, , ,
(1.西北工業(yè)大學(xué) 航天學(xué)院, 陜西 西安 710072; 2.西安航天動(dòng)力研究所, 陜西 西安 710100)
液體火箭發(fā)動(dòng)機(jī)的推進(jìn)劑供應(yīng)系統(tǒng)中大量使用電磁閥作為開(kāi)關(guān)執(zhí)行元件,控制推進(jìn)劑供應(yīng)的開(kāi)啟和關(guān)閉,實(shí)現(xiàn)發(fā)動(dòng)機(jī)的多次重復(fù)啟動(dòng)和脈沖工作,電磁閥的性能和可靠性對(duì)液體火箭發(fā)動(dòng)機(jī)的工作可靠性有著重要影響。在電磁閥通電工作過(guò)程中,電磁鐵線圈發(fā)熱量大且散熱條件差是一個(gè)突出的問(wèn)題。線圈溫升過(guò)大,不僅會(huì)影響電磁閥響應(yīng)速度等使用性能,嚴(yán)重時(shí)會(huì)造成線圈絕緣性能降低,甚至出現(xiàn)匝間擊穿、短路,以致燒毀。
在電磁閥的實(shí)際工程研制中,通常利用經(jīng)驗(yàn)公式校核初步設(shè)計(jì)的電磁閥結(jié)構(gòu)是否滿足溫升要求,這種計(jì)算方法往往具有一定的經(jīng)驗(yàn)性和不確定性,所以,在電磁鐵的工程設(shè)計(jì)中,能夠較準(zhǔn)確的預(yù)估其通電工作時(shí)線圈的溫度和電磁鐵其它部分的溫度場(chǎng)分布具有重要的意義。在以往文獻(xiàn)中利用ANSYS有限元軟件對(duì)電磁鐵溫度場(chǎng)進(jìn)行仿真時(shí),加載的熱載荷和邊界條件都是定值,并通過(guò)調(diào)節(jié)散熱系數(shù)的方法計(jì)算出與實(shí)際情況相符的結(jié)果,實(shí)際應(yīng)用中如果不能準(zhǔn)確的預(yù)估熱載荷和散熱系數(shù),將不能得到準(zhǔn)確的結(jié)果。本研究對(duì)以往計(jì)算方法進(jìn)行改進(jìn),考慮熱載荷和邊界條件隨時(shí)間的變化,基于ANSYS Workbench平臺(tái)對(duì)某型發(fā)動(dòng)機(jī)控制閥電磁鐵溫度場(chǎng)分別進(jìn)行穩(wěn)態(tài)計(jì)算和瞬態(tài)計(jì)算,并進(jìn)行電磁鐵線圈發(fā)熱試驗(yàn)。
熱分析用于研究結(jié)構(gòu)在熱載荷下的熱響應(yīng),其理論基礎(chǔ)是基于傅里葉定律的熱傳導(dǎo)方程。在ANSYS程序中,熱分析主要包括穩(wěn)態(tài)熱分析和瞬態(tài)熱分析。
如果系統(tǒng)的凈熱流率為0,即流入系統(tǒng)的熱量加上系統(tǒng)自身產(chǎn)生的熱量等于流出系統(tǒng)的熱量,則系統(tǒng)處于熱穩(wěn)態(tài),在穩(wěn)態(tài)熱分析中任一節(jié)點(diǎn)的溫度都不隨時(shí)間的變化而變化,根據(jù)能量守恒原理,穩(wěn)態(tài)熱平衡方程可以表達(dá)為:
[K]{T}={Q}
(1)
式中, [K]為熱傳導(dǎo)矩陣,包含導(dǎo)熱系數(shù)、對(duì)流系數(shù)及輻射率和形狀系數(shù);{T}為節(jié)點(diǎn)溫度向量;{Q}為節(jié)點(diǎn)熱流率向量,包含熱生成。
ANSYS程序是利用模型幾何參數(shù)、材料屬性參數(shù)以及所施加的邊界條件,生成[K]、{T}及{Q}。
瞬態(tài)傳熱過(guò)程中系統(tǒng)的溫度、熱流率、熱邊界條件以及系統(tǒng)內(nèi)能隨時(shí)間都有明顯變化,瞬態(tài)熱分析的能量平衡方程為:
(2)
熱分析中為了使節(jié)點(diǎn)的熱平衡方程具有唯一解,需要附加一定的邊界條件和初始條件,熱分析中一共有三類邊界條件。
第一類邊界條件是指物體邊界上的溫度函數(shù)為已知,用公式表示為:
TΓ=f(x,y,z)
(3)
式中, Γ為物體邊界;f(x,y,z)為溫度函數(shù)(隨時(shí)間位置而變)。
第二類邊界條件是指物體邊界上熱流密度為已知,用公式表示為:
(4)
式中,λ為導(dǎo)熱系數(shù),W/m·℃;g(x,y,z)為熱流密度函數(shù)(隨時(shí)間位置而變)。
第三類邊界條件是指與物體相接觸流體介質(zhì)的溫度Tf和熱交換系數(shù)α為已知,用公式表示為:
(5)
式中,Tf和α可以是常數(shù),也可以是隨時(shí)間和位置變化的函數(shù)。
電磁鐵線圈通電工作時(shí),由于線圈電阻產(chǎn)生的焦耳熱會(huì)使電磁鐵各部分的溫度逐漸升高,在某一時(shí)刻,線圈生成的熱量等于電磁鐵所有部分散發(fā)的熱量,此時(shí)電磁鐵溫度場(chǎng)每一點(diǎn)的溫度不隨時(shí)間變化,電磁鐵溫度場(chǎng)處于熱穩(wěn)態(tài)。本研究首先對(duì)電磁鐵溫度場(chǎng)進(jìn)行穩(wěn)態(tài)熱計(jì)算,得到穩(wěn)態(tài)情況下的電磁鐵溫度場(chǎng)分布規(guī)律。
1) 三維物理模型的建立
本研究所分析的螺管式電磁鐵具有軸對(duì)稱結(jié)構(gòu),為了提高計(jì)算效率,只需建立四分之一的模型。圖1所示為在Ansys Workbench平臺(tái)下建立的某型電磁鐵三維實(shí)體模型和網(wǎng)格劃分結(jié)果。
圖1 電磁鐵三維模型及網(wǎng)格劃分結(jié)果
對(duì)電磁鐵的溫度場(chǎng)進(jìn)行穩(wěn)態(tài)計(jì)算只需要定義的材料屬性是熱傳導(dǎo)率,表1所示為電磁鐵中各部分材料的熱傳導(dǎo)率。需要說(shuō)明的是,材料的熱傳導(dǎo)率隨著溫度的變化而變化,但由于電磁鐵通電工作時(shí)溫度一般相對(duì)較低,而且變化范圍較小,對(duì)材料熱傳導(dǎo)率的影響有限,從而可以忽略溫度對(duì)材料熱傳導(dǎo)率的影響。
表1 材料熱傳導(dǎo)率
2) 載荷及邊界條件的確定
電磁鐵工作時(shí),通電線圈由于電阻損耗的作用產(chǎn)生焦耳熱,起到內(nèi)熱源的作用,所以在溫度場(chǎng)穩(wěn)態(tài)計(jì)算中,把線圈部分的生成熱作為熱載荷。在以往文獻(xiàn)中利用ANSYS有限元軟件對(duì)電磁鐵溫度場(chǎng)的仿真計(jì)算中,線圈的熱生成功率都是取恒定值,這個(gè)恒定值一般是線圈工作過(guò)程中的平均發(fā)熱功率,線圈平均發(fā)熱功率的取值帶有很大的經(jīng)驗(yàn)性,從而影響了電磁鐵溫度場(chǎng)計(jì)算結(jié)果的準(zhǔn)確性。
在電磁鐵實(shí)際工作過(guò)程中,在工作電壓不變的情況下,線圈的電阻值隨著溫度的增加而增加,從而線圈的發(fā)熱功率隨著溫度的增加而降低。如圖2所示為線圈的發(fā)熱功率隨時(shí)間的變化曲線,仿真模型里把線圈的發(fā)熱功率除以線圈體積得到的生熱率加載到線圈上。
圖2 線圈發(fā)熱功率隨時(shí)間變化曲線
邊界條件的確定也是影響溫度場(chǎng)計(jì)算準(zhǔn)確性的重要因素,對(duì)于本研究的螺管式電磁鐵的邊界條件主要是和空氣之間的對(duì)流散熱系數(shù)。根據(jù)參考文獻(xiàn)[3]得到的結(jié)論,線圈表面的散熱系數(shù)可由公式(6)確定,把散熱系數(shù)和溫度之間的關(guān)系加載到電磁鐵散熱表面。
(6)
式中,kt為線圈表面的綜合散熱系數(shù),W/(m2·℃);S為線圈散熱面積,cm2;θp為線圈每一時(shí)刻的溫度,℃;θ0為環(huán)境溫度,℃。
根據(jù)以上材料屬性、熱載荷和邊界條件,對(duì)電磁鐵進(jìn)行穩(wěn)態(tài)熱計(jì)算,由于加載的熱載荷和邊界條件都是隨著時(shí)間和溫度變化的,所進(jìn)行的熱計(jì)算是非線性的,計(jì)算需要的時(shí)間也會(huì)長(zhǎng)一些,最終得到的電磁鐵穩(wěn)態(tài)溫度場(chǎng)分布云圖和熱梯度矢量圖如圖3所示。
圖3 電磁鐵溫度場(chǎng)分布云圖及熱梯度矢量圖
從圖3電磁鐵溫度場(chǎng)分布云圖可以看出,電磁鐵線圈部分溫度最高,這是由于線圈部分起內(nèi)熱源的作用,遠(yuǎn)離線圈的閥體溫度相對(duì)較低。從電磁鐵溫度場(chǎng)的具體數(shù)值可以看出,電磁鐵所有部分的溫度相差較小,這是由于線圈直接繞在閥體上,而且電磁鐵各部分都是導(dǎo)熱性能良好的材料,在穩(wěn)態(tài)計(jì)算的條件下,溫度相差必然會(huì)很小。利用ANSYS有限元軟件進(jìn)行穩(wěn)態(tài)計(jì)算得到的線圈穩(wěn)態(tài)溫度為218.9 ℃,線圈發(fā)熱試驗(yàn)中線圈的溫度最終穩(wěn)定在216.8 ℃左右,這說(shuō)明利用ANSYS有限元軟件對(duì)電磁鐵溫度場(chǎng)進(jìn)行穩(wěn)態(tài)計(jì)算,可以得到較為準(zhǔn)確的結(jié)果,但前提是所加載的熱載荷和邊界條件合適。
為了得到電磁鐵通電工作時(shí)每一時(shí)刻的溫度場(chǎng)分布規(guī)律,下面對(duì)電磁鐵溫度場(chǎng)進(jìn)行瞬態(tài)計(jì)算。電磁鐵溫度場(chǎng)的瞬態(tài)計(jì)算和穩(wěn)態(tài)計(jì)算的物理模型、熱載荷和邊界條件都相同,不同之處是瞬態(tài)計(jì)算中不僅需要定義材料的熱傳導(dǎo)率,而且需要定義材料的密度和比熱容,如表2所示電磁鐵各部分材料的密度和比熱容。另外,瞬態(tài)計(jì)算中需要設(shè)置計(jì)算結(jié)束的時(shí)間及時(shí)間步長(zhǎng)。
表2 材料屬性
對(duì)電磁鐵溫度場(chǎng)進(jìn)行瞬態(tài)計(jì)算,設(shè)置計(jì)算結(jié)束時(shí)間為1200 s,時(shí)間步長(zhǎng)為60 s,圖4~圖5所示為60 s時(shí)刻和120 s時(shí)刻電磁鐵溫度場(chǎng)分布云圖及熱梯度矢量圖。從圖中可以看出,每一時(shí)刻線圈部分的溫度最高,和線圈直接接觸的部分由于金屬導(dǎo)熱的作用溫度也較高,離線圈較遠(yuǎn)的地方溫度較低。電磁鐵通電工作60 s和120 s時(shí), 線圈的瞬態(tài)溫度分別為98.8 ℃和121.5 ℃,線圈發(fā)熱試驗(yàn)得到的結(jié)果分別是98.3 ℃和122.3 ℃,這說(shuō)明ANSYS瞬態(tài)計(jì)算可以較為準(zhǔn)確的得到電磁鐵每一時(shí)刻的溫度場(chǎng)分布規(guī)律。
圖4 60 s時(shí)刻溫度場(chǎng)分布云圖及熱梯度矢量圖
圖5 120 s時(shí)刻溫度場(chǎng)分布云圖及熱梯度矢量圖
圖6中計(jì)算曲線所示為線圈部分的溫度隨時(shí)間的變化曲線,從圖中計(jì)算曲線可以看出,線圈溫度隨時(shí)間呈指數(shù)形式增長(zhǎng),符合實(shí)際情況,這是由于在利用ANSYS 對(duì)電磁鐵進(jìn)行數(shù)值計(jì)算時(shí),所加載的熱載荷和邊界條件都是隨溫度和時(shí)間非線性變化的。在以往文獻(xiàn)中的類似問(wèn)題,由于加載的生熱率和散熱系數(shù)都是定值,最終得到的溫度隨時(shí)間的變化曲線都是線性的,這不符合實(shí)際情況。從圖中還可以看出,線圈的溫度最終基本穩(wěn)定在219 ℃左右,這和穩(wěn)態(tài)計(jì)算結(jié)果相符。
為了驗(yàn)證基于ANSYS的電磁鐵溫度場(chǎng)仿真結(jié)果的正確性,對(duì)電磁鐵線圈進(jìn)行發(fā)熱試驗(yàn)。線圈溫升一般采用電阻法測(cè)量,電阻法測(cè)量溫升的原理是被測(cè)電磁鐵線圈的電阻值隨線圈溫度的升高而線性增加。試驗(yàn)中給線圈接通直流電壓,每隔1 min測(cè)量一次線圈電流,然后根據(jù)歐姆定律求得線圈每一時(shí)刻的電阻值R2,每一時(shí)刻線圈溫升θ按下式計(jì)算:
(7)
式中,θ為線圈溫升,℃;R1為0時(shí)刻線圈電阻,Ω;R2為線圈通電后每一時(shí)刻電阻,Ω;θ0為發(fā)熱試驗(yàn)開(kāi)始時(shí)環(huán)境溫度,℃;θ2為線圈通電后每一時(shí)刻的溫度,℃。
圖6所示為基于ANSYS有限元軟件計(jì)算得到的線圈溫升曲線和試驗(yàn)結(jié)果對(duì)比圖。從圖中看出,線圈通電剛開(kāi)始一段時(shí)間內(nèi),溫升上升的較快,線圈通電10 min以后,線圈溫升上升緩慢,總體上計(jì)算曲線和試驗(yàn)曲線基本吻合。試驗(yàn)結(jié)果驗(yàn)證了基于ANSYS有限元軟件建立的溫度場(chǎng)仿真模型和仿真結(jié)果的正確性,表明基于ANSYS有限元軟件夠準(zhǔn)確的計(jì)算出線圈溫升隨時(shí)間的變化規(guī)律。
圖6 線圈溫升曲線對(duì)比
基于ANSYS有限元軟件對(duì)電磁鐵溫度場(chǎng)進(jìn)行了仿真,仿真模型中,考慮了熱載荷和邊界條件隨時(shí)間的變化,改進(jìn)了以往文獻(xiàn)中利用ANSYS有限元軟件計(jì)算電磁鐵溫度場(chǎng)的方法,使得仿真結(jié)果更加準(zhǔn)確。對(duì)電磁鐵進(jìn)行了線圈發(fā)熱試驗(yàn),試驗(yàn)結(jié)果表明本研究建立的電磁鐵溫度場(chǎng)仿真模型能夠準(zhǔn)確的計(jì)算出線圈溫度隨時(shí)間的變化規(guī)律。利用ANSYS有限元軟件不僅能夠計(jì)算電磁鐵線圈溫度隨時(shí)間的變化,而且能夠清晰、直觀的反映出電磁鐵整個(gè)溫度場(chǎng)的分布規(guī)律,為研究電磁鐵熱性能和提高電磁閥的工作可靠性具有一定的工程應(yīng)用價(jià)值。
參考文獻(xiàn):
[1]王寶齡.電磁電器設(shè)計(jì)基礎(chǔ)[M].北京:國(guó)防工業(yè)出版社,1989.
[2]朱寧昌,劉國(guó)球.液體火箭發(fā)動(dòng)機(jī)設(shè)計(jì)[M].北京:宇航出版社,1994.
[3]王春民,沙超,魏學(xué)峰.直流螺管式電磁閥線圈溫升研究[J].液壓與氣動(dòng),2014,(8):60-63.
[4]李繼山,林祜亭,李和平.基于ANSYS電空制動(dòng)EP閥線圈穩(wěn)態(tài)溫升的研究[J].鐵道機(jī)車車輛,2005(4):28-29.
[5]Richard L Huftalen. Next Generation Propellant Isolation Valve Design and Development[R].USA:AIAA,2006:2006-4879.
[6]林抒毅,許志紅.交流電磁閥三維溫度特性仿真分析[J].中國(guó)電機(jī)工程學(xué)報(bào),2012,32(36):156-163.
[7]黃琳敏,陳德桂.應(yīng)用瞬態(tài)熱路法計(jì)算直流電磁鐵的溫升[J].低壓電器,2003,(2):12-15.
[8]王曉峰,唐武進(jìn),耿英三.利用ANSYS軟件進(jìn)行直流螺管式電磁鐵溫度場(chǎng)分析[J].電機(jī)電器技術(shù),2002,(6):45-47.
[9]趙凱華, 陳熙謀. 電磁學(xué)[M]. 北京:高等教育出版社, 2003.