲av.av天堂| 亚洲精品国产色婷婷电影| 亚洲四区av| 香蕉精品网在线| 久久毛片免费看一区二区三区| 国产免费一级a男人的天堂| 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 国产免费一区二区三区四区乱码| 中文字幕制服av| 国产伦理片在线播放av一区| 肉色欧美久久久久久久蜜桃| 色婷婷av一区二区三区视频| 毛片一级片免费看久久久久| 狠狠精品人妻久久久久久综合| 欧美日本中文国产一区发布| 蜜臀久久99精品久久宅男| 久久久久人妻精品一区果冻| 国产片特级美女逼逼视频| 老女人水多毛片| 国产在线视频一区二区| 伊人亚洲综合成人网| 国产精品秋霞免费鲁丝片| 精品久久国产蜜桃| 精品国产国语对白av| 丝袜喷水一区| 黄片无遮挡物在线观看| 性色avwww在线观看| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久| 久久婷婷青草| 一区二区av电影网| 最近2019中文字幕mv第一页| 麻豆成人av视频| 日韩不卡一区二区三区视频在线| 丝袜脚勾引网站| 欧美人与善性xxx| 亚洲怡红院男人天堂| 麻豆成人午夜福利视频| 少妇高潮的动态图| 亚洲欧洲日产国产| 亚洲精品乱码久久久v下载方式| 亚洲电影在线观看av| 国产精品欧美亚洲77777| 女的被弄到高潮叫床怎么办| 精品国产一区二区三区久久久樱花| 精品久久久久久久久av| 国产精品久久久久久精品古装| 黑丝袜美女国产一区| 国产精品三级大全| av黄色大香蕉| av播播在线观看一区| 毛片一级片免费看久久久久| 91成人精品电影| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| 大又大粗又爽又黄少妇毛片口| 自拍偷自拍亚洲精品老妇| 一区二区三区免费毛片| 欧美人与善性xxx| 女人精品久久久久毛片| 久热久热在线精品观看| 日韩av不卡免费在线播放| 夫妻午夜视频| 老司机亚洲免费影院| 成人综合一区亚洲| 国产女主播在线喷水免费视频网站| 一级毛片久久久久久久久女| 国产高清三级在线| 免费观看a级毛片全部| 一本大道久久a久久精品| 中国美白少妇内射xxxbb| 极品人妻少妇av视频| 久久精品夜色国产| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 国产日韩欧美在线精品| 日韩精品有码人妻一区| 人妻系列 视频| 国产黄片美女视频| 中国国产av一级| 中文在线观看免费www的网站| 男女边摸边吃奶| 国产免费视频播放在线视频| 国产精品国产av在线观看| 欧美bdsm另类| 99热全是精品| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 成人综合一区亚洲| 婷婷色综合大香蕉| videossex国产| 久久狼人影院| 国产一区二区三区av在线| 亚洲精品国产成人久久av| 国产在线一区二区三区精| 婷婷色麻豆天堂久久| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 亚洲国产精品专区欧美| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片| 欧美精品国产亚洲| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 我要看黄色一级片免费的| 亚洲精品一二三| 亚洲av.av天堂| 另类精品久久| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 女人久久www免费人成看片| 国国产精品蜜臀av免费| 黑人巨大精品欧美一区二区蜜桃 | 欧美精品高潮呻吟av久久| 国产精品成人在线| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 久久97久久精品| av视频免费观看在线观看| 久久久久久久久大av| 妹子高潮喷水视频| 亚洲精品自拍成人| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看 | 又大又黄又爽视频免费| 婷婷色av中文字幕| 2022亚洲国产成人精品| 国产 精品1| 黑丝袜美女国产一区| 国产综合精华液| 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片| 成人二区视频| 亚洲av中文av极速乱| 亚洲va在线va天堂va国产| 欧美人与善性xxx| 午夜久久久在线观看| av线在线观看网站| 又大又黄又爽视频免费| 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看| 简卡轻食公司| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 色吧在线观看| av线在线观看网站| 成人国产麻豆网| 性色av一级| 纵有疾风起免费观看全集完整版| av国产久精品久网站免费入址| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 99热这里只有精品一区| 五月伊人婷婷丁香| 人妻系列 视频| 国产成人精品无人区| 欧美日韩国产mv在线观看视频| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 亚洲av综合色区一区| 久久热精品热| 色婷婷久久久亚洲欧美| 大陆偷拍与自拍| 天美传媒精品一区二区| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 十分钟在线观看高清视频www | 亚洲av国产av综合av卡| 久久久久网色| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 三级经典国产精品| 久久国产亚洲av麻豆专区| 久久久久久久久久成人| 视频中文字幕在线观看| 亚洲在久久综合| 97在线视频观看| 中文字幕久久专区| 高清av免费在线| 国产高清三级在线| 各种免费的搞黄视频| 亚洲av在线观看美女高潮| 哪个播放器可以免费观看大片| 少妇 在线观看| 寂寞人妻少妇视频99o| av国产久精品久网站免费入址| www.av在线官网国产| 青青草视频在线视频观看| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 亚洲第一av免费看| 亚洲av福利一区| 免费黄频网站在线观看国产| 亚洲综合色惰| 国产亚洲av片在线观看秒播厂| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 国产极品粉嫩免费观看在线 | 精品亚洲乱码少妇综合久久| 少妇人妻 视频| 美女视频免费永久观看网站| 亚洲欧美精品专区久久| 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看| 男女啪啪激烈高潮av片| 狂野欧美激情性bbbbbb| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| 亚洲av日韩在线播放| 免费观看的影片在线观看| 久久 成人 亚洲| 久热这里只有精品99| 国产精品人妻久久久影院| av线在线观看网站| 一级毛片 在线播放| 国产深夜福利视频在线观看| 极品人妻少妇av视频| 亚洲不卡免费看| 视频区图区小说| 99热这里只有精品一区| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩一区二区三区在线 | 观看美女的网站| 乱人伦中国视频| 国产精品秋霞免费鲁丝片| 蜜桃久久精品国产亚洲av| 精品国产乱码久久久久久小说| 国产一级毛片在线| 国产一区二区在线观看日韩| 晚上一个人看的免费电影| 一区在线观看完整版| 久热久热在线精品观看| 亚洲欧洲国产日韩| 熟妇人妻不卡中文字幕| 亚洲国产精品专区欧美| 99热这里只有是精品50| 国产精品免费大片| h视频一区二区三区| 男女边吃奶边做爰视频| 两个人免费观看高清视频 | 97超碰精品成人国产| 久久久精品94久久精品| 久久av网站| 视频中文字幕在线观看| 大香蕉久久网| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| 国模一区二区三区四区视频| 久久人妻熟女aⅴ| 一本一本综合久久| 看十八女毛片水多多多| 亚洲国产精品一区三区| 亚洲av成人精品一区久久| 成人毛片60女人毛片免费| 欧美性感艳星| 中文字幕人妻熟人妻熟丝袜美| 中文天堂在线官网| 大片免费播放器 马上看| 国产一区有黄有色的免费视频| 亚洲精品,欧美精品| 精品久久久精品久久久| 国产成人一区二区在线| 精品午夜福利在线看| 国产精品久久久久久精品古装| 亚洲av中文av极速乱| 国产精品一区www在线观看| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 日韩一区二区视频免费看| 亚洲欧美精品专区久久| 简卡轻食公司| av天堂中文字幕网| 视频中文字幕在线观看| 成年女人在线观看亚洲视频| 又大又黄又爽视频免费| 国产精品国产三级国产专区5o| 人妻夜夜爽99麻豆av| 毛片一级片免费看久久久久| 免费看不卡的av| 国产一区亚洲一区在线观看| 午夜精品国产一区二区电影| 欧美亚洲 丝袜 人妻 在线| 成人无遮挡网站| 大又大粗又爽又黄少妇毛片口| 亚洲熟女精品中文字幕| 性色av一级| 街头女战士在线观看网站| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看 | 91成人精品电影| 国产 一区精品| 大香蕉97超碰在线| 三级经典国产精品| 久久人人爽av亚洲精品天堂| 国产淫语在线视频| 亚洲国产精品专区欧美| 亚洲国产欧美日韩在线播放 | 黄色视频在线播放观看不卡| 成人亚洲欧美一区二区av| 亚洲精品久久午夜乱码| 国产午夜精品一二区理论片| 国产欧美另类精品又又久久亚洲欧美| 精品99又大又爽又粗少妇毛片| 汤姆久久久久久久影院中文字幕| 日韩亚洲欧美综合| 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 久久久欧美国产精品| 欧美精品国产亚洲| 久久亚洲国产成人精品v| 最近中文字幕高清免费大全6| 三级经典国产精品| 女性被躁到高潮视频| 亚洲av中文av极速乱| 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 男人添女人高潮全过程视频| 亚洲情色 制服丝袜| 成人免费观看视频高清| 日本欧美国产在线视频| 午夜日本视频在线| 成年av动漫网址| 最近最新中文字幕免费大全7| 成年女人在线观看亚洲视频| 人人澡人人妻人| 国产精品.久久久| 一本大道久久a久久精品| 久久热精品热| 晚上一个人看的免费电影| 女人精品久久久久毛片| 少妇被粗大的猛进出69影院 | 啦啦啦啦在线视频资源| 亚洲美女搞黄在线观看| 街头女战士在线观看网站| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| 亚洲欧美清纯卡通| 国产成人精品久久久久久| 我要看黄色一级片免费的| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 纵有疾风起免费观看全集完整版| 在线观看www视频免费| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 伊人久久国产一区二区| 国产午夜精品久久久久久一区二区三区| 少妇 在线观看| 欧美亚洲 丝袜 人妻 在线| 三级国产精品片| 国产黄频视频在线观看| 日韩一区二区三区影片| 免费高清在线观看视频在线观看| 少妇人妻精品综合一区二区| 日日啪夜夜撸| 色视频www国产| 国产 一区精品| 中文字幕免费在线视频6| 又大又黄又爽视频免费| 九九爱精品视频在线观看| 日本色播在线视频| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 欧美 日韩 精品 国产| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av天美| 精品国产一区二区久久| 久久精品国产a三级三级三级| 国产精品秋霞免费鲁丝片| 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 国产老妇伦熟女老妇高清| 久久久久久久久久人人人人人人| 91在线精品国自产拍蜜月| 看免费成人av毛片| 国产高清有码在线观看视频| 欧美激情国产日韩精品一区| 成人影院久久| 人人妻人人看人人澡| 我要看日韩黄色一级片| 蜜桃在线观看..| 中国国产av一级| 亚洲性久久影院| 久久青草综合色| 欧美激情极品国产一区二区三区 | 国产精品国产av在线观看| 亚洲精品国产成人久久av| 欧美高清成人免费视频www| 欧美国产精品一级二级三级 | 日韩中文字幕视频在线看片| 极品少妇高潮喷水抽搐| 桃花免费在线播放| 欧美高清成人免费视频www| 久久午夜福利片| 日韩人妻高清精品专区| 熟妇人妻不卡中文字幕| 黑人猛操日本美女一级片| 国产精品.久久久| 黄色视频在线播放观看不卡| 亚洲欧美成人综合另类久久久| 午夜免费观看性视频| 国精品久久久久久国模美| 人妻夜夜爽99麻豆av| 欧美 日韩 精品 国产| 国产亚洲欧美精品永久| av有码第一页| 狂野欧美白嫩少妇大欣赏| 最新中文字幕久久久久| 99久久精品一区二区三区| 中文字幕av电影在线播放| 欧美精品人与动牲交sv欧美| 内地一区二区视频在线| 国产亚洲最大av| 精品国产一区二区三区久久久樱花| 午夜激情福利司机影院| 一级毛片 在线播放| 国产伦在线观看视频一区| 2021少妇久久久久久久久久久| 日本av免费视频播放| 成人美女网站在线观看视频| 久久97久久精品| 22中文网久久字幕| 亚洲美女搞黄在线观看| 成人影院久久| 肉色欧美久久久久久久蜜桃| 美女视频免费永久观看网站| 日韩av免费高清视频| 看十八女毛片水多多多| 亚洲欧美日韩另类电影网站| 少妇人妻久久综合中文| 亚洲性久久影院| 色婷婷久久久亚洲欧美| 又大又黄又爽视频免费| 国产成人午夜福利电影在线观看| 丰满少妇做爰视频| 如日韩欧美国产精品一区二区三区 | 一级二级三级毛片免费看| 免费观看av网站的网址| 欧美日韩av久久| 自拍偷自拍亚洲精品老妇| 蜜桃久久精品国产亚洲av| 国产亚洲最大av| 99精国产麻豆久久婷婷| 在线 av 中文字幕| 自拍偷自拍亚洲精品老妇| 亚洲图色成人| 国产精品女同一区二区软件| 国产免费一级a男人的天堂| 高清毛片免费看| 丰满迷人的少妇在线观看| 男女免费视频国产| 久久久久久人妻| 成人18禁高潮啪啪吃奶动态图 | 这个男人来自地球电影免费观看 | 99视频精品全部免费 在线| 亚洲国产色片| 只有这里有精品99| 久久久久久久大尺度免费视频| 亚洲美女视频黄频| 午夜影院在线不卡| 久久午夜综合久久蜜桃| 精品少妇黑人巨大在线播放| 在线观看免费高清a一片| 免费观看在线日韩| 久久精品国产亚洲网站| 观看av在线不卡| 久久久久久久亚洲中文字幕| 成人影院久久| 伦理电影大哥的女人| 嫩草影院新地址| av福利片在线观看| 曰老女人黄片| 亚洲国产av新网站| 亚洲久久久国产精品| 亚洲欧美中文字幕日韩二区| 亚洲综合色惰| 人妻制服诱惑在线中文字幕|