一、精心選一選
1.關于變量x,y,有如下關系:①x-y=201s;②y2=6x;③;④.其中y是x的函數(shù)的是().
A.①③ B.①④ C.①③④ D.②③④
2.對于一次函數(shù)y=kx+k-l(k≠0),下列說法中正確的是().
A.當O B.當k>0時,y隨x的增大而減小 C.函數(shù)圖象一定經(jīng)過點(-1,一2) D.當k<1時,函數(shù)圖象一定交于y軸的負半軸 3.若等腰三角形的周長是80cm,則下面圖象中能反映這個等腰三角形的腰長y(cm)與底邊長x(cm)的函數(shù)關系的是(). 4.已知一次函數(shù)y=mx+n.若當-6≤x≤2時,對應的y的取值為5≤y≤21,則m-n的值等于(). A.-15 B.-11 C.-15或-11 D.-15或11 5.將直線y=-5x+4向右平移7個單位,再向下平移6個單位,得到的直線的解析式為(). A.y=5x+33 B.y=-5x+33 C.y=5x-37 D.y=-5x-37 6.已知在平面直角坐標系中,直線y=x+1與y=-2x+a的交點在第一象限,則a的取值可以是(). A.2 B.1 C.0 D.一1 7.已知一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,且與x軸交于點(2,0),則關于x的不等式a(x-l)-b>0的解集為(). A.x<-l B.x>-l C.x D.x>l 8.已知過點(2,-3)的直線y=ax+b(a≠0)不經(jīng)過第一象限,設S=a+2b,則S的取值范圍是(). A. B. c D. 二、細心填一填 9.已知點A的坐標為(一1,0),點B在直線y=x上運動,當線段AB最短時,點B的坐標為______. 10.在平面直角坐標系中,已知一次函數(shù)y=kx+6(k≠0)的圖象過點P(1,1),與x軸交于點A,與y軸交于另一點B,且OA=30B.那么點A的坐標是______. 11.已知直線y=ax+5-6a不經(jīng)過第三象限,則a的取值范圍是______. 12.在平面直角坐標系中,點O為原點,直線y=kx+b交x軸于點A(-2,0),交y軸于點B.若△AOB的面積為8,則k的值為______. 13.小剛、小亮從學校出發(fā)到青少年宮參加書法比賽.小剛步行一段時間后,小亮騎自行車沿相同路線行進,兩人均勻速前行.他們之間的距離s(m)與小剛的出發(fā)時間t(min)之間的函數(shù)關系如圖2所示.現(xiàn)有下列說法:①小亮先到達青少年宮;②小亮的速度足小剛的速度的2.5倍;③n=24;④6=480.其中正確的說法是_______(填寫序號). 14.在平面直角坐標系內(nèi),直線與兩坐標軸交于A,B兩點,點O為坐標原點,若在該坐標平面內(nèi)有以點P(P點不與點A,B,O重合)為頂點的直角三角形與Rt△ABO全等,且這個以點P為頂點的直角三角形與Rt△ABO有一條公共邊,則所有符合條件的P點有_____個. 參考答案及點撥 1.C 2.D 3.D 點撥:由題意有.又2y>x,故,解得x<40.故O 4.C 點撥:本題有兩種情形,參看本期第10頁例3. 5.13 6.A 7.A 點撥:由函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,且與x軸交于點(2,0),可知a<0,且2a+b=0,即b=-2a.原不等式化為ax-a-b>0,故ax>a+b=a-2a=-a.x<-l. 8.C 點撥:因直線y=ax+b(a≠0)不經(jīng)過第一象限,故a<0,b≤0.義該直線過點(2,-3),所以2a+b=-3,a= 10.(-2,0)或(4,0) 點撥:由直線AB過點P(1,1),得l=k+b. 令y=0,則x=-2或x=4.A點坐標是(一2,0)或(4,0). 11.a≤0 點撥:本題易漏掉a=0. 12.4或-4 13.①②④ 點撥:小剛的速度為720÷9=80(m/min).第15分鐘時小亮運動了15-9=6(min),運動的距離為15x80=1200(m),故小亮的運動速度為l200÷6=200(m/min). 200÷80=2.5,故②正確;當?shù)?9分鐘后,兩人之間的距離越來越近,說明小亮已經(jīng)到達終點,即小亮先到達青少年宮,①正確;在19min時,小亮劍達青少年宮,此時小亮運動了19-9=10(rnin),運動的總路程為lOx200=2000(m),所以小剛的全部運動時間為2000÷80=25(min),則a=25,故③錯誤;小剛19min的運動路程為19x80=1520(m),故b=2000- 520=480,④正確. 14.7 點撥:如圖3,符合條件的P點共有7個(由每條邊可獲得3個符合條件的P點,但其中有3個點在P2處是重合的,因此真正符合題意的P點共有7個).
中學生數(shù)理化·八年級數(shù)學人教版2015年4期