• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    2015-04-22 06:17:32WANGNiwei王妮煒FEIZesong費(fèi)澤松XINGChengwen邢成文NIJiqing倪吉慶KUANGJingming匡鏡明
    關(guān)鍵詞:吉慶成文

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-criteria user selection scheme for learning-based multiuser MIMO cognitive radio networks

    WANG Ni-wei(王妮煒), FEI Ze-song(費(fèi)澤松), XING Cheng-wen(邢成文),NI Ji-qing(倪吉慶), KUANG Jing-ming(匡鏡明)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China)

    For multiuser multiple-input-multiple-output (MIMO) cognitive radio (CR) networks a four-stage transmiision structure is proposed. In learning stage, the learning-based algorithm with low overhead and high flexibility is exploited to estimate the channel state information (CSI) between primary (PR) terminals and CR terminals. By using channel training in the second stage of CR frame, the channels between CR terminals can be achieved. In the third stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. In data transmission stage, the total capacity maximization problem is solved with the interference constraint of PR terminals. Finally, simulation results show that the multi-criteria user selection scheme, which has the ability of changing the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    learning-base; multiple-input-multiple-output(MIMO); cognitive radio (CR) network; multiuser

    Current wireless networks are characterized by a static spectrum allocation policy, but it faces the scarcity of frequency spectrum, which limits the development of future wireless communication systems. Recently,cognitive radio (CR) has drawn intensive attentions from both academic and industrial communities[1]. In CR systems, CR users (CR-UE) and primary users (PR-UE) are allowed to share the same spectrum, which is divided into two spectrum sharing policies, i.e., overlay spectrum sharing and underlay spectrum sharing[2].

    It is obvious that frequency spectrum is used more efficiently by above technologies, but the performance for PR systems should not be ignored. In addition, the interference at PR-UEs caused by CR-UEs must be effectively reduced and limited by a predefined interference threshold. An efficient technique in CR networks is that the CR transmitters equipped with multiple antennas exploit the beamforming technique to steer the transmit energy to the intended users[3-4]. As we all known, beamforming can be interpreted as a spatial filter and its implementation is usually based on channel state information (CSI). Unfortunately, PR terminals have no responsibility to transmit pilots to CR terminals, so blind channel estimation algorithms will be preferred to gain the CSI between PR terminals and CR terminals[5].

    To make the underlay spectrum sharing most efficient, environment learning[6-8]is exploited in this paper, which blindly estimates the null spaces of the PR-UEs without implicit information exchange and additional communication overhead. In this paper, the time of each CR frame is fixed. Learning-based algorithm is adopted to estimate the CSI between PR terminals and CR terminals, and channels between CR terminals can be obtained through channel training stage. For user selection stage, a multi-criteria user selection scheme is proposed to choose the best user set for service. With selected users, the total capacity is maximized by constrained to the interference to PR-UEs, which was solved with a closed power allocation solution. The results show that the multi-criteria user selection scheme, which can change the weights of criterions, is more flexible than the other three traditional schemes and achieves a tradeoff between user fairness and system performance.

    1 System model

    In our work, the PR system and the CR system share the same frequency band as shown in Fig.1. For the PR system, each PR-UE is equipped withMpantennas and communicates with the PR base-station (PR-BS) without considering the transmission of the CR system. The CR system has a CR base-station (CR-BS) withMBantennas andKCR users (CR-UEs) withMi(i=1,…,K) antennas. In order to use learning method better, we assumeMp

    Fig.1 Multiuser MIMO CR network

    2 Transmission design and problem formulation

    As shown in Fig.2, the CR transmission strategy can be divided into frames with fixed timeN=Nl+Nt+Ns+Nd, which has four stages, i.e., learning, channel training, user selection and data transmission stage. It is obvious that the last stage brings more data transmission and system throughput, while the others provide better transmission quality. Therefore, it is important to design the length of different stages and the details are described in the following subsections.

    Fig.2 CR frame structure

    2.1 Learning stage

    It is knowh that the PR system has no responsibility to report its transmission to the CR system, so the CR terminals have to listen to the PR system and find the noise space of the transmitted signals. After this period of time, CR transmitters precode the transmitted signals by multiplying the noise space to reduce interference to the PR system, while CR receivers reduce interference from the PR system by multiplying noise space after receiving their targeted signals.

    At symbol periodn, the signals sent from the PR user can be expressed as

    sp(n),n=1,2,…,N

    (1)

    wheresp(n)isanindependentidenticallydistributedrandomsignal.ThenthesignalsreceivedattheCRterminalscanbeformulatedas

    yB(n)=GBsp(n)+zB(n),for the CR-BS

    yi(n)=Gisp(n)+zi(n),for the CR-UE,

    n=1,2,…,Nl

    (2)

    The covariance matrices of received signalsyBandyicanbeexpressedas

    (3)

    Inordertogainthenoisespace,theEVDofcovariancematricesRBandRiareformulatedas

    (4)

    Ifthelearningtimeislongenough,thenoisespacewillbeabsolutelyaccurate.Therefore,theinterferencecanbetotallyeliminatedatCRterminalsasbelow

    (5)

    If the signals transmitted at CR terminals ared(n),theinterferenceatPRterminalswillalsoreducetozero

    (6)

    2.2Channeltrainingstage

    Thechanneltrainingstageisdesignedindownlinktransmissionwithtwogoals,i.e.,obtainingchannelmatricesandprovidingfeedbackofsignalnoiseratio(SNR)toCR-BS.

    WeassumeCR-BStransmitstrainingsequencest(n)toallusersatthesametime,sothesignalreceivedatithCR-UEis

    (7)

    Because the training time is finite and the channel environment is complex in real transmission, estimation error is existed in general. We use the LMMSE-based channel estimator forWianditcanbeobtainedas

    (8)

    where

    (9)

    Thus, the practical signals received at the CR-UEs can be reformulated as

    (10)

    (11)

    Inordertochooseabetteruserset,weneedtoknowtheSNRofeachuser,whichcanbeexpressedas

    (12)

    wheren=Nl+1,…,Nl+Nt. We assume that the channel is quasi static in one CR frame, so the average SNR during the channel training stage can be written as

    (13)

    wheretr(TTH)=NtPBS.

    2.3 User selection stage

    Because a CR-BS cannot serve all the CR-UEs simultaneously a user selection method is necessarily needed andKoptusers can be supported at most before data transmission. A user can be more easily selected with largerfi, which is the user selection function of theithuser.

    Firstly, three traditional user selection schemes are introduced. For the SNR scheme, the user selection function is defined as

    (14)

    Then,bydefiningtheselectedtimesoftheithuser as δi,theuserselectionfunctionofRoundRobin(RR)schemecanbeformulatedas

    fi=i+ΔiK

    (15)

    The last traditional scheme is proportional fair (PF) with user selection function described as

    (16)

    However, users usually have different requirements in real systems, so a multi-criteria user selection method is proposed. Assume that there are Γkindsofcriterionsandapriorityfunctionofithuserrelativetojthuserisdefinedas

    (17)

    (18)

    Thesameaschanneltrainingstage,CR-BStransmitstheselectedusersettoallCR-UEsthroughfeedbackchannelsfinally.Withinfinitecapacity,thereisnoadditionerror.Inaddition,duetothegreatcomputingabilityofCR-BSitisreasonabletoassumeNB=1.

    2.4 Data transmission stage

    (19)

    whereKois the number of selected users,v(n)istheeffectiveinterference-plus-noiseterm.Notethat,notonlytheinterferencefromtheCRtothePRbutalsothatfromthePRtotheCRhasbeencontrolled.

    3 Problem optimization

    Beforechanneltrainingstage,CR-BSdoesnotknowthechannelstateinformation,sothepowershouldbeallocatedequally,

    (20)

    wherePBis the transmit power of CR-BS. Thus, Eq.(11) can be reformulated as

    (21)

    Consideringtheimperfectchanneltraininganduserselectionschemes,weaimtoallocatethepowerofbeamsforeachCR-UEtomaximizethesystemcapacity.Theoptimalproblemis

    (22)

    Thecapacityinthedatatransmissionstageis

    (23)

    where the covariance matrix defined as

    (24)

    then the capacity in Eq.(23) becomes

    (25)

    where

    Λi=diag{λi,1,λi,2,…,λi,(Mi-Mp)}

    diag{xi,1,xi,2,…,xi,(Mi-Mp)}

    (26)

    In order to optimize the total capacity, two stages are proposed.

    ① For a fixedNt, we use water-filling algorithm[9]to allocate the power and the solution is that if ρei∈(qi,c-1,qi,c],then

    (27)

    where

    (28)

    ②Basedontheoptimalpower,wesearchfortherangeofNtto find the maximal capacity, which has the final optimal solution.

    4 Simulation results

    In the simulation, the CR network has one PR-UE withMp=2 antennas, one CR-BS withMB=4 antennas andK=5 CR-UEs withM1=…=MK=4 antennas. In a transmission,Ko=4 users can be transmitted simultaneously at most. When the total time of a CR frame isN=60, the learning stage can be stable withNl=10[7]. According to the standard of LTE, we setPB=1,PU=0.2. In the simulation, we assume that user 3 has bad channel state, i.e. it is far away from the CR-BS or the interference cannot be dismissed. We put all these factors as a part of noise, so the noise power vector is ={1,1,5,1,1}.

    Fig.3 shows that SNR scheme has the best performance, while RR scheme has the worst performance because of considering fairness only. PF scheme is a little better than RR scheme because it takes both fairness and system performance into consideration. However, multi-criteria scheme considers both aspects with the same weightφ1=φ2=0.5 and outperforms RR scheme. In addition, multi-criteria is more flexible and can achieve different levels of performance by changing the weights.

    As Fig.4 illustrated that user 3 is selected barely while the other users are selected frequently in SNR scheme, which causes great unfairness between users. Although some users have bad channel conditions, they may still transmit important information, i.e., emergency calls. Obviously, the other three schemes are better programed in this case except SNR scheme. In fact, the emergency incident does not occur frequently, so in most cases the system performance is more important than fairness. To sum all, multi-criteria scheme fits the practical situation and has a trade off between both sides.

    Fig.3 Total capacity for the four schemes verses Nt

    Fig.4 Selected probabilities of users for the four schemes

    5 Conclusion

    In this paper, we have proposed a multi-criteria user selection scheme which provides the best service user set for the learning-based multiuser MIMO CR networks. In addition channel training is exploited to gain the channels between CR terminals. The total capacity is maximized with the interference constraint at PR-UEs. Simulation results demonstrate that the multi-criteria user selection scheme achieves a tradeoff be-tween user fairness and system performance than SNR, RR and PF schemes. Moreover, it is more flexible by changing the weight of criteria.

    [1] Liang Yingchang, Chen Kwangcheng, Li Geoffrey Ye, et al. Cognitive radio networking and communications: an overview [J]. IEEE Transactions on Vehicular Technology , 2011, 60(7): 3386-3407.

    [2] Zhao Qing, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine, 2007, 24(3): 79-89.

    [3] Tajer A, Prasad N, Wang Xiaodong. Beamforming and rate allocation in MISO cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 362-377.

    [4] Hamdi K, Zarifi K, Ben Letaief K, et al. Beamforming in relay-assisted cognitive radio systems: a convex optimization approach [C]∥IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011.

    [5] Noam Y, Goldsmith A J. Blind null-space learning for spatial coexistence in MIMO cognitive radios[C]∥IEEE International Conference on Communications (ICC), Ottawa, Ontario, Canada, 2012.

    [6] Zhang Rui, Gao Feifei, Liang Yingchang. Cognitive beamforming made practical: effective interference channel and learning-throughput tradeoff [J]. IEEE Transactions on Communications, 2010, 58(2): 706-718.

    [7] Gao Feifei, Zhang Rui, Liang Yingchang, et al. Design of learning-based MIMO cognitive radio systems[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1707-1720.

    [8] Li Shuo, Fei Zesong, Xing Chengwen, et al. Joint resource allocation for learning-based cognitive radio networks with MIMO-OFDM relay-aided transmissions[C]∥IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, 2013.

    [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: Cambridge University Press, 2004.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0216

    TN 929.5 Document code: A Article ID: 1004- 0579(2015)02- 0240- 06

    Received 2014- 03- 18

    Supported by National S & T Major Project of China (2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    吉慶成文
    “00后”的愛情標(biāo)簽
    徐成文
    大江南北(2023年2期)2023-02-11 05:45:56
    我和老伴的快樂“毽 ”身法
    晚秋
    寶藏(2021年5期)2021-12-01 10:15:58
    富庶吉慶的鯉魚
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    剪紙欣賞
    中老年保健(2017年1期)2017-06-02 06:14:42
    成文昊設(shè)計(jì)作品
    Low-complexity transceiver design scheme based on channel null-space feedback
    一輩子的藍(lán)顏
    啦啦啦在线免费观看视频4| 日韩电影二区| 国产成人av激情在线播放| av国产精品久久久久影院| 热re99久久国产66热| 老司机亚洲免费影院| 18禁动态无遮挡网站| 成年动漫av网址| 精品国产一区二区三区久久久樱花| 丝袜美腿诱惑在线| 婷婷色综合大香蕉| 成人影院久久| 亚洲国产精品成人久久小说| 国产精品久久久av美女十八| 黄频高清免费视频| 亚洲av.av天堂| 久久青草综合色| 韩国av在线不卡| 国产又爽黄色视频| 在线天堂最新版资源| 波多野结衣一区麻豆| 丰满乱子伦码专区| 在现免费观看毛片| 亚洲国产成人一精品久久久| 高清在线视频一区二区三区| 不卡视频在线观看欧美| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 午夜久久久在线观看| 咕卡用的链子| 伊人久久国产一区二区| 丝袜美腿诱惑在线| 免费不卡的大黄色大毛片视频在线观看| 我的亚洲天堂| 亚洲欧美日韩另类电影网站| 热99久久久久精品小说推荐| freevideosex欧美| 国产精品女同一区二区软件| 少妇人妻精品综合一区二区| 国产深夜福利视频在线观看| 国产乱来视频区| a级片在线免费高清观看视频| 一本大道久久a久久精品| 夫妻午夜视频| 久久久久视频综合| 国产极品粉嫩免费观看在线| 中文字幕人妻丝袜制服| 精品视频人人做人人爽| 男女无遮挡免费网站观看| 国产一级毛片在线| 免费在线观看视频国产中文字幕亚洲 | xxx大片免费视频| 亚洲欧美清纯卡通| 麻豆av在线久日| 高清不卡的av网站| 国产国语露脸激情在线看| 美女主播在线视频| 美女脱内裤让男人舔精品视频| 老汉色∧v一级毛片| 一二三四在线观看免费中文在| www日本在线高清视频| 久久午夜福利片| 国产精品一区二区在线不卡| 国产男人的电影天堂91| 色哟哟·www| 国产极品粉嫩免费观看在线| 欧美xxⅹ黑人| 深夜精品福利| 国产亚洲av片在线观看秒播厂| 成人漫画全彩无遮挡| 国产男女内射视频| 激情五月婷婷亚洲| 一级毛片电影观看| 成人国产麻豆网| 97在线视频观看| 老司机亚洲免费影院| 国产精品久久久av美女十八| 国产有黄有色有爽视频| 国产精品亚洲av一区麻豆 | 免费日韩欧美在线观看| 国产xxxxx性猛交| 欧美xxⅹ黑人| 黑人猛操日本美女一级片| 中文乱码字字幕精品一区二区三区| 在线亚洲精品国产二区图片欧美| 熟女av电影| 亚洲精品视频女| av一本久久久久| 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 妹子高潮喷水视频| 中文乱码字字幕精品一区二区三区| 啦啦啦视频在线资源免费观看| 性少妇av在线| 2022亚洲国产成人精品| 成人毛片60女人毛片免费| 精品福利永久在线观看| 在线看a的网站| 女人精品久久久久毛片| 亚洲国产色片| 亚洲第一青青草原| 日韩精品有码人妻一区| 精品久久久精品久久久| 亚洲国产看品久久| 一区二区三区精品91| 午夜免费鲁丝| 久久精品国产a三级三级三级| 亚洲经典国产精华液单| 欧美日韩亚洲国产一区二区在线观看 | 成人免费观看视频高清| 国产一区亚洲一区在线观看| 国产乱来视频区| 欧美+日韩+精品| 美女主播在线视频| 老司机亚洲免费影院| 午夜免费观看性视频| 亚洲精品久久久久久婷婷小说| 黄片播放在线免费| 丁香六月天网| 超色免费av| 久久99热这里只频精品6学生| 中文字幕亚洲精品专区| 你懂的网址亚洲精品在线观看| 爱豆传媒免费全集在线观看| 久久精品夜色国产| 亚洲成色77777| 国产一区亚洲一区在线观看| 国产精品香港三级国产av潘金莲 | 午夜精品国产一区二区电影| 精品人妻在线不人妻| 制服丝袜香蕉在线| 一区二区av电影网| 日日爽夜夜爽网站| 国产精品国产三级国产专区5o| videos熟女内射| 日日啪夜夜爽| 赤兔流量卡办理| 老司机影院毛片| 男人操女人黄网站| 黄片播放在线免费| 最近的中文字幕免费完整| 精品一品国产午夜福利视频| 日韩伦理黄色片| 亚洲欧美一区二区三区久久| 1024香蕉在线观看| 日韩精品有码人妻一区| 国产成人aa在线观看| 熟女av电影| 五月伊人婷婷丁香| 国产片特级美女逼逼视频| 18禁国产床啪视频网站| 精品一区二区免费观看| 侵犯人妻中文字幕一二三四区| 免费看不卡的av| 亚洲熟女精品中文字幕| 久久精品国产综合久久久| 日韩精品免费视频一区二区三区| 免费人妻精品一区二区三区视频| 日韩免费高清中文字幕av| 人妻 亚洲 视频| 观看av在线不卡| 亚洲综合精品二区| 在线精品无人区一区二区三| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 久久ye,这里只有精品| 国产精品国产av在线观看| 在线精品无人区一区二区三| 天天操日日干夜夜撸| 亚洲成国产人片在线观看| 日韩成人av中文字幕在线观看| av不卡在线播放| 女人高潮潮喷娇喘18禁视频| 成人亚洲精品一区在线观看| 中文欧美无线码| 久久久国产一区二区| 2021少妇久久久久久久久久久| www.自偷自拍.com| 久久av网站| freevideosex欧美| 欧美少妇被猛烈插入视频| 亚洲成人手机| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 免费高清在线观看日韩| 这个男人来自地球电影免费观看 | 久久99精品国语久久久| 成年女人毛片免费观看观看9 | 在线观看www视频免费| 欧美老熟妇乱子伦牲交| av在线观看视频网站免费| 国产日韩一区二区三区精品不卡| 亚洲四区av| 在线观看人妻少妇| 成人毛片a级毛片在线播放| 激情五月婷婷亚洲| 黄网站色视频无遮挡免费观看| 日韩在线高清观看一区二区三区| 欧美精品一区二区大全| 欧美中文综合在线视频| 久久精品夜色国产| 国产野战对白在线观看| 母亲3免费完整高清在线观看 | 亚洲四区av| 国产亚洲精品第一综合不卡| 免费观看在线日韩| 中文字幕色久视频| 久久久久网色| 久久久久久久国产电影| 亚洲精华国产精华液的使用体验| 午夜福利网站1000一区二区三区| 国产成人91sexporn| 国产成人a∨麻豆精品| 精品亚洲成a人片在线观看| www.av在线官网国产| 九草在线视频观看| 国产免费福利视频在线观看| 久久久亚洲精品成人影院| 欧美精品一区二区免费开放| av天堂久久9| 建设人人有责人人尽责人人享有的| 国产又爽黄色视频| 人成视频在线观看免费观看| www.精华液| 少妇猛男粗大的猛烈进出视频| 久久久精品区二区三区| 久久鲁丝午夜福利片| 国产麻豆69| 咕卡用的链子| 国产精品蜜桃在线观看| 一本久久精品| 少妇精品久久久久久久| 日本-黄色视频高清免费观看| 国产一区亚洲一区在线观看| 99久久精品国产国产毛片| 91成人精品电影| 满18在线观看网站| 欧美少妇被猛烈插入视频| 一二三四在线观看免费中文在| 波多野结衣av一区二区av| 国产高清不卡午夜福利| 极品人妻少妇av视频| 91精品伊人久久大香线蕉| 亚洲国产精品国产精品| 在线天堂最新版资源| 精品国产一区二区久久| 国产成人a∨麻豆精品| 丝袜在线中文字幕| www.av在线官网国产| 少妇人妻 视频| 亚洲欧美一区二区三区久久| 国产成人精品一,二区| 边亲边吃奶的免费视频| 欧美精品av麻豆av| 十八禁高潮呻吟视频| 国产精品偷伦视频观看了| 不卡av一区二区三区| 捣出白浆h1v1| 亚洲av电影在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线观看av| 一边摸一边做爽爽视频免费| 美女大奶头黄色视频| 99久久综合免费| 亚洲人成网站在线观看播放| 大码成人一级视频| 老女人水多毛片| 观看av在线不卡| 一级a爱视频在线免费观看| 人体艺术视频欧美日本| 黄色怎么调成土黄色| 午夜福利乱码中文字幕| 在线观看三级黄色| 久久精品国产亚洲av天美| 久久精品亚洲av国产电影网| 亚洲精品成人av观看孕妇| 亚洲第一区二区三区不卡| 免费观看性生交大片5| 少妇的逼水好多| 免费不卡的大黄色大毛片视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲美女黄色视频免费看| 丝袜脚勾引网站| 叶爱在线成人免费视频播放| 王馨瑶露胸无遮挡在线观看| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 国产午夜精品一二区理论片| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟女乱码| 亚洲精品中文字幕在线视频| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 制服丝袜香蕉在线| 高清欧美精品videossex| 性高湖久久久久久久久免费观看| 国精品久久久久久国模美| 国产精品国产av在线观看| 99热全是精品| 精品一区二区三区四区五区乱码 | 久久亚洲国产成人精品v| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 亚洲,欧美精品.| 两性夫妻黄色片| 在线观看美女被高潮喷水网站| 国产一区有黄有色的免费视频| 日本av免费视频播放| 国产 精品1| 黄色配什么色好看| 激情五月婷婷亚洲| av在线老鸭窝| 国产精品一国产av| 97人妻天天添夜夜摸| 美女高潮到喷水免费观看| 丰满乱子伦码专区| 涩涩av久久男人的天堂| 日本av免费视频播放| 国产 精品1| 国产一区二区激情短视频 | 黄色视频在线播放观看不卡| 亚洲,欧美精品.| 日韩一卡2卡3卡4卡2021年| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 激情五月婷婷亚洲| 日日啪夜夜爽| freevideosex欧美| 精品少妇内射三级| 丝袜喷水一区| 天天操日日干夜夜撸| 色视频在线一区二区三区| 日日啪夜夜爽| 久久免费观看电影| 高清不卡的av网站| 国产一区有黄有色的免费视频| 国产精品 国内视频| 一本大道久久a久久精品| 夫妻性生交免费视频一级片| 午夜91福利影院| 成人亚洲精品一区在线观看| 啦啦啦中文免费视频观看日本| 久久毛片免费看一区二区三区| 午夜久久久在线观看| 国产精品久久久av美女十八| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线一区二区三区精| 最新中文字幕久久久久| 韩国精品一区二区三区| 99热网站在线观看| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人 | 香蕉国产在线看| 午夜91福利影院| 深夜精品福利| 精品一区二区三区四区五区乱码 | 蜜桃在线观看..| av免费观看日本| 我要看黄色一级片免费的| 尾随美女入室| 最近最新中文字幕免费大全7| 亚洲av综合色区一区| 欧美日韩一区二区视频在线观看视频在线| 成人漫画全彩无遮挡| av在线app专区| 黄片无遮挡物在线观看| 91在线精品国自产拍蜜月| 亚洲第一av免费看| 亚洲色图 男人天堂 中文字幕| 亚洲国产色片| 大陆偷拍与自拍| 国产激情久久老熟女| 青春草国产在线视频| 国产熟女欧美一区二区| 搡老乐熟女国产| 老女人水多毛片| 国产精品成人在线| 国产精品久久久久久精品电影小说| 久久久久久久久久人人人人人人| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 亚洲一区二区三区欧美精品| 亚洲国产最新在线播放| 久久久久精品人妻al黑| 2018国产大陆天天弄谢| 老汉色∧v一级毛片| 欧美激情高清一区二区三区 | 可以免费在线观看a视频的电影网站 | 如日韩欧美国产精品一区二区三区| 一区二区三区乱码不卡18| 欧美人与善性xxx| 国产熟女午夜一区二区三区| 一本久久精品| 熟女av电影| 亚洲av.av天堂| 国产精品国产三级国产专区5o| 精品国产乱码久久久久久男人| 亚洲av电影在线观看一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 日本午夜av视频| 9热在线视频观看99| 成人免费观看视频高清| 国产人伦9x9x在线观看 | 街头女战士在线观看网站| a级毛片黄视频| 欧美精品一区二区大全| 日韩一区二区三区影片| 日本色播在线视频| 日韩制服丝袜自拍偷拍| 国产成人91sexporn| 久久久a久久爽久久v久久| 国产一区亚洲一区在线观看| 久热这里只有精品99| 国产高清国产精品国产三级| 不卡视频在线观看欧美| 精品卡一卡二卡四卡免费| 精品国产露脸久久av麻豆| 亚洲四区av| 交换朋友夫妻互换小说| 97人妻天天添夜夜摸| 亚洲精品久久久久久婷婷小说| 热re99久久精品国产66热6| 欧美人与性动交α欧美精品济南到 | 久久av网站| 91在线精品国自产拍蜜月| 久久久久国产网址| 9191精品国产免费久久| 国产成人精品久久久久久| 9热在线视频观看99| 午夜日本视频在线| 在线观看www视频免费| 最黄视频免费看| 亚洲国产精品国产精品| 中文字幕色久视频| 少妇的逼水好多| 久久久久久久久免费视频了| 久久鲁丝午夜福利片| 9191精品国产免费久久| 国产成人精品久久二区二区91 | 侵犯人妻中文字幕一二三四区| 免费人妻精品一区二区三区视频| 三上悠亚av全集在线观看| 亚洲欧美成人综合另类久久久| 91成人精品电影| 2018国产大陆天天弄谢| 亚洲男人天堂网一区| 少妇猛男粗大的猛烈进出视频| 精品国产乱码久久久久久男人| 久久国产亚洲av麻豆专区| 久久狼人影院| √禁漫天堂资源中文www| 国产成人一区二区在线| 亚洲成人手机| 午夜福利网站1000一区二区三区| 亚洲精品在线美女| 少妇人妻久久综合中文| 久久精品aⅴ一区二区三区四区 | 在线观看人妻少妇| 国产片内射在线| 老汉色av国产亚洲站长工具| 一级毛片我不卡| 母亲3免费完整高清在线观看 | 日韩一本色道免费dvd| 国产精品久久久久久精品古装| 日韩制服骚丝袜av| 亚洲精品久久成人aⅴ小说| 久久久久久久久免费视频了| 亚洲成人av在线免费| 亚洲欧美中文字幕日韩二区| 日本色播在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大片免费观看网站| 日韩精品免费视频一区二区三区| 欧美日韩视频高清一区二区三区二| videosex国产| 亚洲国产精品成人久久小说| 亚洲熟女精品中文字幕| 少妇精品久久久久久久| 成人漫画全彩无遮挡| 国产免费现黄频在线看| 人妻少妇偷人精品九色| 最黄视频免费看| 国产精品久久久av美女十八| 两个人看的免费小视频| 国产高清不卡午夜福利| 一级a爱视频在线免费观看| 日本午夜av视频| av在线老鸭窝| 黑人欧美特级aaaaaa片| 国产av码专区亚洲av| 一本大道久久a久久精品| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区久久| 黑丝袜美女国产一区| 大片免费播放器 马上看| 免费高清在线观看日韩| 热re99久久国产66热| www.av在线官网国产| av在线播放精品| 美女高潮到喷水免费观看| 最近中文字幕高清免费大全6| 国产在线视频一区二区| 人人澡人人妻人| 国产在线视频一区二区| 91精品国产国语对白视频| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 丝袜美足系列| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 你懂的网址亚洲精品在线观看| 亚洲四区av| 国产女主播在线喷水免费视频网站| 亚洲精品日本国产第一区| 交换朋友夫妻互换小说| a级毛片黄视频| 国产福利在线免费观看视频| 曰老女人黄片| av网站免费在线观看视频| 亚洲欧美一区二区三区国产| 天天操日日干夜夜撸| 男人爽女人下面视频在线观看| 边亲边吃奶的免费视频| 最近的中文字幕免费完整| 亚洲成人av在线免费| 久久综合国产亚洲精品| 亚洲男人天堂网一区| 男女边吃奶边做爰视频| 男女午夜视频在线观看| 日韩不卡一区二区三区视频在线| 男人舔女人的私密视频| 搡女人真爽免费视频火全软件| 女人高潮潮喷娇喘18禁视频| 成人国语在线视频| 精品一区二区三卡| 高清av免费在线| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 久久久久国产网址| 好男人视频免费观看在线| 国产av码专区亚洲av| 国产精品熟女久久久久浪| 男女啪啪激烈高潮av片| 伊人久久国产一区二区| 亚洲国产精品一区三区| 亚洲第一区二区三区不卡| 成人二区视频| 国产亚洲欧美精品永久| 日韩熟女老妇一区二区性免费视频| 九色亚洲精品在线播放| 日本色播在线视频| 十八禁高潮呻吟视频| 欧美精品国产亚洲| 国产精品国产av在线观看| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 人人澡人人妻人| 久久久久精品人妻al黑| 日日爽夜夜爽网站| 久久国产精品大桥未久av| 欧美 亚洲 国产 日韩一| 美女大奶头黄色视频| 日韩一区二区三区影片| 亚洲精品,欧美精品| 蜜桃国产av成人99| 国产极品粉嫩免费观看在线| 亚洲美女搞黄在线观看| 成人国语在线视频| 一区二区日韩欧美中文字幕| 中国国产av一级| 尾随美女入室| 最近中文字幕高清免费大全6| 日韩熟女老妇一区二区性免费视频| 亚洲综合精品二区| 久久99一区二区三区| 精品少妇一区二区三区视频日本电影 | 日本欧美国产在线视频| 亚洲av国产av综合av卡| 免费看av在线观看网站| 久久久久精品久久久久真实原创| 久久精品国产a三级三级三级| 亚洲精品乱久久久久久| 日韩一区二区视频免费看| 青青草视频在线视频观看| 久久精品人人爽人人爽视色| 免费在线观看视频国产中文字幕亚洲 | 久久久久视频综合| 黄色一级大片看看| 秋霞在线观看毛片| 大码成人一级视频| 成人免费观看视频高清| 亚洲三区欧美一区| 亚洲综合色网址| 亚洲成色77777| 啦啦啦啦在线视频资源| 日本猛色少妇xxxxx猛交久久| 色网站视频免费| 国产一级毛片在线| 男女高潮啪啪啪动态图| 你懂的网址亚洲精品在线观看| 欧美日韩亚洲高清精品| 伦理电影免费视频| 国产免费福利视频在线观看| 伊人久久大香线蕉亚洲五| 久久热在线av| 中文天堂在线官网| 精品亚洲成国产av| 免费观看无遮挡的男女| 亚洲人成电影观看| 美女中出高潮动态图| 黄色怎么调成土黄色| 欧美日韩一区二区视频在线观看视频在线| 免费黄色在线免费观看|