• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A γ-based Model Interface Capturing Method to Near-field Underwater Explosion(UNDEX)Simulation

    2015-05-02 12:41:12
    船舶力學(xué) 2015年6期
    關(guān)鍵詞:近場科學(xué)研究數(shù)值

    (China Ship Scientific Research Center,Wuxi 214082,China)

    A γ-based Model Interface Capturing Method to Near-field Underwater Explosion(UNDEX)Simulation

    YU Jun,PAN Jian-qiang,WANG Hai-kun,MAO Hai-bin

    (China Ship Scientific Research Center,Wuxi 214082,China)

    The Simulation of near-field Underwater Explosion(UNDEX)was heightened interest with the development of underwater explosion research.The primary concerns that arise in the simulation of near-field underwater explosion are multi-component flows evolvement and interface capturing. In this paper,a robust numerical method for simulation of near-field underwater explosion was proposed,which combine five-order WENO construction and HLLC approximate Riemann solver,and the multi-component flow interface capturing method is based on the γ-model.This scheme was tested by 1D shock tube problem and 2D axis-symmetric problem,which show good agreement with theory results or experiment data.Then this method was applied to simulate some phenomenon in nearfield underwater explosion such as propagation of shock wave and blast near a free surface,which all show approval results.This method could provide some enlightenment in the research of cavitation and water-jet effect in near-field underwater explosion for future.

    compressible multi-component flows;Interface capturing; near-field underwater explosion(UNDEX);γ-based model; WENO reconstruction;HLLC Riemann solver

    0 Introduction

    An Underwater Explosion(UNDEX)usually contains complicated sequence of the events that include detonation waves,shock waves,fluid-fluid interactions of detonation-produced explosive gas and water,fluid-structure interactions and cavitations[1-4].These events occur over a wide range of space and time scales.Due to its complex physics,different simulation methods for near/far-field and early/later-time are used in practice.The early-time interaction in UNDEX is mainly shock wave propagation in water,and the later-time interaction in UNDEX is mainly explosion bubble evolution.The far-field UNDEX event often involves the global response of the structure such as whipping(i.e.ship hull girder vibration[1,3]).On the assumption of inviscid and incompressible flow,the fluid in far-field UNDEX is commonly assumed to be acoustic medium[5-6].But this assumption is not valid for the near-field UNDEX which contains shock-wave propagation and strong shock-bubble interaction.The UNDEX fluid flow involves multiple fluids with different physical and thermodynamic properties across different materialinterface.In order to capture the evolvement between the blasé gas and surround water,different EOSs are applied to each side across the material interface during the simulation.So the method of solving multi-component flows with shock wave and gas-water interface evolvement becomes much important.

    In early algorithms for computing compressible multi-component flows,the interface position was usually captured by the mass fraction[7],volume of fluid(VOF)[8]and level set function[9],which evolved according to an advection equation coupled to the system equation(i.e. Euler equation).The system equation was solved by first-or second-order accurate reconstructions with a Roe or HLL solver[10-11].But spurious oscillations easily appeared at interfaces. This was identified by Abgrall[12]and he proposed a quasi-conservative method based on the mass fraction formulation for gases.Subsequently,this method was extended to other general equation of state and multiphase flows[13].The method was mainly used to stiffened equation of state with different ratio of specific heats in multi-component flows,so it was usually called γbased model.In this paper,our goal is to simulate multi-component flow problems to avoid spurious oscillations near shockwaves and interfaces.In order to achieve the goals,we have extended the former γ-model interface capturing methods by implementing a high-order accurate WENO reconstruction and HLLC solver[14].The system equations for multi-component flows are presented in Chapter 1 and numerical discretization schemes are stated in Chapter 2.In Chapter 3,the method is validated using two-dimensional problem.Finally,we applied our method to simulate several typical near-field underwater explosion problems.

    1 Equation of motion

    In underwater explosion,multi-component flows are a subset of multiphase flows where different components,characterized by their respective ratio of specific heats,are immiscible; diffusive effects,surface tension and cavitation are neglected.Therefore,the governing equations employed are usually the Euler equations.

    For the explosive gas flow,gases are assumed ideal and the inviscid Euler equation is employed.We can write the governing system for a 2D arrangement in a consistent form as

    where the respective expressions of Q,F(xiàn),G and S for flows are given as

    where ρ is the fluid density,u and v are the flow velocities in z and r directions,respectively, p is the pressure and E is the total energy per unit volume and given bythe internal energy per unit mass.n is a system parameter which takes on a value of 1 or 2.Ifn=1,Eq.(1)is for a 2D planar flows problem;if n=2,it is for a 2D axis-symmetric flow problem.For 1D planar flow problem,v=0&n=1.For 1D spherical-symmetric problem,u=0& n=2.To close the system,we use the stiffened equation of state[15]

    For perfect gases,γ is the ratio of specific heats and p∞=0;for water,γ=5.5,p∞=0[16].This equation has been used widely to simulation multi-component flows with shock waves propagation.

    The interface between two flows is showed by the discontinuity in the properties,γ and p∞. of the different fluid components.Since material interfaces are convected by the flow,the properties must obey the advection equation[17].

    Eqs.(1)and(4)form the system governing equations.Euler Eq.(1)is conservative,while the advection Eq.(4)is not conservative.So the system governing equations are quasi-conservative.

    2 Discretization scheme

    2.1 Finite volume formulation in Spatial discretization

    Consider the Euler Eq.(1)in conservation form

    where the flow gird sizes are given by

    Integrating(5)over the control volume Ii,j,we obtain the following semi-discrete relations[18-19]:

    2.2 Finite volume reconstruction

    In the FV formulation,the left and right states of Riemann problem are reconstructed from the cell averages in a piecewise constant fashion.ENO reconstruction[20-21]chooses the optimal stencil to build the cell average value of a function,and the function is interpolated on either side of the cell edges.This method provides high-order accuracy and essentially non-oscillatory(ENO)behavior,while WENO reconstruction[22-23]provides a convex combination of all the candidate stencils,and constitutes an improvement on ENO schemes on many levels[24].In this paper,we choose five-order WENO reconstruction scheme.

    But Multi-dimensional ENO and WENO schemes can not easily be applied to two-dimensional FV reconstruction,because two one-dimensional reconstructions should be needed per grid point[17].In this situation,a Gaussian quadrature rule is used in multiple dimensions[25].

    2.3 The HLLC approximate Riemann solver

    As said in Section 2.1,in FV formulation,the physic fluxes are built on the approximate Riemann solver,which may use high-order reconstruction values.The approximate Riemann solver proposed by Harten Lax and van Leer(HLL)[11]requires estimates for the fastest signal velocities emerging from the initial discontinuity at the interface.In 1992,the HLLC Riemann solver was proposed,it was a modification of the HLL scheme,whereby the missing contact and shear waves in the Euler equations are restored[26].Meanwhile,the HLLC resolves dis continuities sharply,and isolates shockwaves and contacts exactly[27].In the condition of proper left and right states around the contact boundary,the HLLC solvers could preserve positivity.At the same time,WENO reconstruction is a convex function of the candidate stencils[22].So that the HLLC solver that combining the left and right states could keep this method positivity.

    As the HLLC scheme is a modification of HLL scheme described in previous section,the HLLC scheme added the slowest and fastest signal speed sLand sRwith a middlewave speed s*is shown in Fig.1.The HLLC approximate Riemann solver is given as follows[14]:

    Fig.1 HLLC approximate Riemann solver

    where D=L or R.The wave speeds are given by

    And intermediate wave speed is computed according to[27]:

    2.4 Time discretization

    As mentioned before,the space discretization with five-order WENO reconstruction,in order to retain uniformly high order of time accuracy the solution is advanced in time by means of TVD Runge-Kutta methods[28].Usually,the following third order three-stage method is used:

    Meanwhile,the explicit scheme considered above requires the computation of a time step△t to be used in Eq.(15),such that stability of the numerical method is ensured.One way of choosing method is

    2.4 Algorithm

    We introduce the following algorithm to compute compressible multi-component flows, based on the system Eqs.(1)and(4).

    (1)Build the average conservative variableand interface function

    (2)Using five-order WENO scheme to reconstruct the left and right state around the cell centre

    (4)Use the HLLC solver to computer the numerical flux

    (5)Use the adaptation to the HLLC solver to computer the right-hand side of the advection Eq.(4).

    3 Algorithm validation

    3.1 One-dimensional shock-tube problems

    Shock-tube test is a typical Riemann discontinuous problem for testing the schemes on shock wave positing and interface capturing.The Sod[29]and Lax[30]problems have been computed using the present scheme and produced good agreement with the analytical solution. But in this paper,we introduced a more difficult shock-tube problem with higher pressure ratio[31].We consider a stiff two-fluid one-dimensional Riemann problem with initial condition

    where the specific heat ratio of air and helium are γ1=1.4 and γ2=1.6,respectively.In this problem,the right gas(Helium)is highly compressed by large pressure ratios.The domain has 800 points and WENO reconstruction is used,along with the HLLC solver.Fig.2 shows density,velocity,pressure and volume fraction profiles at t=0.015.The computed solution agrees well with the exact solution and compares favorably to previous findings[32].The wave speeds are correct and there is only a little oscillation near the interface.

    Fig.2 Solution of the one-dimensional Riemann problem computed on a uniform grid with N=800.Solid lines depict the exact solution whereas(□)denote numerical results

    3.2 Two-dimensional axis-symmetric problem

    This test case is the collapse of an spherical helium cavity in air tube by a Mach 1.25 shock.This problem has been studied in experiment by Haas[33]due to its importance in a wide range of physical and practical phenomena.The rectangular computational domain for this problem is Ω=[0,0.325]×[0,0.044 5],and the two-dimensional symmetrical axis is y=0.0.A spherical helium bubble of 45 mm radius is placed in air with its center at(0.175,0),and the shock wave is initiated at x=0.2 at t=0. The schematic of domain is shown in Fig.3.In calculating only up half part of the domain is needed.The rectangular computational domain Ω is discretized using a 650×88 uniform grid,with reflecting boundary conditions on the top and along the centerline.

    Fig.3 Schematic of the shock and helium bubble in air

    The test of the initial condition iswhere the specific heat ratio of air and helium are γ1=1.4 and γ2=1.67,respectively.The flow field at different moment is shown in Fig.4.The computed solution shows good agreement between the simulation and experiment results.

    Fig.4 Shock and air/helium bubble interaction.Top:shadow-photographs of Haas and Sturtevant(1987), bottom:Numerical Schlieren-type results at(a)t=20 μs,(b)t=223 μs,(c)t=350 μs,(d)t=600 μs

    4 Algorithm in near-field underwater explosion(UNDEX)

    4.1 Explosion shock wave loading

    Underwater explosion is a chemical reaction in a substance which converts the original material into a gas at very high temperature and pressure,this process occurring with extreme rapidity and evolving a great deal of heat.Generally speaking,the majority of scattered wave shock wave will not play important role after the interaction of incident wave and structure in far-field of underwater explosion.But this is not valid in near-field of underwater explosion, because when the reflected wave from the structure enters the bubble,refraction wave generates at the fluid interface and plays an important role on the structure.So that in near-field underwater explosion,the propagation of the wave between the structure and the bubble must be considered.

    Next,we consider the UNDEX of an 1 g TNT explosive surrounded by water at a depth of 0.6 m.In our model,the TNT charge is replaced by a gas bubble with equivalent mass and internal energy for the original High Explosive(HE)material.The cavity radius is r which initial value r0=3V0/4( )π1/3with the approximate initial volume V0for the HE material.For 1 g TNT,the equivalent initial value r0is about 5.27 mm.The initial conditions are shown in Fig.5.

    The initial condition is[13,36]

    Fig.5 Schematic of the underwater explosion near a rigid wall

    Fig.6 Schematic of the experimental arrangement

    where the water is modeled with γ=5.5,p∞=4.92e8 Pa,and the gas with γ=1.25,p∞=0.0 Pa. As shown in Fig.5,the domain is axis-symmetric,and only the right half part is modeled.The rectangular computational domain for this model is Ω=[0,2 m]×[0,0.6 m].The computed domain Ω is discretized using a 400×800 non-uniform grid,where the minimum space step is only 0.25 mm.Fig.6 shows a sketch of the experiment arrangement used in this study.The water tank had dimensions of 1 m×1 m×1 m and is made from glass plates and filled up with tap water.The target plate has dimensions of 0.4 m×0.4 m×0.01 m,and it is used as rigid wall.1 g TNT detonator charge is chose as explosive and it is placed on the normal liner through the centre of target plate with the distance of 0.16m.A pressure gauges is taped to the surface of the target plate.The type of gauges is PVDF piezoelectric pressure gauges.

    Fig.7 shows the simulation solution and experiment results of the pressure-time curve on the center surface of the target plate during the time of 0.2 ms.The maximum pressure in experiment is 56 MPa and it is 60 MPa in simulation solution.The whole curve is few bigger in simulation than in the experiment.The reason may be the difference from detonate charge,flows character,and the boundary conditions.But the trend is the same and the difference is acceptable in engineering application.

    Fig.8 shows the simulation solution of density and pressure contours in the flow field at various times.The rigid wall is denoted by the grey region on the left of the domain.In frame 1,the compressible wave expands rapidly outwards and rarefaction ware expands inwards.The rarefaction wave interacts with the explosion gas and creates a low pressure zone in the centre of the bubble.As shown in frame 2,shock wave reaches the rigid wave and reflects compressible wave.When the reflect wave overlaps the shock wave,some high pressure zone will appear especially round the centre of the target wall.In frame 3,the reflect wave from the wall has impacted on the bubble and reflected with strong rarefaction waves(Prandtl-Meyer rarefaction waves)while a transmitted shock is propagating into the bubble.Due to the much lower acoustic impedance of the gas medium,the transmitted shock is much weaker than the reflected Prandtl-Meyer rarefaction waves.The Prandtl-Meyer rarefaction waves are propagating in the opposite directions along the water-gas interface and cause the water pressure below the bubble surface to drop,as seen in frame 4.

    Fig.7 Pressure-time curve of underwater explosion near a rigid wall.Solid line depicts the experiment result whereas(○)denote simulation solution

    Fig.8 Density(top)and pressure(bottom)contours for shock wave propagation near a rigid wall at 0.05 ms,0.1 ms,0.15 ms and 0.2 ms

    4.2 Underwater explosion near a free surface

    The problem of underwater explosion near a free surface has been simulated by[31,34-35]as a typical phenomenon in multi-component flow simulation.The initial conditions are given as follows with no-dimension:a highly pressurized explosion gas cylinder of radius r=0.12 is located at the origin(0,-0.3)in water.The free surface is located at the straight-line y=0.The schematic of domain is shown in Fig.9.The initial condition is[31]:

    Fig.9 Schematic of the underwaterexplosion near a free surface

    For this two-dimensional planer problem,The rectangular computational domain is[-2, 2]×[-1.5,1.5],using a 600×450 uniform grid.The reflecting boundary condition is put at the bottom,while the other direction boundary conditions are non-reflecting condition.

    Fig.10 Pressure(up)and interface function(down)contours for underwater explosion near a free surface at times t=0.06,0.25,0.4 and 0.5(from left to right)

    The computing solution is listed in Fig.10.It depicts the flow fields at different times using Ref.[31]and this paper’s methods.In the paper[31],Shukla chose the five-equation modelas the system governing equations,and the advection variable was volume of fraction of the gas.This problem is computed by this paper’s method and the results is depicted in Fig.10.It is noted that the computed solutions are little numerical oscillations and agree well with previously published results.

    5 Conclusions

    We have chosen an accurate quasi-conservative scheme for simulating the compressible multi-component flows,using five-order WENO reconstruction and HLLC approximate Riemann solver.The scheme has been tested in 1D shock tube problem and 2D axis-symmetric problem.The numerical results are accurate with no numerical oscillation.These results are in good agreement with experimental results and previous numerical results obtained by more sophisticated numerical methods.Secondly,we used the method to simulate some phenomenon in near-field underwater explosion.The early shock wave loading could be captured properly. At last,we show the evolution of underwater explosion near a free surface.Multi-component flow simulation is only the first step to research near-field underwater explosion,where the physics contains complicate phenomenon such as cavitation and water-jet effect.Those factors will be considered in the next study.

    [1]Cole R H.Underwater explosion[M].Dover publications,1948.

    [2]Keil A H.The response of ship to underwater explosions[J].The Society of Naval Architects and Marine Engineers,1961.

    [3]Liu J H.Theory and its applications of ship dynamic responses to non-contact underwater explosions[D].Wuxi:CSSRC doctor’s thesis,2002.

    [4]Reid W D.The response of surface ships to underwater explosions[R].Technical Report,Department of Defense,1994.

    [5]Dobratz B M,Crawford P C.LLNL explosives handbook:Properties of chemical explosives and explosive simulations[M]. Lawrence Livermore National Laboratory,University of California,Livermore,CA,31,1985.

    [6]Geers T L.Transient response analysis of submerged structures[J].Finite Elements in Analysis and Design,1989,6:153-172.

    [7]Naber J.A numerical solver for compressible two-fluid flow[R].Report MASE0505,Amsterdam:CWI,2005:1-48.

    [8]Osher S,Fedkiw R P.Level set methods and dynamic implicit surface[M].Applied Mathematical Sciences,153,Springer, 2003.

    [9]Fedkiw R P,Aslam T,Merriman B.A non-oscillatory Eulerian approach to interfaces in multi-material flows(The Ghost Fluid Method)[J].Journal of Computational Physics,1999,152:457-492.

    [10]Roe P L.Approximate Riemann solvers,parameter vectors,and difference schemes[J].J Comput.Phys.,1981,43:357-372.

    [11]Harten A,Lax P D,Van Leer B.On upstream differencing and Godunov-type schemes for hyperbolic conservation laws [J].SIAM Rev.,1983,25:35-61.

    [12]Abgrall R.How to prevent pressure oscillations in multicomponent flow calculations:A quasi-conserbative approach[J].J Comput.Phys.,1993,125:150-160.

    [13]Shyue K M.An efficient shock-capturing algorithm for compressible multicomponent probles[J].J Comput.Phys.,1998, 142:208-242.

    [14]Toro E F.Riemann solvers and numerical methods for fluid dynamics[M].Springer,Berlin,2007.

    [15]Harlow F.Amsden A.Fluid dynamics,Monograph LA-4700[R].Los Alamos National Laboratory,Los Alamos,NM,1971.

    [16]Cocchi J P,Saurel R.CLoraud J.Treatment of interface problems with Godunov-type schemes[J].Shock Waces,1996,5:347-357.

    [17]Johnsen E,Colonius T.Implementation of WENO schemes in compressible multicomponent flow problems[J].J Comput. Phys.,2006,219:715-732.

    [18]Shu C W.High order ENO and WENO schemes for computational fluid dynamics,in High-Order Methods for Computational Physics[J].Edited by Barth T J and Deconinck H Lecture Notes in Computational Science and Engineering, (Springer-Verlag,Berlin/New York),1999,9:439-582.

    [19]Ali Akturk.Two dimensional finite volume weighted essentially non-osciliatory Euler schemes with different flux algorithms [D].The Degree of Master’s thesis of Middle East Technical University,2005.

    [20]Harten A,Engquist B,Osher S,Chakravarthy S.Uniformly high order essentially non-oscillatory schemes[J].J Comput. Phys.,1987,71:231-303.

    [21]Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes[J].J Comput.Phys., 1988,77:439-471.

    [22]Jiang G S,Shu C W.Efficient implementation of WENO schemes[J].J Comput.Phys.,1996,126:202-228.

    [23]Liu X D,Osher S,Chan T.Weighted essentially non-oscillatory chemes[J].J Comput.Phys.,1994,115:200-212.

    [24]Shu C W.High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD[J]. Int.J Comput.Fluid Dyn,2003,17:107-118.

    [25]Titarev V A,Toro E F.Finite-volume WENO schemes for three-dimensional conservations laws[J].J Comput.Phys., 2004,201:238-260.

    [26]Toro E F,Spruce M,Speares W.Restoration of the contact surface in the HLL-Riemann solver[R].Technical Report COA-9204,Department of Aerospace Science,Collegue of Aeronautics,Cranfield Institute of Technology,UK,1992.

    [27]Batten P,Clarke N,Lambert C,Causon D M.On the choice of wavespeeds for the HLLC Riemann solver[J].SIAM J Sci. Comput.,1997,18:1553-1570.

    [28]Shu C W.Total-variation-diminishing time discretizations.SIAM[J].J Scientific and Statistical Computing,1988,9:1073-1084.

    [29]Sod G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].J Comput. Phys.,1978,27:1-31.

    [30]Lax P.Weak solutions of nonlinear hyperbolic equations and their numerical computations[J].Commun Puere Appl.Math., 1954,7:159-193.

    [31]Shukla R K,Pantano C,Freund J B.An interface capturing method for the simulation of multi-phase compressible flows [J].J Comput.Phys.,2010,229:7411-7439.

    [32]Abgrall R,Karni S.Computations of compressible multifluids[J].J Comput.Phys.,2001,169:594-623.

    [33]Haas J F,Sturtevant B.Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J].J Fluid. Mech.,1987,181:41-76.

    [34]Xie W F,Liu T G,Khoo B C.Application of a one-fluid model for large scale homogeneous unsteady cavitation:The modified Schmidt model[J].Comp.&Fluid.,2006,35:1177-1192.

    [35]Liu.T G,Khoo B C,Yeo K S.The simulation of compressible multi-medium flowⅡ.Application to 2D underwater shock refraction[J].Computers&Fluids,2001,30:315-337.

    [36]Liu G R,Liu M B.Smoothed particle hydrodynamics-a meshfree particle method[M].World Scientific Publishing Co,Singapore,2010.

    基于γ界面捕捉模型的近場水下爆炸數(shù)值模擬

    余 俊,潘建強(qiáng),王海坤,毛海斌

    (中國船舶科學(xué)研究中心,江蘇 無錫 214082)

    隨著對水下爆炸現(xiàn)象研究的逐步深入,近場水下爆炸的數(shù)值模擬研究越來越受到重視。近場水下爆炸數(shù)值模擬當(dāng)中的主要難點在于多相流運(yùn)動以及界面捕捉方法的研究。文章提出一種較為穩(wěn)定的近場水下爆炸數(shù)值模擬方法,其包含了五階WENO重構(gòu)以及HLLC近似黎曼求解器的格式,對于多相流界面的捕捉方法基于γ模型。文中的求解格式通過了一維激波管問題以及二維軸對稱問題的驗證,計算結(jié)果與理論解和實驗結(jié)果吻合較好。在此基礎(chǔ)上將該方法推廣到近場水下爆炸過程中沖擊波傳播以及近水面爆炸現(xiàn)象的模擬,模擬結(jié)果較為滿意。該文的研究方法能夠為后續(xù)的近場水下爆炸過程中的空泡以及水射流的研究提供指導(dǎo)。

    可壓縮多相流;界面捕捉;近場水下爆炸;γ模型;WENO重構(gòu);HLLC求解器

    O389 U661.4

    A

    余 ?。?984-),男,中國船舶科學(xué)研究中心工程師;

    O389 U661.4

    A

    10.3969/j.issn.1007-7294.2015.06.003

    1007-7294(2015)06-0641-13

    潘建強(qiáng)(1971-),男,中國船舶科學(xué)研究中心研究員;

    王海坤(1980-),男,中國船舶科學(xué)研究中心高級工程師;

    毛海斌(1978-),男,中國船舶科學(xué)研究中心高級工程師。

    Received date:2015-02-02

    Biography:YU Jun(1984-),male,engineer,E-mail:feiyue617@163.com;PAN Jian-qing(1971-),male,researcher.

    猜你喜歡
    近場科學(xué)研究數(shù)值
    超大規(guī)模智能反射面輔助的近場移動通信研究
    用固定數(shù)值計算
    歡迎訂閱《林業(yè)科學(xué)研究》
    歡迎訂閱《紡織科學(xué)研究》
    數(shù)值大小比較“招招鮮”
    紡織科學(xué)研究
    基于反射型超表面的近場聚焦研究
    紡織科學(xué)研究
    一種基于PDV的近場沖擊波高壓測量技術(shù)
    中國測試(2018年10期)2018-11-17 01:58:50
    近場RCS測量不確定度分析
    国产主播在线观看一区二区| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 国产欧美日韩一区二区精品| 国产精品久久久久久久电影| 在线观看午夜福利视频| 亚洲国产精品合色在线| 成人午夜高清在线视频| 日韩精品中文字幕看吧| 亚洲av一区综合| 欧美乱色亚洲激情| 观看美女的网站| 日韩精品中文字幕看吧| 夜夜爽天天搞| 一级黄色大片毛片| 毛片一级片免费看久久久久 | 嫩草影院新地址| 亚洲欧美日韩东京热| 如何舔出高潮| 精品久久久久久久久亚洲 | 丝袜美腿在线中文| 一个人看的www免费观看视频| 亚洲av熟女| 欧美最新免费一区二区三区 | 中文字幕精品亚洲无线码一区| 91字幕亚洲| 又爽又黄无遮挡网站| 丁香欧美五月| 国产av一区在线观看免费| 国产精品免费一区二区三区在线| 国产色爽女视频免费观看| 波多野结衣高清作品| a级一级毛片免费在线观看| 亚洲av电影在线进入| 国产成+人综合+亚洲专区| 欧美激情在线99| 麻豆成人av在线观看| 毛片女人毛片| 亚洲专区中文字幕在线| 99热这里只有是精品在线观看 | 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 国产成人av教育| 丁香欧美五月| 亚洲天堂国产精品一区在线| 免费高清视频大片| 中文字幕av在线有码专区| 日韩欧美免费精品| 欧美最新免费一区二区三区 | 女人被狂操c到高潮| АⅤ资源中文在线天堂| 亚洲av熟女| 亚洲精品粉嫩美女一区| av国产免费在线观看| 精品国产亚洲在线| netflix在线观看网站| 国产亚洲av嫩草精品影院| 亚洲真实伦在线观看| 精品人妻一区二区三区麻豆 | 欧美一区二区亚洲| av天堂中文字幕网| 欧美日韩福利视频一区二区| 亚洲国产精品999在线| 国产综合懂色| 中文字幕精品亚洲无线码一区| 欧美日韩亚洲国产一区二区在线观看| 久久久久九九精品影院| 在线观看美女被高潮喷水网站 | 精品久久久久久久末码| 国产精品精品国产色婷婷| 大型黄色视频在线免费观看| 国产成人啪精品午夜网站| 90打野战视频偷拍视频| 欧美最新免费一区二区三区 | 别揉我奶头 嗯啊视频| 国产精品三级大全| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| av欧美777| 午夜视频国产福利| 最近最新免费中文字幕在线| 亚洲av成人不卡在线观看播放网| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| h日本视频在线播放| 中文字幕精品亚洲无线码一区| 97超级碰碰碰精品色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 成人欧美大片| 午夜福利在线观看吧| 亚洲精品在线观看二区| 国产在视频线在精品| 久久久精品欧美日韩精品| 又紧又爽又黄一区二区| 免费在线观看成人毛片| 免费电影在线观看免费观看| 欧美日韩国产亚洲二区| 国产亚洲精品久久久com| 深夜a级毛片| 国产探花在线观看一区二区| 毛片一级片免费看久久久久 | 久久久国产成人精品二区| 天堂动漫精品| h日本视频在线播放| 最新在线观看一区二区三区| 欧美午夜高清在线| 伊人久久精品亚洲午夜| 久99久视频精品免费| 宅男免费午夜| 国产精品国产高清国产av| 在线免费观看不下载黄p国产 | ponron亚洲| 亚洲第一电影网av| 一夜夜www| 91字幕亚洲| 久久久精品大字幕| 性插视频无遮挡在线免费观看| 波多野结衣高清无吗| 亚洲欧美日韩高清在线视频| 91久久精品国产一区二区成人| 人人妻,人人澡人人爽秒播| 国内精品久久久久精免费| 亚洲欧美日韩东京热| 国产爱豆传媒在线观看| 怎么达到女性高潮| 久久亚洲真实| 亚洲精品日韩av片在线观看| 9191精品国产免费久久| 国产欧美日韩一区二区精品| 国产私拍福利视频在线观看| 在线播放无遮挡| 欧美日韩福利视频一区二区| 丰满人妻一区二区三区视频av| 国产毛片a区久久久久| 美女高潮的动态| 乱人视频在线观看| 久久精品人妻少妇| 久久久精品大字幕| 18禁裸乳无遮挡免费网站照片| 少妇丰满av| 757午夜福利合集在线观看| aaaaa片日本免费| 久久精品综合一区二区三区| 亚洲 欧美 日韩 在线 免费| 国内久久婷婷六月综合欲色啪| 一区二区三区四区激情视频 | 亚洲无线观看免费| 免费在线观看成人毛片| 综合色av麻豆| 波多野结衣高清无吗| 欧美精品国产亚洲| 国产精品一及| 国产精品免费一区二区三区在线| 亚洲综合色惰| 九九久久精品国产亚洲av麻豆| 久久99热这里只有精品18| 国产亚洲精品久久久久久毛片| 国产综合懂色| 欧美成狂野欧美在线观看| 国产高清视频在线观看网站| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 九九久久精品国产亚洲av麻豆| .国产精品久久| 乱码一卡2卡4卡精品| 性色avwww在线观看| 国产精品爽爽va在线观看网站| 一区二区三区免费毛片| 男女视频在线观看网站免费| 丝袜美腿在线中文| 99久久无色码亚洲精品果冻| 色精品久久人妻99蜜桃| www.www免费av| 中国美女看黄片| 变态另类丝袜制服| 免费看a级黄色片| 黄色一级大片看看| 尤物成人国产欧美一区二区三区| 高清毛片免费观看视频网站| 国产精品一区二区三区四区久久| 麻豆久久精品国产亚洲av| 美女被艹到高潮喷水动态| 非洲黑人性xxxx精品又粗又长| 噜噜噜噜噜久久久久久91| 村上凉子中文字幕在线| 欧美精品啪啪一区二区三区| 亚洲男人的天堂狠狠| 桃红色精品国产亚洲av| 天堂√8在线中文| 亚洲av成人不卡在线观看播放网| 国产精品亚洲美女久久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲精华国产精华精| 国产精品一区二区三区四区久久| 国产爱豆传媒在线观看| 国产精品不卡视频一区二区 | 小说图片视频综合网站| 亚洲在线观看片| 中文字幕精品亚洲无线码一区| 免费观看人在逋| 色综合亚洲欧美另类图片| 1000部很黄的大片| 搡老熟女国产l中国老女人| 亚洲avbb在线观看| 久久九九热精品免费| 久久久久久久午夜电影| 无遮挡黄片免费观看| 婷婷精品国产亚洲av| 啦啦啦韩国在线观看视频| 三级毛片av免费| 两个人视频免费观看高清| 丰满人妻一区二区三区视频av| 在线观看av片永久免费下载| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av天美| 国产欧美日韩一区二区精品| 国内毛片毛片毛片毛片毛片| 在线观看一区二区三区| 午夜福利在线观看免费完整高清在 | 麻豆久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片 | 亚洲最大成人手机在线| 久久久精品欧美日韩精品| 亚洲美女视频黄频| 欧美一区二区精品小视频在线| 久久精品国产亚洲av涩爱 | 一本久久中文字幕| 90打野战视频偷拍视频| 久久亚洲精品不卡| 国产爱豆传媒在线观看| 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 国产亚洲av嫩草精品影院| 深爱激情五月婷婷| 亚洲综合色惰| 免费看a级黄色片| 亚洲成人免费电影在线观看| 免费观看精品视频网站| 91麻豆av在线| 亚洲国产色片| 欧美激情在线99| 亚洲成人精品中文字幕电影| 国产黄片美女视频| av专区在线播放| 亚洲男人的天堂狠狠| 国产成人aa在线观看| 性插视频无遮挡在线免费观看| 色综合站精品国产| 日韩欧美一区二区三区在线观看| 波多野结衣高清无吗| 欧美区成人在线视频| 欧美+日韩+精品| 国产成人a区在线观看| 亚洲第一欧美日韩一区二区三区| 毛片女人毛片| 久久久久久久精品吃奶| 亚洲国产欧美人成| 久久精品国产亚洲av香蕉五月| 午夜福利在线在线| 中文亚洲av片在线观看爽| 久久精品国产清高在天天线| av在线天堂中文字幕| 国产成人影院久久av| 老司机午夜十八禁免费视频| 亚洲男人的天堂狠狠| 丁香六月欧美| 国产色爽女视频免费观看| 精品99又大又爽又粗少妇毛片 | 一个人观看的视频www高清免费观看| 噜噜噜噜噜久久久久久91| 亚洲av成人av| 精品一区二区免费观看| 久久国产乱子免费精品| 97碰自拍视频| 12—13女人毛片做爰片一| 欧美日韩综合久久久久久 | 老司机午夜十八禁免费视频| 国产成人a区在线观看| 亚洲欧美日韩东京热| 一进一出抽搐gif免费好疼| 亚洲片人在线观看| 欧美日韩中文字幕国产精品一区二区三区| 男女视频在线观看网站免费| 亚洲成a人片在线一区二区| 别揉我奶头~嗯~啊~动态视频| 99在线人妻在线中文字幕| 精品人妻1区二区| 精品不卡国产一区二区三区| 成年版毛片免费区| 少妇熟女aⅴ在线视频| 亚洲成av人片在线播放无| 日日摸夜夜添夜夜添小说| 精品一区二区三区av网在线观看| 国产av一区在线观看免费| 国产精品久久电影中文字幕| 免费看日本二区| 日韩国内少妇激情av| 一区福利在线观看| 最近在线观看免费完整版| 久9热在线精品视频| 国模一区二区三区四区视频| 啪啪无遮挡十八禁网站| 国产高清有码在线观看视频| 偷拍熟女少妇极品色| 我要看日韩黄色一级片| 久久久久久大精品| 亚洲国产欧美人成| 国产精品日韩av在线免费观看| 亚洲av免费在线观看| 丰满人妻一区二区三区视频av| 免费av毛片视频| 久久久久久久久大av| 免费av毛片视频| 久久精品国产清高在天天线| 丰满的人妻完整版| 草草在线视频免费看| 99久久精品热视频| www.色视频.com| 我的女老师完整版在线观看| 久久亚洲精品不卡| 九九久久精品国产亚洲av麻豆| 婷婷六月久久综合丁香| 久久精品国产亚洲av香蕉五月| 久久这里只有精品中国| 国产免费av片在线观看野外av| 九九久久精品国产亚洲av麻豆| 国产蜜桃级精品一区二区三区| 男女做爰动态图高潮gif福利片| av欧美777| 国产精品一及| 天堂动漫精品| 国产精品日韩av在线免费观看| 色综合站精品国产| 久久久精品欧美日韩精品| 欧美一区二区亚洲| 岛国在线免费视频观看| 一个人观看的视频www高清免费观看| 毛片一级片免费看久久久久 | 麻豆国产av国片精品| 国产真实乱freesex| 免费在线观看亚洲国产| 国产成人欧美在线观看| 中文字幕免费在线视频6| 久久伊人香网站| 亚洲天堂国产精品一区在线| 亚洲欧美日韩高清在线视频| 真人做人爱边吃奶动态| 欧美日韩国产亚洲二区| 黄色一级大片看看| 在线天堂最新版资源| 免费在线观看影片大全网站| 大型黄色视频在线免费观看| 国产三级在线视频| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区三| 亚洲av成人av| 美女xxoo啪啪120秒动态图 | 窝窝影院91人妻| 国产伦在线观看视频一区| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 此物有八面人人有两片| 日韩成人在线观看一区二区三区| 久久精品国产自在天天线| 免费电影在线观看免费观看| 色哟哟·www| 嫩草影院新地址| 午夜免费激情av| 51国产日韩欧美| 欧美成人免费av一区二区三区| 级片在线观看| 精品久久久久久久人妻蜜臀av| 免费看光身美女| 精品国产亚洲在线| 人人妻,人人澡人人爽秒播| 久久精品久久久久久噜噜老黄 | www.www免费av| 欧美xxxx性猛交bbbb| 极品教师在线视频| 老女人水多毛片| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看| 1000部很黄的大片| 97人妻精品一区二区三区麻豆| 色综合亚洲欧美另类图片| 国产三级黄色录像| 亚洲黑人精品在线| 国产欧美日韩一区二区精品| 很黄的视频免费| 毛片女人毛片| 51国产日韩欧美| 亚洲最大成人手机在线| 美女高潮的动态| 十八禁国产超污无遮挡网站| 人人妻人人看人人澡| 日韩欧美国产一区二区入口| 在线观看午夜福利视频| av在线老鸭窝| 两个人的视频大全免费| 亚洲国产欧美人成| 亚洲欧美激情综合另类| 国产免费男女视频| 久久精品国产自在天天线| 露出奶头的视频| 男人的好看免费观看在线视频| 欧美3d第一页| 中文字幕久久专区| 亚洲av五月六月丁香网| 神马国产精品三级电影在线观看| 国产蜜桃级精品一区二区三区| 国产精品精品国产色婷婷| 亚洲成av人片免费观看| 如何舔出高潮| 中文字幕高清在线视频| 亚洲成人免费电影在线观看| 成人三级黄色视频| 国产亚洲欧美在线一区二区| 日本 欧美在线| 久久久国产成人精品二区| 国产免费一级a男人的天堂| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 日韩欧美免费精品| 看黄色毛片网站| 亚洲国产欧洲综合997久久,| 高清在线国产一区| 精品久久久久久久久亚洲 | 国产高清三级在线| 久久精品国产清高在天天线| 最新在线观看一区二区三区| 精品人妻偷拍中文字幕| 国产成人影院久久av| 黄色日韩在线| 男女之事视频高清在线观看| 亚洲一区二区三区不卡视频| 极品教师在线免费播放| 免费av观看视频| 日韩欧美一区二区三区在线观看| 国产成人欧美在线观看| 久久久久久九九精品二区国产| 亚洲欧美清纯卡通| 黄色日韩在线| 我要搜黄色片| 日韩欧美在线乱码| 久久久久久国产a免费观看| 日本一本二区三区精品| 黄色女人牲交| 又爽又黄无遮挡网站| 成人毛片a级毛片在线播放| 久久性视频一级片| 波野结衣二区三区在线| 欧美成人a在线观看| 搡女人真爽免费视频火全软件 | 中文资源天堂在线| 宅男免费午夜| 久久伊人香网站| 久久精品国产亚洲av香蕉五月| 久久精品国产亚洲av天美| 一a级毛片在线观看| 精品99又大又爽又粗少妇毛片 | 国产一区二区亚洲精品在线观看| 啦啦啦韩国在线观看视频| 国产国拍精品亚洲av在线观看| 亚洲av成人精品一区久久| 天堂动漫精品| 午夜精品一区二区三区免费看| 国产成年人精品一区二区| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 男女那种视频在线观看| www.999成人在线观看| 99热这里只有是精品50| 国产免费av片在线观看野外av| 国产av一区在线观看免费| 色综合亚洲欧美另类图片| 中文字幕人妻熟人妻熟丝袜美| 美女黄网站色视频| 又爽又黄a免费视频| 亚洲激情在线av| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 级片在线观看| 国内揄拍国产精品人妻在线| 极品教师在线视频| 五月伊人婷婷丁香| 男人狂女人下面高潮的视频| 自拍偷自拍亚洲精品老妇| 两人在一起打扑克的视频| 国产真实伦视频高清在线观看 | 国产av一区在线观看免费| 91麻豆精品激情在线观看国产| 国内久久婷婷六月综合欲色啪| 草草在线视频免费看| 日本在线视频免费播放| 国产精品av视频在线免费观看| 精品日产1卡2卡| 久久人人精品亚洲av| 精品熟女少妇八av免费久了| 成年版毛片免费区| 69人妻影院| 国产伦一二天堂av在线观看| 亚洲国产欧美人成| 国产av麻豆久久久久久久| 久久中文看片网| 国产成人欧美在线观看| 国产三级在线视频| 女人被狂操c到高潮| 久久国产乱子伦精品免费另类| 欧美3d第一页| 午夜福利高清视频| 国产麻豆成人av免费视频| 午夜两性在线视频| 一夜夜www| 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 欧美精品国产亚洲| 黄色丝袜av网址大全| 2021天堂中文幕一二区在线观| 国产成人aa在线观看| 国内精品美女久久久久久| 亚洲成av人片免费观看| 999久久久精品免费观看国产| 69av精品久久久久久| 免费看光身美女| 亚洲性夜色夜夜综合| 看片在线看免费视频| 亚洲无线在线观看| 成人欧美大片| 亚洲内射少妇av| 丁香六月欧美| 露出奶头的视频| 9191精品国产免费久久| 色综合站精品国产| 啦啦啦观看免费观看视频高清| 国产私拍福利视频在线观看| 级片在线观看| 高清日韩中文字幕在线| 亚洲av成人精品一区久久| 少妇的逼好多水| 国产在线男女| 国产一区二区亚洲精品在线观看| 国产亚洲精品综合一区在线观看| 最近视频中文字幕2019在线8| 国产精品亚洲美女久久久| 我要搜黄色片| 伊人久久精品亚洲午夜| 嫩草影院新地址| 欧美不卡视频在线免费观看| 丝袜美腿在线中文| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 中亚洲国语对白在线视频| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 99精品久久久久人妻精品| 91字幕亚洲| 国产成人欧美在线观看| 在线观看一区二区三区| 色尼玛亚洲综合影院| 宅男免费午夜| 啦啦啦观看免费观看视频高清| 亚洲av电影在线进入| 日本熟妇午夜| 国模一区二区三区四区视频| 成人毛片a级毛片在线播放| 国产69精品久久久久777片| 亚洲欧美日韩无卡精品| 国产成人啪精品午夜网站| 黄片小视频在线播放| 欧美潮喷喷水| 欧美日韩中文字幕国产精品一区二区三区| 91狼人影院| 99久久无色码亚洲精品果冻| 动漫黄色视频在线观看| 午夜精品久久久久久毛片777| 不卡一级毛片| 久久午夜亚洲精品久久| 欧美三级亚洲精品| 老鸭窝网址在线观看| 亚洲色图av天堂| 夜夜爽天天搞| 亚洲精品一卡2卡三卡4卡5卡| 真人一进一出gif抽搐免费| 男人舔奶头视频| 91麻豆av在线| 国产精品一及| 看片在线看免费视频| 久久精品综合一区二区三区| 一本综合久久免费| 欧美成人a在线观看| 熟女电影av网| 久9热在线精品视频| ponron亚洲| 少妇人妻精品综合一区二区 | 99久久成人亚洲精品观看| 一二三四社区在线视频社区8| 亚洲中文日韩欧美视频| 欧美性猛交╳xxx乱大交人| 真人做人爱边吃奶动态| 国产欧美日韩精品亚洲av| 亚洲天堂国产精品一区在线| 国内揄拍国产精品人妻在线| 国产精品伦人一区二区| 人人妻人人澡欧美一区二区| 国产精品美女特级片免费视频播放器| 国产午夜福利久久久久久| 久久久久九九精品影院| h日本视频在线播放| 成人午夜高清在线视频| 特级一级黄色大片|