• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    2015-04-22 06:17:32WANGNiwei王妮煒FEIZesong費(fèi)澤松XINGChengwen邢成文NIJiqing倪吉慶KUANGJingming匡鏡明
    關(guān)鍵詞:吉慶成文

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information (CSI) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    learning-base; multiple-input-multiple-output(MIMO); cognitive radio (CR) network; multiuser

    Current wireless networks are characterized by a static spectrum allocation policy, but it faces the scarcity of frequency spectrum, which limits the development of future wireless communication systems. Recently,cognitive radio (CR) has drawn intensive attentions from both academic and industrial communities[1]. In CR systems, CR users (CR-UE) and primary users (PR-UE) are allowed to share the same spectrum, which is divided into two spectrum sharing policies, i.e., overlay spectrum sharing and underlay spectrum sharing[2].

    It is obvious that frequency spectrum is used more efficiently by above technologies, but the performance for PR systems should not be ignored. In addition, the interference at PR-UEs caused by CR-UEs must be effectively reduced and limited by a predefined interference threshold. An efficient technique in CR networks is that the CR transmitters equipped with multiple antennas exploit the beamforming technique to steer the transmit energy to the intended users[3-4]. As we all known, beamforming can be interpreted as a spatial filter and its implementation is usually based on channel state information (CSI). Unfortunately, PR terminals have no responsibility to transmit pilots to CR terminals, so blind channel estimation algorithms will be preferred to gain the CSI between PR terminals and CR terminals[5].

    To make the underlay spectrum sharing most efficient, environment learning[6-8]is exploited in this paper, which blindly estimates the null spaces of the PR-UEs without implicit information exchange and additional communication overhead. In this paper, the time of each CR frame is fixed. Learning-based algorithm is adopted to estimate the CSI between PR terminals and CR terminals, and channels between CR terminals can be obtained through channel training stage. For user selection stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. With selected users, the total capacity is maximized by constrained to the interference to PR-UEs, which was solved with a closed power allocation solution. The results show that the multi-criteria user selection scheme, which can change the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    1 System model

    In our work, the PR system and the CR system share the same frequency band as shown in Fig.1. For the PR system, each PR-UE is equipped withMpantennas and communicates with the PR base-station (PR-BS) without considering the transmission of the CR system. The CR system has a CR base-station (CR-BS) withMBantennas andKCR users (CR-UEs) withMi(i=1,…,K) antennas. In order to use learning method better, we assumeMp

    Fig.1 Multiuser MIMO CR network

    2 Transmission design and problem formulation

    As shown in Fig.2, the CR transmission strategy can be divided into frames with fixed timeN=Nl+Nt+Ns+Nd, which has four stages, i.e., learning, channel training, user selection and data transmission stage. It is obvious that the last stage brings more data transmission and system throughput, while the others provide better transmission quality. Therefore, it is important to design the length of different stages and the details are described in the following subsections.

    Fig.2 CR frame structure

    2.1 Learning stage

    It is knowh that the PR system has no responsibility to report its transmission to the CR system, so the CR terminals have to listen to the PR system and find the noise space of the transmitted signals. After this period of time, CR transmitters precode the transmitted signals by multiplying the noise space to reduce interference to the PR system, while CR receivers reduce interference from the PR system by multiplying noise space after receiving their targeted signals.

    At symbol periodn, the signals sent from the PR user can be expressed as

    sp(n),n=1,2,…,N

    (1)

    wheresp(n)isanindependentidenticallydistributedrandomsignal.ThenthesignalsreceivedattheCRterminalscanbeformulatedas

    yB(n)=GBsp(n)+zB(n),for the CR-BS

    yi(n)=Gisp(n)+zi(n),for the CR-UE,

    n=1,2,…,Nl

    (2)

    The covariance matrices of received signalsyBandyicanbeexpressedas

    (3)

    Inordertogainthenoisespace,theEVDofcovariancematricesRBandRiareformulatedas

    (4)

    Ifthelearningtimeislongenough,thenoisespacewillbeabsolutelyaccurate.Therefore,theinterferencecanbetotallyeliminatedatCRterminalsasbelow

    (5)

    If the signals transmitted at CR terminals ared(n),theinterferenceatPRterminalswillalsoreducetozero

    (6)

    2.2Channeltrainingstage

    Thechanneltrainingstageisdesignedindownlinktransmissionwithtwogoals,i.e.,obtainingchannelmatricesandprovidingfeedbackofsignalnoiseratio(SNR)toCR-BS.

    WeassumeCR-BStransmitstrainingsequencest(n)toallusersatthesametime,sothesignalreceivedatithCR-UEis

    (7)

    Because the training time is finite and the channel environment is complex in real transmission, estimation error is existed in general. We use the LMMSE-based channel estimator forWianditcanbeobtainedas

    (8)

    where

    (9)

    Thus, the practical signals received at the CR-UEs can be reformulated as

    (10)

    (11)

    Inordertochooseabetteruserset,weneedtoknowtheSNRofeachuser,whichcanbeexpressedas

    (12)

    wheren=Nl+1,…,Nl+Nt. We assume that the channel is quasi static in one CR frame, so the average SNR during the channel training stage can be written as

    (13)

    wheretr(TTH)=NtPBS.

    2.3 User selection stage

    Because a CR-BS cannot serve all the CR-UEs simultaneously a user selection method is necessarily needed andKoptusers can be supported at most before data transmission. A user can be more easily selected with largerfi, which is the user selection function of theithuser.

    Firstly, three traditional user selection schemes are introduced. For the SNR scheme, the user selection function is defined as

    (14)

    Then,bydefiningtheselectedtimesoftheithuser as δi,theuserselectionfunctionofRoundRobin(RR)schemecanbeformulatedas

    fi=i+ΔiK

    (15)

    The last traditional scheme is proportional fair (PF) with user selection function described as

    (16)

    However, users usually have different requirements in real systems, so a multi-criteria user selection method is proposed. Assume that there are Γkindsofcriterionsandapriorityfunctionofithuserrelativetojthuserisdefinedas

    (17)

    (18)

    Thesameaschanneltrainingstage,CR-BStransmitstheselectedusersettoallCR-UEsthroughfeedbackchannelsfinally.Withinfinitecapacity,thereisnoadditionerror.Inaddition,duetothegreatcomputingabilityofCR-BSitisreasonabletoassumeNB=1.

    2.4 Data transmission stage

    (19)

    whereKois the number of selected users,v(n)istheeffectiveinterference-plus-noiseterm.Notethat,notonlytheinterferencefromtheCRtothePRbutalsothatfromthePRtotheCRhasbeencontrolled.

    3 Problem optimization

    Beforechanneltrainingstage,CR-BSdoesnotknowthechannelstateinformation,sothepowershouldbeallocatedequally,

    (20)

    wherePBis the transmit power of CR-BS. Thus, Eq.(11) can be reformulated as

    (21)

    Consideringtheimperfectchanneltraininganduserselectionschemes,weaimtoallocatethepowerofbeamsforeachCR-UEtomaximizethesystemcapacity.Theoptimalproblemis

    (22)

    Thecapacityinthedatatransmissionstageis

    (23)

    where the covariance matrix defined as

    (24)

    then the capacity in Eq.(23) becomes

    (25)

    where

    Λi=diag{λi,1,λi,2,…,λi,(Mi-Mp)}

    diag{xi,1,xi,2,…,xi,(Mi-Mp)}

    (26)

    In order to optimize the total capacity, two stages are proposed.

    ① For a fixedNt, we use water-filling algorithm[9]to allocate the power and the solution is that if ρei∈(qi,c-1,qi,c],then

    (27)

    where

    (28)

    ②Basedontheoptimalpower,wesearchfortherangeofNtto find the maximal capacity, which has the final optimal solution.

    4 Simulation results

    In the simulation, the CR network has one PR-UE withMp=2 antennas, one CR-BS withMB=4 antennas andK=5 CR-UEs withM1=…=MK=4 antennas. In a transmission,Ko=4 users can be transmitted simultaneously at most. When the total time of a CR frame isN=60, the learning stage can be stable withNl=10[7]. According to the standard of LTE, we setPB=1,PU=0.2. In the simulation, we assume that user 3 has bad channel state, i.e. it is far away from the CR-BS or the interference cannot be dismissed. We put all these factors as a part of noise, so the noise power vector is ={1,1,5,1,1}.

    Fig.3 shows that SNR scheme has the best performance, while RR scheme has the worst performance because of considering fairness only. PF scheme is a little better than RR scheme because it takes both fairness and system performance into consideration. However, multi-criteria scheme considers both aspects with the same weightφ1=φ2=0.5 and outperforms RR scheme. In addition, multi-criteria is more flexible and can achieve different levels of performance by changing the weights.

    As Fig.4 illustrated that user 3 is selected barely while the other users are selected frequently in SNR scheme, which causes great unfairness between users. Although some users have bad channel conditions, they may still transmit important information, i.e., emergency calls. Obviously, the other three schemes are better programed in this case except SNR scheme. In fact, the emergency incident does not occur frequently, so in most cases the system performance is more important than fairness. To sum all, multi-criteria scheme fits the practical situation and has a trade off between both sides.

    Fig.3 Total capacity for the four schemes verses Nt

    Fig.4 Selected probabilities of users for the four schemes

    5 Conclusion

    In this paper, we have proposed a multi-criteria user selection scheme which provides the best service user set for the learning-based multiuser MIMO CR networks. In addition channel training is exploited to gain the channels between CR terminals. The total capacity is maximized with the interference constraint at PR-UEs. Simulation results demonstrate that the multi-criteria user selection scheme achieves a tradeoff be-tween user fairness and system performance than SNR, RR and PF schemes. Moreover, it is more flexible by changing the weight of criteria.

    [1] Liang Yingchang, Chen Kwangcheng, Li Geoffrey Ye, et al. Cognitive radio networking and communications: an overview [J]. IEEE Transactions on Vehicular Technology , 2011, 60(7): 3386-3407.

    [2] Zhao Qing, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine, 2007, 24(3): 79-89.

    [3] Tajer A, Prasad N, Wang Xiaodong. Beamforming and rate allocation in MISO cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 362-377.

    [4] Hamdi K, Zarifi K, Ben Letaief K, et al. Beamforming in relay-assisted cognitive radio systems: a convex optimization approach [C]∥IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011.

    [5] Noam Y, Goldsmith A J. Blind null-space learning for spatial coexistence in MIMO cognitive radios[C]∥IEEE International Conference on Communications (ICC), Ottawa, Ontario, Canada, 2012.

    [6] Zhang Rui, Gao Feifei, Liang Yingchang. Cognitive beamforming made practical: effective interference channel and learning-throughput tradeoff [J]. IEEE Transactions on Communications, 2010, 58(2): 706-718.

    [7] Gao Feifei, Zhang Rui, Liang Yingchang, et al. Design of learning-based MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1707-1720.

    [8] Li Shuo, Fei Zesong, Xing Chengwen, et al. Joint resource allocation for learning-based cognitive radio networks with MIMO-OFDM relay-aided transmissions[C]∥IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013.

    [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: Cambridge University Press, 2004.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0216

    TN 929.5 Document code: A Article ID: 1004- 0579(2015)02- 0240- 06

    Received 2014- 03- 18

    Supported by National S & T Major Project of China (2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    吉慶成文
    “00后”的愛情標(biāo)簽
    徐成文
    大江南北(2023年2期)2023-02-11 05:45:56
    我和老伴的快樂“毽 ”身法
    晚秋
    寶藏(2021年5期)2021-12-01 10:15:58
    富庶吉慶的鯉魚
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    剪紙欣賞
    中老年保健(2017年1期)2017-06-02 06:14:42
    成文昊設(shè)計(jì)作品
    Low-complexity transceiver design scheme based on channel null-space feedback
    一輩子的藍(lán)顏
    亚洲国产欧洲综合997久久,| 亚洲 欧美 日韩 在线 免费| 国产亚洲av高清不卡| 国产精品影院久久| 亚洲精品美女久久久久99蜜臀| 成人午夜高清在线视频| 久久精品国产99精品国产亚洲性色| 国产成人av激情在线播放| 国产乱人伦免费视频| 亚洲国产精品sss在线观看| 久久精品影院6| 十八禁人妻一区二区| 99在线视频只有这里精品首页| 久久久久国内视频| 久久久久久大精品| 国产精品九九99| 国产精品精品国产色婷婷| 91在线精品国自产拍蜜月 | 1024香蕉在线观看| 青草久久国产| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 国产精品久久久人人做人人爽| 91在线精品国自产拍蜜月 | 99国产精品一区二区三区| 亚洲一区二区三区色噜噜| 人妻夜夜爽99麻豆av| 嫩草影视91久久| 亚洲欧美日韩无卡精品| 伊人久久大香线蕉亚洲五| 波多野结衣高清无吗| 91av网一区二区| 亚洲片人在线观看| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 女同久久另类99精品国产91| 又紧又爽又黄一区二区| 亚洲午夜精品一区,二区,三区| 一区二区三区激情视频| 免费在线观看影片大全网站| 成年女人看的毛片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| av欧美777| 女生性感内裤真人,穿戴方法视频| 亚洲av第一区精品v没综合| 亚洲成人久久爱视频| 成人性生交大片免费视频hd| 欧美中文日本在线观看视频| 99久久综合精品五月天人人| 国产av一区在线观看免费| 国产探花在线观看一区二区| 久久精品国产综合久久久| 999久久久国产精品视频| 99在线人妻在线中文字幕| 亚洲七黄色美女视频| 五月玫瑰六月丁香| 免费在线观看亚洲国产| 国产日本99.免费观看| 免费看日本二区| 国产av麻豆久久久久久久| 岛国在线观看网站| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 热99在线观看视频| 国产伦人伦偷精品视频| 在线观看日韩欧美| 久久久久精品国产欧美久久久| 天堂网av新在线| 少妇熟女aⅴ在线视频| 999精品在线视频| 欧美在线黄色| 九色成人免费人妻av| 久久中文字幕一级| 给我免费播放毛片高清在线观看| 国产97色在线日韩免费| 亚洲天堂国产精品一区在线| 91在线精品国自产拍蜜月 | 少妇熟女aⅴ在线视频| 亚洲成av人片在线播放无| 日日夜夜操网爽| 欧美绝顶高潮抽搐喷水| 动漫黄色视频在线观看| 欧美又色又爽又黄视频| 久久99热这里只有精品18| av在线天堂中文字幕| 麻豆成人午夜福利视频| 国产精品野战在线观看| 巨乳人妻的诱惑在线观看| av视频在线观看入口| 熟女少妇亚洲综合色aaa.| 亚洲色图av天堂| 久久久成人免费电影| 18美女黄网站色大片免费观看| 国产精品永久免费网站| 熟妇人妻久久中文字幕3abv| 国产黄片美女视频| 国产亚洲精品久久久久久毛片| 不卡一级毛片| 欧美+亚洲+日韩+国产| 2021天堂中文幕一二区在线观| 国产精品免费一区二区三区在线| 国产精品av久久久久免费| 午夜免费激情av| 国产亚洲欧美98| 美女被艹到高潮喷水动态| 成人高潮视频无遮挡免费网站| 亚洲真实伦在线观看| 97超视频在线观看视频| 国产精品 国内视频| 天堂影院成人在线观看| 嫩草影视91久久| 在线观看美女被高潮喷水网站 | 听说在线观看完整版免费高清| 夜夜夜夜夜久久久久| www日本在线高清视频| avwww免费| 天堂√8在线中文| 色老头精品视频在线观看| 亚洲专区国产一区二区| 国产一区二区在线观看日韩 | 国产精品99久久久久久久久| 精品电影一区二区在线| 美女午夜性视频免费| 久久亚洲精品不卡| 国产成人福利小说| 18美女黄网站色大片免费观看| 国产精品亚洲av一区麻豆| 窝窝影院91人妻| 国产一级毛片七仙女欲春2| 美女大奶头视频| 色播亚洲综合网| 久久久久久久久免费视频了| 久久人人精品亚洲av| 母亲3免费完整高清在线观看| 国产aⅴ精品一区二区三区波| 亚洲熟女毛片儿| 日韩三级视频一区二区三区| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 国产av不卡久久| aaaaa片日本免费| 国产精品国产高清国产av| 国产91精品成人一区二区三区| 男人和女人高潮做爰伦理| 国产1区2区3区精品| АⅤ资源中文在线天堂| www.www免费av| 亚洲欧美日韩高清在线视频| 中文字幕人成人乱码亚洲影| 香蕉丝袜av| 丰满的人妻完整版| 女人高潮潮喷娇喘18禁视频| 久久中文看片网| a在线观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 精品国产美女av久久久久小说| 国产精品 国内视频| 婷婷丁香在线五月| 又黄又粗又硬又大视频| 精品人妻1区二区| 亚洲中文av在线| 精品欧美国产一区二区三| 国产精品 欧美亚洲| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 香蕉丝袜av| 色视频www国产| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 他把我摸到了高潮在线观看| 欧美激情在线99| 亚洲精品456在线播放app | 国产激情久久老熟女| 久久久精品大字幕| 免费看光身美女| 国产精品久久久久久亚洲av鲁大| 九九热线精品视视频播放| 在线观看免费午夜福利视频| 成人欧美大片| 久久久久久九九精品二区国产| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区视频在线 | 精品一区二区三区四区五区乱码| 高清在线国产一区| 国语自产精品视频在线第100页| 免费在线观看影片大全网站| 亚洲18禁久久av| 久久九九热精品免费| 成人18禁在线播放| 欧美绝顶高潮抽搐喷水| 午夜免费成人在线视频| 视频区欧美日本亚洲| 久99久视频精品免费| 欧美一级a爱片免费观看看| av在线蜜桃| 久久99热这里只有精品18| 桃红色精品国产亚洲av| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2| 99在线人妻在线中文字幕| 狂野欧美白嫩少妇大欣赏| 中文在线观看免费www的网站| 亚洲精品在线美女| 色噜噜av男人的天堂激情| 亚洲无线在线观看| 国产美女午夜福利| 窝窝影院91人妻| 免费在线观看影片大全网站| 无遮挡黄片免费观看| 一二三四在线观看免费中文在| 巨乳人妻的诱惑在线观看| 国产黄色小视频在线观看| 午夜激情欧美在线| 中文在线观看免费www的网站| 欧美乱码精品一区二区三区| 18禁观看日本| 99在线人妻在线中文字幕| 一本一本综合久久| 国产综合懂色| 脱女人内裤的视频| 免费看日本二区| 中文资源天堂在线| 99久久久亚洲精品蜜臀av| 亚洲激情在线av| 嫩草影院入口| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 欧美又色又爽又黄视频| 久久久精品欧美日韩精品| 美女高潮的动态| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 免费看日本二区| 成人av一区二区三区在线看| 最近最新免费中文字幕在线| 免费在线观看视频国产中文字幕亚洲| 国产精品九九99| 黄色丝袜av网址大全| av天堂在线播放| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 18禁美女被吸乳视频| 国产欧美日韩精品一区二区| 一进一出好大好爽视频| 在线免费观看不下载黄p国产 | 老司机午夜福利在线观看视频| 成人永久免费在线观看视频| 丁香欧美五月| 欧美性猛交╳xxx乱大交人| 99久久精品国产亚洲精品| 欧美日本视频| 草草在线视频免费看| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 男女之事视频高清在线观看| 搡老熟女国产l中国老女人| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片 | 母亲3免费完整高清在线观看| 欧美中文日本在线观看视频| 国产欧美日韩精品一区二区| 两个人的视频大全免费| АⅤ资源中文在线天堂| 一级a爱片免费观看的视频| 国产午夜精品久久久久久| 99热6这里只有精品| 麻豆一二三区av精品| 免费av毛片视频| www国产在线视频色| 午夜视频精品福利| a在线观看视频网站| 少妇熟女aⅴ在线视频| 亚洲无线在线观看| 国产1区2区3区精品| 国产精品,欧美在线| 老司机福利观看| 久久精品人妻少妇| 亚洲成人久久爱视频| 日韩中文字幕欧美一区二区| a级毛片在线看网站| 久久精品亚洲精品国产色婷小说| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 亚洲国产精品999在线| 无人区码免费观看不卡| 国产精品综合久久久久久久免费| 一本一本综合久久| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站 | av女优亚洲男人天堂 | 女警被强在线播放| 校园春色视频在线观看| 免费看a级黄色片| 精品熟女少妇八av免费久了| 午夜视频精品福利| 99精品久久久久人妻精品| 黑人巨大精品欧美一区二区mp4| 两个人视频免费观看高清| 色综合婷婷激情| 亚洲熟妇熟女久久| 国产精品电影一区二区三区| 深夜精品福利| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av| 草草在线视频免费看| 亚洲成人久久爱视频| 亚洲欧美日韩东京热| 久久精品aⅴ一区二区三区四区| 99精品久久久久人妻精品| 欧美日本视频| 久久亚洲精品不卡| 黄片大片在线免费观看| 国产精品野战在线观看| 国产精品久久久av美女十八| 一边摸一边抽搐一进一小说| 黄色丝袜av网址大全| www.自偷自拍.com| 午夜亚洲福利在线播放| av黄色大香蕉| 成人国产一区最新在线观看| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| 久久中文字幕一级| 精品久久久久久久久久久久久| 在线十欧美十亚洲十日本专区| 国产精品综合久久久久久久免费| 91麻豆精品激情在线观看国产| 欧美在线一区亚洲| 天堂影院成人在线观看| 午夜视频精品福利| 亚洲欧美日韩卡通动漫| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 国产aⅴ精品一区二区三区波| 精品福利观看| avwww免费| 岛国在线免费视频观看| 欧美3d第一页| 韩国av一区二区三区四区| 在线视频色国产色| 欧美色视频一区免费| 欧美日韩国产亚洲二区| 一级黄色大片毛片| 黄色 视频免费看| 女人高潮潮喷娇喘18禁视频| 国产不卡一卡二| 深夜精品福利| 久久香蕉国产精品| 国产黄色小视频在线观看| 久久中文看片网| 中文字幕人妻丝袜一区二区| 男女午夜视频在线观看| 国产不卡一卡二| 99精品欧美一区二区三区四区| 久久久久久国产a免费观看| 欧美性猛交╳xxx乱大交人| 天天躁日日操中文字幕| 欧美乱妇无乱码| 在线免费观看不下载黄p国产 | 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影| 国产主播在线观看一区二区| www.999成人在线观看| 一个人免费在线观看的高清视频| 亚洲av熟女| 亚洲色图 男人天堂 中文字幕| 精品无人区乱码1区二区| 亚洲avbb在线观看| 日韩大尺度精品在线看网址| 亚洲av成人一区二区三| 婷婷精品国产亚洲av| 久久久久久人人人人人| 91av网一区二区| 亚洲18禁久久av| 在线观看美女被高潮喷水网站 | 午夜免费激情av| 黄色片一级片一级黄色片| 特大巨黑吊av在线直播| 天堂网av新在线| 无限看片的www在线观看| 成人特级黄色片久久久久久久| 日韩欧美国产一区二区入口| 人妻夜夜爽99麻豆av| 精品国产乱码久久久久久男人| 美女高潮的动态| 久久久国产成人精品二区| 最近最新中文字幕大全电影3| 亚洲欧美日韩高清在线视频| 亚洲自偷自拍图片 自拍| 久久精品91蜜桃| 亚洲美女黄片视频| 精品乱码久久久久久99久播| 免费大片18禁| 亚洲欧美日韩高清专用| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 精品福利观看| 欧美+亚洲+日韩+国产| 丰满的人妻完整版| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 国产精品亚洲av一区麻豆| 怎么达到女性高潮| 网址你懂的国产日韩在线| 日韩欧美国产一区二区入口| 一进一出好大好爽视频| 香蕉丝袜av| 欧美日韩一级在线毛片| 757午夜福利合集在线观看| 成年女人永久免费观看视频| 欧美国产日韩亚洲一区| 女同久久另类99精品国产91| 国产一区二区激情短视频| 国产精品久久电影中文字幕| 国内少妇人妻偷人精品xxx网站 | 757午夜福利合集在线观看| 国产三级中文精品| 久久中文看片网| 成人午夜高清在线视频| 99热6这里只有精品| 久久久精品大字幕| 网址你懂的国产日韩在线| 亚洲乱码一区二区免费版| 一二三四社区在线视频社区8| 天天躁日日操中文字幕| 日本黄色片子视频| 一级毛片女人18水好多| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| 51午夜福利影视在线观看| 一区二区三区国产精品乱码| 99久久精品热视频| 99国产精品一区二区蜜桃av| 两人在一起打扑克的视频| 一级毛片精品| 不卡一级毛片| 午夜免费观看网址| 免费搜索国产男女视频| 久久草成人影院| 亚洲av成人一区二区三| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 法律面前人人平等表现在哪些方面| 婷婷精品国产亚洲av在线| 国产高清有码在线观看视频| 性色av乱码一区二区三区2| 毛片女人毛片| 三级毛片av免费| 久久伊人香网站| 成年版毛片免费区| 日韩 欧美 亚洲 中文字幕| 偷拍熟女少妇极品色| 国内精品久久久久久久电影| 窝窝影院91人妻| 亚洲电影在线观看av| 国产欧美日韩一区二区三| 亚洲国产欧美一区二区综合| 欧美一级毛片孕妇| 熟妇人妻久久中文字幕3abv| 人人妻,人人澡人人爽秒播| 视频区欧美日本亚洲| 女警被强在线播放| 国产精品野战在线观看| 国产爱豆传媒在线观看| 九九热线精品视视频播放| 日日摸夜夜添夜夜添小说| 美女高潮喷水抽搐中文字幕| 国产精品 欧美亚洲| 国产三级中文精品| 欧美黑人巨大hd| 中文字幕av在线有码专区| 久久这里只有精品中国| av片东京热男人的天堂| 999久久久国产精品视频| 国产成人影院久久av| 国产精品1区2区在线观看.| 国产成人精品无人区| 欧美高清成人免费视频www| 国产精品久久久人人做人人爽| 欧美3d第一页| 人人妻人人澡欧美一区二区| 午夜亚洲福利在线播放| 亚洲avbb在线观看| 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 成人av在线播放网站| 久久久精品大字幕| 日本黄色视频三级网站网址| 久久精品影院6| 免费在线观看成人毛片| 亚洲人成电影免费在线| 人人妻人人看人人澡| 久久久国产欧美日韩av| 日本a在线网址| 蜜桃久久精品国产亚洲av| 国产精品亚洲一级av第二区| 男女视频在线观看网站免费| 国产毛片a区久久久久| 精品久久久久久久毛片微露脸| 国产精品一区二区免费欧美| 男人舔女人下体高潮全视频| bbb黄色大片| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 国产av麻豆久久久久久久| 国产蜜桃级精品一区二区三区| 美女高潮的动态| 成人av一区二区三区在线看| 1024手机看黄色片| 麻豆成人av在线观看| 天堂动漫精品| 欧美3d第一页| 在线观看66精品国产| 亚洲精品粉嫩美女一区| 国产成人欧美在线观看| 一级黄色大片毛片| 国产一区二区激情短视频| 久久久国产成人精品二区| 久久国产精品影院| 国产精品九九99| 亚洲精品456在线播放app | 精品一区二区三区视频在线观看免费| 亚洲精品粉嫩美女一区| 中文字幕精品亚洲无线码一区| 亚洲午夜理论影院| 亚洲国产看品久久| 久久午夜亚洲精品久久| 欧美日本视频| 草草在线视频免费看| 后天国语完整版免费观看| 亚洲国产日韩欧美精品在线观看 | 国产精品一区二区精品视频观看| 五月玫瑰六月丁香| 国产日本99.免费观看| av中文乱码字幕在线| 桃色一区二区三区在线观看| 日本成人三级电影网站| 久久久国产精品麻豆| 蜜桃久久精品国产亚洲av| 国内精品美女久久久久久| or卡值多少钱| 中文字幕最新亚洲高清| 国产精品久久久久久亚洲av鲁大| 天天躁日日操中文字幕| 亚洲中文日韩欧美视频| 黄色女人牲交| 亚洲成a人片在线一区二区| 九九在线视频观看精品| or卡值多少钱| 男女那种视频在线观看| 欧美av亚洲av综合av国产av| 午夜福利视频1000在线观看| 一本综合久久免费| 国产精品一区二区三区四区久久| 欧美丝袜亚洲另类 | 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| www.精华液| 精品人妻1区二区| 俺也久久电影网| 免费看光身美女| 女生性感内裤真人,穿戴方法视频| 国产精品久久电影中文字幕| 97碰自拍视频| 18禁裸乳无遮挡免费网站照片| 久久精品国产综合久久久| 亚洲av免费在线观看| 老司机午夜福利在线观看视频| 人妻夜夜爽99麻豆av| tocl精华| 国产三级中文精品| 久久久久国产一级毛片高清牌| 一进一出好大好爽视频| 成年女人毛片免费观看观看9| 成人av一区二区三区在线看| 非洲黑人性xxxx精品又粗又长| 日本与韩国留学比较| 欧美极品一区二区三区四区| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 99国产精品99久久久久| 我要搜黄色片| 国产精品99久久99久久久不卡| 男插女下体视频免费在线播放| 免费在线观看影片大全网站| 国产日本99.免费观看| 国产精品香港三级国产av潘金莲| 精品无人区乱码1区二区| 亚洲一区二区三区色噜噜| 母亲3免费完整高清在线观看| 特级一级黄色大片| 露出奶头的视频| 亚洲 欧美一区二区三区| 色吧在线观看| www.熟女人妻精品国产| 久久久久久久久久黄片| 国产欧美日韩精品一区二区| 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 欧美乱妇无乱码| 村上凉子中文字幕在线| 欧美中文综合在线视频| www日本黄色视频网| 无人区码免费观看不卡| 午夜视频精品福利| 麻豆成人午夜福利视频|