• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed power allocation over indoor multi-pico stations

    2015-04-22 06:17:32FEIZesong費澤松GAOQiang高強(qiáng)FUYou傅友TeroIsotaloJarnoNiemela
    關(guān)鍵詞:高強(qiáng)

    FEI Ze-song(費澤松), GAO Qiang(高強(qiáng)), FU You(傅友),Tero Isotalo , Jarno Niemela

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081,China;2.Department of Communication Engineering, Tampere University of Technology, Tampere, Finland)

    ?

    Distributed power allocation over indoor multi-pico stations

    FEI Ze-song(費澤松), GAO Qiang(高強(qiáng))1, FU You(傅友)1,Tero Isotalo2, Jarno Niemela2

    (1.School of Information and Electronics, Beijing Institute of Technology, Beijing 100081,China;2.Department of Communication Engineering, Tampere University of Technology, Tampere, Finland)

    A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 50% energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.

    distributed power allocation; indoor communication; multi-pico stations

    The advancement in technologies and the needs for wireless communication services offered by service providers have led to an increasing level of high data transmitting in mobile applications[1]. Recent research shows that more than 50% of voice calls and more than 70% of data traffic are generated indoors[2]. However, current outdoor base stations (BSs) are not able to cope with growing demand of indoor wireless communication users, because the distance between outdoor BS and indoor user is too far and the penetration loss is huge. In order to fulfill the demand of indoor communication, telecommunication operators are paying more and more interest in indoor coverage design.

    In heterogeneous network deployment and applications, pico station, femto station and relay, which are low power nodes, can be set in the macro-only cell to shorten the distance between BSs and users, and then enhance the cell capacity. Due to the introduction of new low power nodes and dense deployment, the interference in heterogeneous network is getting more and more severe and complex than traditional macro-only network. Power allocation is a significant way to mitigate interference and to improve the spectrum efficiency. Many works have been done in this area. In Ref.[3], a distributed power allocation scheme was proposed to maximum throughput in wireless network. The author in Ref.[4] allocated transmitting power to low power nodes in Het-Net based on multi-objective nonlinear optimization to maximum utility function taken both capacity and power consumption into account. In Ref.[5], instead of throughput optimizing, the energy efficiency maximum scheme was proposed over a two-tier Het-Net. The authors in Ref.[6] presented a power and subcarrier allocation method to maximize the cell capacity in a two-tier network, but the algorithm complexity is very high.

    Most existing literatures concentrate on the maximization of cell capacity or the trade-off between transmitting power and user rate[3-6]. However, this is not fair to users having a bad channel condition, i.e. edge users. In practice, every user has a requirement of transmitting rate. Below this requirement, quality of experience (QoE) will be degraded[7]. As the required rate will be periodically varied, an efficient power allocation algorithm is needed to adaptively satisfy user’s changing requirement.

    In this paper, a low-complexity distributed power allocation algorithm is proposed based on the scenario of indoor multi-pico stations. Besides, the algorithm also can be applied in femto stations or other scenarios suffering severe interference.

    1 System model

    1.1 Indoor multi-pico stations scenario

    In this paper, we consider an indoor communication scenario in two 30 m×30 m rooms separated by a wall with multiple pico stations as shown in Fig.1. In the first scenario, there are 4 picocells with 2 pico stations in the corner of each room, and in the second scenario there are 8 picocells with 4 pico stations in the corner of each room. All the pico stations work on the same spectrum. The users in it select their service pico station based on the reference signal receiving power (RSRP).

    Fig.1 Layout for 4 and 8 Pico stations in two rooms

    1.2 Signal-to-noise-plus-interference ratio (SINR) and user rate comparison without power control

    In this subsection, the comparison of the SINR distribution and the user transmitting rate between two scenarios are given based on the simulation parameters in 3GPP TR 36.814. The transmitting power of pico stations is fixed in 30 dBm[8].

    Fig.2 shows the SINR distribution in two scenarios. Pixels that are close to pico stations have higher SINR. Additionally, the SINR of 4 picocells is higher than that of 8 picocells. This is because the interference is much stronger in the second scenario.

    Fig.2 SINR distribution in two scenarios

    Fig.3 shows the CDF curves of user transmitting rate calculated by Shannon capacity in two scenarios. Although the SINR distribution is worse in 8 picocells, the rates are higher compared with 4 picocells because of double resources. In addition, the rate improvement of the edge users is not obvious from 8 picocells to 4 picocells since these two curves are close to each other at the beginning. The obvious improvement occurs at the higher rate area and this is unfair for those users with a bad channel condition or the users far from pico stations. Moreover, when the required rate is low, there is little promotion in the number of satisfied users. The reason is that the pico stations transmit with maximum power no matter where the user is. It is not necessary to allocate too much power to the users which are close to pico stations because they have a good channel condition. The excess power will cause much interference to other users in adjacent picocells. The transmitting power of each user therefore should be limited to make more users work above their required rate.

    Fig.3 Averaged total rate under rate constrained power control case

    2 Distributed power allocation algorithm

    To tackle the problem mentioned above, a distributed power allocation algorithm is proposed to allocate proper transmitting power of each user without any exchanging information between pico stations. More users will be able to achieve their required rate and the perceived experience of edge users is promoted.

    In an OFDMA system, user’s transmitting rate is the sum of rate on each resource block (RB)[7]. For the reason that we only pay attention to power allocation algorithm, the RB are allocated to users in a random way followed Round Robin (RR) scheduling algorithm. Letri,kdenote the transmitting rate of userion thekthRB. According to the Shannon formula, the rate of useriis defined as

    (1)

    whereNiis the set of RB allocated to useri. TheSi,kis the SINR for the userion thekthRB andBdenotes the bandwidth of one RB. If we assume that the power on each of user is same and other adjacent pico stations transmit with the maximum power, the SINR on each RB of one user will be the same and Eq. (1) can be rewritten as

    |Ni|Blog2(1+Si,k)=

    Wilog2(1+Si,k)

    (2)

    whereWidenotes the bandwidth allocated to the useri. If we letRidenote the required rate of useri, the required SINR of userion thekthRB denoted byS′i,kwill be

    S′i,k=2Ri/Wi-1

    (3)

    In another way, the SINR of userion thekthRB can be denoted by

    (4)

    Aseachuserassumesotherpicostationstransmitwithmaximumpower,whichistheworstsituation,thetransmittingpowerofpicostationjonthekthRBtosatisfytherequiredrateofusericanbeobtainedfromEq. (3)andEq. (4)by

    (5)

    wherePj,k,maxorPt,k,maxdenotes the maximum transmitting power of pico station on thekthRB. For simplicity, we assume that the power constraint on each RB is the same. So,Pj,k,max=Pmax/N, whereNis the number of RB of each pico station. The second formula in Eq. (5) means the actual transmitting power cannot exceed the maximum value.

    If all users use this algorithm to decide their transmitting power, the most ofPj,kmust be lower than the maximum powerPj,k,max, which means that the practical situation must be better than the considered worst case. The actual transmitting rate should be higher than the required rate. However, with the rising of required rate, the situation will converge to the worst one, because more and more users can not satisfy their required rate and have to choose the maximum power.

    3 Simulation results and discussions

    In this section, we conduct simulations to demonstrate the performance improvement of the proposed distributed power allocation algorithm. The simulation model is illustrated in Fig.1 and the simulation parameters are listed in Tab.1.

    Tab.1 Simulation parameters

    3.1 Pico stations without periodical change in rate requirement

    The simulation is performed in two rooms with 2 or 4 pico stations in each corner. The rooms are separated by a wall with 20 dB attenuation. For comparison, we have performed four situations, which are 4 pico stations without power control, 4 pico stations with power control, 8 pico stations without power control, and 8 pico stations with power control.

    Fig.4 shows the calculative distribution function (CDF) of user transmitting rate with required rate equaling 500 kbit/s. After using proposed power allocation algorithm, the CDF curves will become sharper. That means the fairness of users has been improved. Take the 8 picocells with/without power control for example. The percentage of users whose transmitting rate is larger than 500 kbit/s varies from 83% to 99% after controlling transmitting power. Although there is some loss in high-rate users and total transmitting rate, more users will achieve their required rate and this is the real improvement of user experience.

    Fig.4 Comparison of transmitting rate with/without power control

    Comparison of the transmitting rate of 4 picocells and 8 picocells shows that the power allocation algorithm is more efficient in 8 picocells scenario. This is because the interference in 8 picocells is much stronger than 4 picocells, which makes the interference mitigation algorithm more efficient. Another reason is that the transmitting power cannot be reduced too much since it is more difficult for users in 4 picocells scenario to satisfy the required rate.

    3.2 Pico stations with periodic change in rate requirement

    Actually, the rate requirement or SINR requirement will not keep the same all the time. It varies in different spots at different time. To tackle this problem and evaluate the adaptiveness of proposed power allocation algorithm, a scenario which represents this characteristic is introduced. The scenario is similar to the previous one which has two separated 30 m by 30 m rooms with 8 pico stations each in the corner (Fig.1). The difference is that we assume the pico station 1, 4, 5 and 8 have a periodic variation in rate requirement. In the simulation this four pico stations are switching rate requirement simultaneously. The normal rate requirement is 500 kbit/s, which happens in time interval 0-T0, and low rate requirement is 200 kbps, which happens in time interval T0-T, where T0 denotes the time of pico station 1,4,5,8 working in normal rate requirement and can be changed according to different circumstances. The lengths of these two time interval are the same in our simulation. The simulation time is set to 10T and the result of users’ transmitting rate is shown in Fig.5.

    Fig.5 Comparison of transmitting rate considering periodical change

    In Fig.5, there is a reduction in transmitting rate of edge users when considering periodical variation of required rate. However, it does not mean the user experience has been degraded because of lower requirement in time interval T0-T. In fact, compared with previous scenario without periodical variation, the number of users which can achieve the required rate almost does not change, which will be shown later. On the other hand, the transmitting rate of high-rate users has a promotion comparing with previous scenario. This is because the interference to high-rate users is much lower when required rate is low in time interval T0-T.

    Fig.6 shows the sum of user transmitting rate in each picocell, which can be considered as the capacity of each pico station approximately. The capacity of pico stations without power control is higher than other two situations. However, its main contribution comes from the users have a good channel condition and it is not fair to edge users. Comparing the red bar with the green one, the capacity of pico stations numbered 1, 4, 5 and 8 will have a reduction. This is because the lower required rate in time interval T0-T when considering periodical change of users required rate. On the other hand, lower rate requirement will also mitigate the interference to the other four pico stations and result in an increment of transmitting rate of users in pico stations numbered 2, 3, 6, and 7.

    Fig.6 Transmitting rate of 8 picocells

    Finally, we take both power consumption and the outage ability into account as depicted in Fig.7. The normalized outage ability is defined as the number of users which can achieve the required rate divided by the number of users. And the normalized power consumption is defined as the sum of transmitting power divided by the transmitting power consumption without power control, i.e. the sum of maximum transmitting power. As we mentioned above, although the total transmitting rate has been degraded, the number of user achieving required rate will increase after using proposed power allocation algorithm. Moreover, from the perspective of power consumption, the proposed algorithm can save more than 50% energy without loss in outage ability. Especially, the energy saving will be further improved when considering periodical variation of required rate. That indicates the proposed algorithm efficiently promote the user experience and demonstrates the adaptiveness of algorithm. Fig.8. illustrates the energy efficiency of three situations. It is obvious that without power control system has to work in low efficiency and the improvement is observable after using proposed algorithm. The periodical adaptability of proposed power control scheme is also satisfactory according to simulation results.

    Fig.7 Comparison of normalized power consumption and outage ability

    Fig.8 Energy efficiency of three situations

    4 Conclusion

    In this paper, we propose a distributed power allocation algorithm over indoor multi-pico stations to permit pico stations to adjust the transmitting power of each user based on the rate requirement. The algorithm is low-complexity and does not need any exchanging information between pico stations. Simulation results confirm that the proposed power allocation algorithm can promote the fairness and user experience with a lot of energy being saved compared with traditional maximum transmitting power scheme.

    [1] Osman H, Zhu H L, Alade T. Deployment of distributed antenna systems in high buildings[C]∥IEEE 73rd Vehicular Technology Conference (VTC Spring), San Francisco, United State, 2011.

    [2] Chandrasekhar V, Andrews J, Gatherer A. Femtocell networks: a survey [J]. IEEE Communication Magazine, 2008, 46(9): 59-67.

    [3] Lee H W, Modiano E, Le L B. Distributed throughput maximization in wireless networks via random power allocation [J]. IEEE Transactions on mobile computing, 2012, 11(4): 577-590.

    [4] Li B. An effective inter-cell interference coordination scheme for heterogeneous network [C]∥IEEE 73rd Vehicular Technology Conference (VTC Spring), San Francisco, United State, 2011.

    [5] Quek T, Cheung W C, Kountouris M. Energy efficiency analysis of two-tier heterogeneous networks [C]∥11th European Wireless Conference, Vienna, Austria, 2011.

    [6] Gupta N K, Banerjee A. Power and subcarrier allocation for ofdma femto-cell based underlay cognitive radio in a two-tier network [C]∥IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application, Karnataka, India, 2011.

    [7] Xie L L, Hu C J, Wu W J, et al. Qoe-aware power allocation algorithm in multiuser ofdm systems [C]∥7th International Conference on Mobile Ad-hoc and Sensor Networks (MSN), Beijing, China, 2011.

    [8] 3GPP. TR 36.814, Further advancements for E-UTRA physical layer aspects[S]. v9.0.0 ed. Sophia Antipolis, France: 3GPP. 2010.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004- 0579.201524.0214

    TP 391 Document code: A Article ID: 1004- 0579(2015)02- 0227- 06

    Received 2013- 12- 22

    Supported by National S & T Major Program of China(2013ZX 03003002-003)

    E-mail: feizesong@bit.edu.cn

    猜你喜歡
    高強(qiáng)
    高強(qiáng)
    文史月刊(2023年10期)2023-11-22 07:57:14
    輕質(zhì)高強(qiáng)堇青石多孔陶瓷的制備與表征
    高強(qiáng)鋼BS700MC焊接工藝性分析及驗證
    工程機(jī)械鏟斗用高強(qiáng)鋼板的研究與開發(fā)
    山東冶金(2019年5期)2019-11-16 09:09:02
    A32高強(qiáng)船板鋼生產(chǎn)工藝優(yōu)化控制
    山東冶金(2019年2期)2019-05-11 09:12:06
    看誰法力更高強(qiáng)
    童話世界(2018年8期)2018-05-19 01:59:17
    回火Q690高強(qiáng)鋼生產(chǎn)工藝研究
    新疆鋼鐵(2016年3期)2016-02-28 19:18:50
    低合金高強(qiáng)鋼板Q620E 的開發(fā)
    上海金屬(2014年5期)2014-12-20 07:58:35
    鋼纖維高強(qiáng)混凝土墻基于CONWEP的爆炸響應(yīng)
    高強(qiáng)鋼的高效焊接推動焊接材料的技術(shù)進(jìn)步
    亚洲人成网站在线观看播放| 精品熟女少妇av免费看| 99精国产麻豆久久婷婷| 精品人妻偷拍中文字幕| 亚洲一级一片aⅴ在线观看| 在线观看三级黄色| 国产高清有码在线观看视频| 中文字幕精品免费在线观看视频 | 国产精品久久久久久av不卡| 国产精品久久久久久精品电影小说 | 青春草亚洲视频在线观看| 久久99热这里只频精品6学生| 国精品久久久久久国模美| 一级毛片我不卡| 亚洲欧美日韩另类电影网站 | 久久久久久久久久成人| 两个人的视频大全免费| 免费播放大片免费观看视频在线观看| 成人影院久久| 日韩亚洲欧美综合| 美女高潮的动态| 亚洲精品国产av蜜桃| tube8黄色片| 欧美老熟妇乱子伦牲交| 成年美女黄网站色视频大全免费 | 一本一本综合久久| 嘟嘟电影网在线观看| 丝瓜视频免费看黄片| 免费人成在线观看视频色| 人妻一区二区av| 国产精品一区二区三区四区免费观看| 夜夜爽夜夜爽视频| 99热全是精品| 超碰97精品在线观看| 日本猛色少妇xxxxx猛交久久| 日韩av免费高清视频| 久久久国产一区二区| 国产伦精品一区二区三区视频9| 免费观看av网站的网址| 人人妻人人看人人澡| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区在线观看99| 亚洲久久久国产精品| 欧美激情国产日韩精品一区| 黄色日韩在线| 女人久久www免费人成看片| 黄色一级大片看看| 亚洲av中文字字幕乱码综合| 18+在线观看网站| 熟女av电影| 日韩成人伦理影院| 国产成人一区二区在线| 九草在线视频观看| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 国产高潮美女av| www.色视频.com| 美女福利国产在线 | 97精品久久久久久久久久精品| 精品一区二区三卡| 亚洲经典国产精华液单| www.色视频.com| 最后的刺客免费高清国语| 嘟嘟电影网在线观看| 国产成人午夜福利电影在线观看| 自拍偷自拍亚洲精品老妇| 日韩av免费高清视频| 亚洲精品国产av成人精品| 国产淫片久久久久久久久| 18禁动态无遮挡网站| 久久久久久久大尺度免费视频| 日韩免费高清中文字幕av| 最近中文字幕高清免费大全6| 在线免费十八禁| 晚上一个人看的免费电影| 免费少妇av软件| 天堂中文最新版在线下载| 亚洲成人中文字幕在线播放| 一级a做视频免费观看| 国模一区二区三区四区视频| 中文字幕制服av| 中国美白少妇内射xxxbb| 寂寞人妻少妇视频99o| 亚洲精品色激情综合| av在线播放精品| 狂野欧美白嫩少妇大欣赏| 日韩一区二区视频免费看| 国产男女超爽视频在线观看| 97超视频在线观看视频| 我要看黄色一级片免费的| 狂野欧美白嫩少妇大欣赏| 一级毛片aaaaaa免费看小| 免费av不卡在线播放| 免费人妻精品一区二区三区视频| 18禁裸乳无遮挡动漫免费视频| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 联通29元200g的流量卡| 亚洲欧美一区二区三区黑人 | 97超视频在线观看视频| 一本一本综合久久| 亚洲第一av免费看| freevideosex欧美| 成人影院久久| 在线免费观看不下载黄p国产| 国产在线男女| 亚洲精品乱码久久久久久按摩| 日日撸夜夜添| 99久久精品国产国产毛片| 国产日韩欧美亚洲二区| 女性生殖器流出的白浆| 大片电影免费在线观看免费| 五月天丁香电影| 久久久久久久亚洲中文字幕| 久久女婷五月综合色啪小说| 伊人久久精品亚洲午夜| 国产精品成人在线| 亚洲婷婷狠狠爱综合网| 午夜免费观看性视频| 日韩人妻高清精品专区| 精品久久国产蜜桃| 一级av片app| 精品视频人人做人人爽| 午夜日本视频在线| 2018国产大陆天天弄谢| 97热精品久久久久久| 日日啪夜夜爽| 大陆偷拍与自拍| 亚洲欧美成人综合另类久久久| 夫妻午夜视频| 青春草国产在线视频| 在线观看免费视频网站a站| 亚洲丝袜综合中文字幕| 黑丝袜美女国产一区| 日韩制服骚丝袜av| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 亚洲精品国产成人久久av| 乱系列少妇在线播放| 97超碰精品成人国产| 午夜福利高清视频| 亚洲精品色激情综合| 久久久久精品性色| 日韩欧美一区视频在线观看 | 久久99蜜桃精品久久| 国国产精品蜜臀av免费| 国产乱来视频区| 成人午夜精彩视频在线观看| 欧美精品一区二区大全| 日本av手机在线免费观看| 人妻系列 视频| 91精品一卡2卡3卡4卡| 亚洲激情五月婷婷啪啪| 偷拍熟女少妇极品色| 中文字幕免费在线视频6| 日韩国内少妇激情av| 只有这里有精品99| 久久青草综合色| 嘟嘟电影网在线观看| 国产精品99久久久久久久久| 亚洲熟女精品中文字幕| 亚洲综合精品二区| 美女中出高潮动态图| 边亲边吃奶的免费视频| 国产免费视频播放在线视频| 国产高清三级在线| 在线观看av片永久免费下载| 久久 成人 亚洲| 卡戴珊不雅视频在线播放| 91精品国产九色| 亚洲成色77777| 欧美bdsm另类| 我要看黄色一级片免费的| 一级爰片在线观看| 日本av免费视频播放| 久久综合国产亚洲精品| 欧美成人午夜免费资源| 久久精品人妻少妇| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 亚洲国产精品999| av在线观看视频网站免费| 国产高清有码在线观看视频| 免费黄频网站在线观看国产| 午夜福利网站1000一区二区三区| 搡老乐熟女国产| 黄色视频在线播放观看不卡| 久久av网站| 精品一区二区免费观看| 中文乱码字字幕精品一区二区三区| 国产精品不卡视频一区二区| 日韩不卡一区二区三区视频在线| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 又大又黄又爽视频免费| 亚洲欧美清纯卡通| 亚洲欧美成人精品一区二区| 亚洲成人中文字幕在线播放| 亚洲精品第二区| 日日摸夜夜添夜夜添av毛片| 一级毛片 在线播放| 久久久久精品性色| 国产在线免费精品| 一区二区三区精品91| 色视频在线一区二区三区| 国产69精品久久久久777片| 伦精品一区二区三区| 亚洲熟女精品中文字幕| 一级毛片我不卡| av专区在线播放| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 热99国产精品久久久久久7| 久久精品国产鲁丝片午夜精品| 人妻制服诱惑在线中文字幕| 国产精品av视频在线免费观看| 久久国产亚洲av麻豆专区| 欧美日韩国产mv在线观看视频 | 亚洲国产精品专区欧美| 高清不卡的av网站| 久久久久久久国产电影| 国产精品一区二区在线观看99| 777米奇影视久久| 成人无遮挡网站| 免费黄频网站在线观看国产| 一区二区三区精品91| 我要看日韩黄色一级片| 亚洲人与动物交配视频| 国产在线免费精品| 777米奇影视久久| 毛片女人毛片| 亚洲欧美日韩东京热| 日韩不卡一区二区三区视频在线| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 成人高潮视频无遮挡免费网站| 亚洲国产av新网站| 91精品国产国语对白视频| 精品人妻熟女av久视频| 美女中出高潮动态图| 国产一区二区在线观看日韩| 99久久精品国产国产毛片| 一级毛片aaaaaa免费看小| 久久久久精品久久久久真实原创| 免费观看的影片在线观看| 久久这里有精品视频免费| 一区二区av电影网| 日韩一区二区三区影片| 岛国毛片在线播放| 舔av片在线| 国产v大片淫在线免费观看| 欧美激情极品国产一区二区三区 | 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 成人免费观看视频高清| 一级a做视频免费观看| 超碰97精品在线观看| 在线天堂最新版资源| 人人妻人人添人人爽欧美一区卜 | 国产白丝娇喘喷水9色精品| 国产成人精品婷婷| 特大巨黑吊av在线直播| 91久久精品电影网| 99九九线精品视频在线观看视频| 免费人成在线观看视频色| 观看av在线不卡| 日本一二三区视频观看| 欧美人与善性xxx| 啦啦啦在线观看免费高清www| 欧美丝袜亚洲另类| 三级经典国产精品| 亚洲国产精品一区三区| 国产日韩欧美亚洲二区| 日韩精品有码人妻一区| 麻豆成人午夜福利视频| 在线看a的网站| 国产亚洲最大av| av在线老鸭窝| 午夜福利网站1000一区二区三区| 一本一本综合久久| 国产在线视频一区二区| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av天美| 国产一区二区三区av在线| 精品久久久精品久久久| 内射极品少妇av片p| 视频区图区小说| 国产精品久久久久久精品电影小说 | 在线观看免费视频网站a站| 精华霜和精华液先用哪个| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久久免费av| 多毛熟女@视频| 熟妇人妻不卡中文字幕| 中文天堂在线官网| 女性被躁到高潮视频| 一个人看视频在线观看www免费| 日本猛色少妇xxxxx猛交久久| 久久久久久人妻| 亚洲真实伦在线观看| 日本一二三区视频观看| 免费大片黄手机在线观看| 男女边吃奶边做爰视频| 国产高清三级在线| av网站免费在线观看视频| 色婷婷av一区二区三区视频| 久久久久精品久久久久真实原创| 青春草亚洲视频在线观看| av国产久精品久网站免费入址| 国产视频内射| 久久久精品免费免费高清| 欧美精品一区二区大全| 国产亚洲91精品色在线| 99久国产av精品国产电影| 亚洲第一av免费看| 国产永久视频网站| 国产亚洲午夜精品一区二区久久| 国产成人aa在线观看| 国产精品国产av在线观看| 一区二区三区精品91| 国产精品精品国产色婷婷| 干丝袜人妻中文字幕| 一级毛片aaaaaa免费看小| av国产免费在线观看| 国产成人a∨麻豆精品| 久久久欧美国产精品| 99久久精品热视频| 亚洲精品国产av蜜桃| 男女边摸边吃奶| 日韩免费高清中文字幕av| av天堂中文字幕网| 国产av国产精品国产| 在线亚洲精品国产二区图片欧美 | 免费黄频网站在线观看国产| 久久国产乱子免费精品| 国产一级毛片在线| freevideosex欧美| 日韩免费高清中文字幕av| 国产男女超爽视频在线观看| 国精品久久久久久国模美| 午夜视频国产福利| 黑人高潮一二区| 欧美成人精品欧美一级黄| 亚洲精品,欧美精品| 女性被躁到高潮视频| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| 看免费成人av毛片| 亚洲精品国产色婷婷电影| videos熟女内射| 久久久午夜欧美精品| 乱系列少妇在线播放| 国产av码专区亚洲av| 最近中文字幕高清免费大全6| 久久精品国产亚洲av天美| 午夜精品国产一区二区电影| 欧美成人a在线观看| 国产欧美日韩一区二区三区在线 | 中文字幕制服av| 蜜桃在线观看..| 最黄视频免费看| 能在线免费看毛片的网站| 一级毛片aaaaaa免费看小| 七月丁香在线播放| 少妇熟女欧美另类| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 亚洲va在线va天堂va国产| 国产av一区二区精品久久 | 少妇人妻久久综合中文| 国模一区二区三区四区视频| 免费少妇av软件| 国产真实伦视频高清在线观看| 视频中文字幕在线观看| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 中国三级夫妇交换| 精品一区二区三区视频在线| 国产成人午夜福利电影在线观看| 2022亚洲国产成人精品| 嫩草影院入口| 精品亚洲成国产av| 精品人妻偷拍中文字幕| 亚洲欧美日韩卡通动漫| 十八禁网站网址无遮挡 | 高清不卡的av网站| h日本视频在线播放| 午夜福利高清视频| 在线免费十八禁| av网站免费在线观看视频| 国产在视频线精品| av网站免费在线观看视频| 国产精品久久久久成人av| 国产精品一区二区性色av| 亚洲va在线va天堂va国产| 内射极品少妇av片p| 国产黄片视频在线免费观看| 成人免费观看视频高清| 午夜免费鲁丝| 不卡视频在线观看欧美| 青春草亚洲视频在线观看| 亚洲久久久国产精品| 激情 狠狠 欧美| 国产精品人妻久久久久久| 日韩av免费高清视频| 午夜视频国产福利| 一级毛片电影观看| 亚洲无线观看免费| 超碰av人人做人人爽久久| 人妻 亚洲 视频| 国产精品免费大片| 亚洲丝袜综合中文字幕| 丰满迷人的少妇在线观看| 亚洲国产毛片av蜜桃av| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 国产有黄有色有爽视频| 一区二区三区免费毛片| av天堂中文字幕网| 18禁裸乳无遮挡免费网站照片| 大香蕉久久网| 久久国内精品自在自线图片| 肉色欧美久久久久久久蜜桃| 免费观看的影片在线观看| 成人毛片a级毛片在线播放| 色婷婷久久久亚洲欧美| 成人亚洲精品一区在线观看 | 免费在线观看成人毛片| 欧美日韩精品成人综合77777| 熟妇人妻不卡中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 国产 一区 欧美 日韩| 亚洲国产精品专区欧美| 成人一区二区视频在线观看| 一级片'在线观看视频| 国产午夜精品一二区理论片| 一级毛片电影观看| 亚洲精品一二三| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| 91精品伊人久久大香线蕉| 亚洲电影在线观看av| 一级毛片我不卡| 欧美精品一区二区大全| 51国产日韩欧美| 黄片无遮挡物在线观看| 蜜桃亚洲精品一区二区三区| 我的女老师完整版在线观看| 精品亚洲成a人片在线观看 | 亚洲精品国产av蜜桃| 久久久久久久久大av| 老熟女久久久| 菩萨蛮人人尽说江南好唐韦庄| 精品99又大又爽又粗少妇毛片| 七月丁香在线播放| 在线观看一区二区三区激情| av在线app专区| 午夜福利高清视频| 欧美3d第一页| 精品国产乱码久久久久久小说| videos熟女内射| 有码 亚洲区| 美女中出高潮动态图| 欧美一区二区亚洲| 中文字幕久久专区| 天美传媒精品一区二区| 欧美激情国产日韩精品一区| 亚洲va在线va天堂va国产| 高清黄色对白视频在线免费看 | 特大巨黑吊av在线直播| 日韩中字成人| 国产高清三级在线| 91久久精品国产一区二区三区| 另类亚洲欧美激情| 少妇裸体淫交视频免费看高清| 成年女人在线观看亚洲视频| 少妇被粗大猛烈的视频| 国产欧美日韩一区二区三区在线 | 少妇高潮的动态图| 黄色怎么调成土黄色| 日韩国内少妇激情av| 国产精品三级大全| 国产探花极品一区二区| 91久久精品国产一区二区成人| 99视频精品全部免费 在线| 丰满少妇做爰视频| 日日啪夜夜撸| 日日啪夜夜爽| 亚洲伊人久久精品综合| 人人妻人人看人人澡| 有码 亚洲区| 午夜视频国产福利| 亚州av有码| 久久久精品免费免费高清| 久久久精品94久久精品| 成人亚洲精品一区在线观看 | 伊人久久精品亚洲午夜| 久久青草综合色| 永久网站在线| 51国产日韩欧美| 日韩人妻高清精品专区| 人妻系列 视频| 精品人妻偷拍中文字幕| 国产爽快片一区二区三区| 男女下面进入的视频免费午夜| 又爽又黄a免费视频| 亚洲av福利一区| 人人妻人人爽人人添夜夜欢视频 | 王馨瑶露胸无遮挡在线观看| 日本免费在线观看一区| 免费观看的影片在线观看| 国产黄片美女视频| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 永久网站在线| 高清av免费在线| 日本黄色片子视频| 一区二区三区精品91| 欧美精品亚洲一区二区| 免费av不卡在线播放| 欧美zozozo另类| 日日摸夜夜添夜夜添av毛片| 又粗又硬又长又爽又黄的视频| 中文字幕人妻熟人妻熟丝袜美| 免费人妻精品一区二区三区视频| 啦啦啦啦在线视频资源| 国产黄色免费在线视频| a级毛色黄片| 永久网站在线| 老司机影院成人| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 成年av动漫网址| 国产精品成人在线| 97精品久久久久久久久久精品| 永久网站在线| 亚洲va在线va天堂va国产| 在线天堂最新版资源| 欧美成人a在线观看| 黄色配什么色好看| 99久久综合免费| 日本黄色日本黄色录像| 偷拍熟女少妇极品色| 国产亚洲av片在线观看秒播厂| 七月丁香在线播放| 欧美成人午夜免费资源| 26uuu在线亚洲综合色| 欧美极品一区二区三区四区| 国产精品无大码| 欧美精品一区二区免费开放| 干丝袜人妻中文字幕| 亚洲怡红院男人天堂| 成年av动漫网址| 伦理电影免费视频| 伊人久久精品亚洲午夜| av女优亚洲男人天堂| 久久99蜜桃精品久久| 国产v大片淫在线免费观看| 我的女老师完整版在线观看| 国产色婷婷99| 亚洲,一卡二卡三卡| 国产永久视频网站| 日本黄色片子视频| 国产亚洲91精品色在线| 国产白丝娇喘喷水9色精品| 99热6这里只有精品| 中国三级夫妇交换| 亚洲欧美日韩东京热| 人妻少妇偷人精品九色| 草草在线视频免费看| 久久亚洲国产成人精品v| 插阴视频在线观看视频| av播播在线观看一区| 精品一区二区三卡| 嫩草影院入口| 我的老师免费观看完整版| videossex国产| 国产爱豆传媒在线观看| 热re99久久精品国产66热6| 国产日韩欧美亚洲二区| 黑人高潮一二区| 国产在线男女| 91在线精品国自产拍蜜月| 在线精品无人区一区二区三 | 国产大屁股一区二区在线视频| 日韩av免费高清视频| 国产伦理片在线播放av一区| videossex国产| 久久热精品热| 亚洲国产成人一精品久久久| 亚洲av福利一区| 国产成人freesex在线| 嫩草影院入口| 国产高清不卡午夜福利| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 韩国高清视频一区二区三区| 亚洲欧美成人综合另类久久久| 中文字幕亚洲精品专区| 男女下面进入的视频免费午夜| 熟妇人妻不卡中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产亚洲av片在线观看秒播厂| 亚洲av.av天堂| 免费黄频网站在线观看国产| 免费不卡的大黄色大毛片视频在线观看| 极品少妇高潮喷水抽搐| 国产伦精品一区二区三区视频9| tube8黄色片| 久久人人爽人人爽人人片va| 欧美日本视频| 噜噜噜噜噜久久久久久91| 91狼人影院| 男男h啪啪无遮挡|