涂雪松
(北京腦血管病醫(yī)院 神經(jīng)科, 北京 100039)
?
干細(xì)胞及其誘導(dǎo)技術(shù)在培育成體細(xì)胞、篩選藥物和移植實(shí)驗(yàn)中的作用
涂雪松*
(北京腦血管病醫(yī)院 神經(jīng)科, 北京 100039)
利用干細(xì)胞及其誘導(dǎo)技術(shù)在實(shí)驗(yàn)室內(nèi)培育出的成體細(xì)胞,可以為干細(xì)胞的基礎(chǔ)研究及未來(lái)開(kāi)展的針對(duì)人類(lèi)疾病的臨床移植試驗(yàn)創(chuàng)造條件。此外,干細(xì)胞及其誘導(dǎo)技術(shù)在藥物篩選中也能發(fā)揮積極的作用。
干細(xì)胞;誘導(dǎo)多能干細(xì)胞;胚胎干細(xì)胞;神經(jīng)干細(xì)胞;成體細(xì)胞
誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSc)技術(shù)是一種利用重編程技術(shù)將人體的組織細(xì)胞轉(zhuǎn)化為干細(xì)胞的技術(shù)。iPSc技術(shù)的誕生不但解決了干細(xì)胞培育的來(lái)源細(xì)胞問(wèn)題,而且,通過(guò)建立的疾病的動(dòng)物模型,有力地推動(dòng)了對(duì)人類(lèi)疾病的發(fā)病機(jī)制和藥物篩選的研究。現(xiàn)在,科學(xué)家們已能利用干細(xì)胞誘導(dǎo)技術(shù)培育出大部分成體細(xì)胞。通過(guò)導(dǎo)入細(xì)胞因子,將胚胎干細(xì)胞(embryonic stem cells,ESs)和iPSc轉(zhuǎn)化為內(nèi)胚層祖細(xì)胞(endodermal progenitor cells, EPCs),然后再將這些EPCs轉(zhuǎn)化為肝、胰腺、胰島、腸道等內(nèi)胚層細(xì)胞[1]。利用這些培育出的成體細(xì)胞,開(kāi)展了對(duì)人類(lèi)疾病的基礎(chǔ)及臨床研究?,F(xiàn)在,人類(lèi)在干細(xì)胞及其誘導(dǎo)技術(shù)方面的研究已經(jīng)取得了初步成果。
1.1 角膜緣細(xì)胞
將皮膚干細(xì)胞誘導(dǎo)分化為角膜緣干細(xì)胞(limbus stem cells,LSCs),再把這種重編程的細(xì)胞移植到LSCc缺乏的一個(gè)成功模擬了人類(lèi)的角膜損傷的兔子眼睛模型中去,移植細(xì)胞既補(bǔ)充了角膜細(xì)胞,同時(shí)也修復(fù)了受損的角膜表面[2]。
1.2 視網(wǎng)膜細(xì)胞及色素上皮細(xì)胞
利用一種人體干細(xì)胞在實(shí)驗(yàn)室內(nèi)培育出視網(wǎng)膜感光細(xì)胞(大部分是圓柱細(xì)胞),然后培育出微型人類(lèi)視網(wǎng)膜[3]。首次利用反轉(zhuǎn)錄病毒將人成纖維細(xì)胞轉(zhuǎn)化為視網(wǎng)膜色素上皮細(xì)胞[4]。將人胚胎干細(xì)胞(human embryonic stem cells,hESCs)分化為視網(wǎng)膜色素上皮細(xì)胞,然后將500 000個(gè)提純的視網(wǎng)膜色素上皮細(xì)胞注射到患老年黃斑變性和眼底黃色斑點(diǎn)癥(stargardt disease)患者的視網(wǎng)膜下,4個(gè)月后,發(fā)現(xiàn)患者視力改善,未有癌變和排斥反應(yīng)發(fā)生[5]。 將小鼠的視網(wǎng)膜前體細(xì)胞移植到盲鼠眼內(nèi),2周后,12只移植鼠中有10只移植鼠恢復(fù)對(duì)光反應(yīng)[6],在移植小鼠的視網(wǎng)膜上形成了完整的光敏感層,研究人員計(jì)劃用iPSc誘導(dǎo)出視網(wǎng)膜干細(xì)胞,再誘導(dǎo)出視網(wǎng)膜細(xì)胞。
1.3 心肌細(xì)胞
用心律失常性右室發(fā)育不全/右室下降病患者的皮膚細(xì)胞,經(jīng)過(guò)iPSc階段,培養(yǎng)出心肌細(xì)胞,并在實(shí)驗(yàn)室制作出心律失常性右室發(fā)育不全/右室下降病模型[7]。通過(guò)對(duì)兩個(gè)小分子化合物的操作,影響Wnt通路,高效率(80%)地將人干細(xì)胞轉(zhuǎn)化為心肌細(xì)胞[8]。
1.4 內(nèi)耳感覺(jué)上皮細(xì)胞
將人類(lèi)ES轉(zhuǎn)化為內(nèi)耳毛干細(xì)胞(stem cells,SCs),分離出未來(lái)要分化為螺旋神經(jīng)節(jié)的SCs,將其移植到耳神經(jīng)受損的沙鼠內(nèi)耳中,10周后,耳聾沙鼠聽(tīng)到了聲音[9]。
1.5 神經(jīng)系統(tǒng)細(xì)胞
通過(guò)篩選,研究人員找到了一種能激活骨髓干細(xì)胞特定受體的抗體,將其加入到體外培養(yǎng)的人骨髓干細(xì)胞中,發(fā)現(xiàn)培養(yǎng)皿中的細(xì)胞開(kāi)始增殖,檢測(cè)表明為神經(jīng)前體細(xì)胞[10]。利用11種轉(zhuǎn)錄因子將胚胎小鼠皮膚細(xì)胞直接轉(zhuǎn)化為神經(jīng)前體細(xì)胞,隨后這些神經(jīng)前體細(xì)胞轉(zhuǎn)化為神經(jīng)系統(tǒng)各類(lèi)細(xì)胞如神經(jīng)細(xì)胞、少突膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞。將這些神經(jīng)系統(tǒng)細(xì)胞移植進(jìn)小鼠腦內(nèi)后發(fā)現(xiàn),它們整合到宿主腦內(nèi),并產(chǎn)生出在神經(jīng)沖動(dòng)中起重要作用的蛋白質(zhì)[11]。
1.6 肝細(xì)胞
將人iPSc誘導(dǎo)成肝細(xì)胞,再將其與人臍靜脈內(nèi)皮細(xì)胞和人間充質(zhì)干細(xì)胞混合培養(yǎng),結(jié)果生成了具有血管的肝芽。這種肝芽具有人類(lèi)肝臟的許多特點(diǎn)[12]。通過(guò)導(dǎo)入FOXA2及HNF1α將人ES和iPSc轉(zhuǎn)化為肝細(xì)胞樣細(xì)胞,經(jīng)檢測(cè),這些肝細(xì)胞樣細(xì)胞和原代肝細(xì)胞在功能上沒(méi)有差異[13]。
1.7 肌肉細(xì)胞
美國(guó)杜克大學(xué)的生物醫(yī)學(xué)工程師通過(guò)為肌肉干細(xì)胞創(chuàng)建微環(huán)境,在實(shí)驗(yàn)室中培養(yǎng)出了看上去與真實(shí)肌肉非常相似的組織工程骨骼肌,將其植入小鼠體內(nèi)后,其很快就可與機(jī)體融合,能像原生的新生骨骼肌一樣強(qiáng)力地收縮[14]。
1.8 骨細(xì)胞
借用iPS技術(shù),將人體皮膚細(xì)胞誘導(dǎo)成骨前體細(xì)胞及骨SC,然后種在一個(gè)支架上,在生物反應(yīng)器內(nèi)進(jìn)行培養(yǎng),然后將培養(yǎng)物移植到免疫系統(tǒng)受損大鼠的皮下,12周后發(fā)現(xiàn)骨SCs完全轉(zhuǎn)化為成熟的骨細(xì)胞[15]。
1.9 脂肪細(xì)胞
成功地將人體iPSc高效率(90%)地轉(zhuǎn)化為脂肪細(xì)胞[16]。
1.10 胰島細(xì)胞
據(jù)報(bào)道,最初只能將iPSc培育成胰島β前體細(xì)胞,后來(lái)通過(guò)改進(jìn)培育方法,可以直接將iPSc培育成胰島β細(xì)胞。向免疫缺陷糖尿病模型大鼠移植入ESCs,再停止向其注射胰島素,4個(gè)月后,實(shí)驗(yàn)大鼠在喂食大量糖的情況下,血糖仍然正常,說(shuō)明干細(xì)胞已轉(zhuǎn)化為胰島β細(xì)胞[17]。將ESCs和iPSc轉(zhuǎn)化為胰島β細(xì)胞,但這種工程胰島β細(xì)胞的功能只及正常胰島β細(xì)胞的20%[1]。
1.11 生發(fā)細(xì)胞
利用iPS技術(shù),分別將來(lái)自實(shí)驗(yàn)鼠和人的皮膚細(xì)胞培育成毛囊,然后將其分別移植到實(shí)驗(yàn)大鼠的皮膚上,結(jié)果長(zhǎng)出毛發(fā),而且毛發(fā)脫落后,可以再長(zhǎng)出新毛發(fā)[18]。
1.12 成釉細(xì)胞
將大鼠齒源性上皮細(xì)胞與小鼠iPSc共同培養(yǎng),結(jié)果發(fā)現(xiàn),有95%的iPSc轉(zhuǎn)化為成釉細(xì)胞[19]。
1.13 血液細(xì)胞
篩選出4 個(gè)轉(zhuǎn)錄因子,加入培養(yǎng)液中,對(duì)取自實(shí)驗(yàn)小鼠的成纖維細(xì)胞進(jìn)行培養(yǎng),結(jié)果將成纖維細(xì)胞轉(zhuǎn)化為造血干細(xì)胞(hematopoietic stem cells,HSCs),這些HSC類(lèi)似于人體HSC,分化為包括紅細(xì)胞、白細(xì)胞和血小板在內(nèi)的血液細(xì)胞[20]。通過(guò)向人或?qū)嶒?yàn)小鼠皮膚中的成纖維細(xì)胞植入3個(gè)基因,不經(jīng)過(guò)iPSc階段,17d就將成纖維細(xì)胞轉(zhuǎn)化為血小板細(xì)胞[21]。
1.14 生殖細(xì)胞
在實(shí)驗(yàn)室將從成年女性卵巢獲得的卵SC(表達(dá)干細(xì)胞特有的DDX4標(biāo)記)誘導(dǎo)成卵母細(xì)胞(oocyte),將其移植入小鼠體內(nèi),這些卵母細(xì)胞分化成為成熟的卵細(xì)胞[22]。將小鼠的ESC和iPSc轉(zhuǎn)化為外胚層細(xì)胞,再轉(zhuǎn)化為原生殖細(xì)胞(primordial germ cells,PGCs)。待PGCs生成了卵巢樣組織后,再其移植到雌性小鼠體內(nèi)。4周后,卵母細(xì)胞發(fā)育生成。待受精及胚胎形成后,將其移植到代孕小鼠體內(nèi),產(chǎn)下的后代具有生育能力[23]。
1.15 血管細(xì)胞
利用皮膚細(xì)胞培育出部分誘導(dǎo)多能干細(xì)胞(part of the induced pluripotent stem cells,PiPSc),再用PiPSc培育出血管細(xì)胞[24]。先分別將人ES和iPSc轉(zhuǎn)化為人多能干細(xì)胞(human pluripotent stem cells,hPSCs),然后將其與提供相關(guān)物質(zhì)的神經(jīng)細(xì)胞共同分化,培育出具有血-腦脊液屏障功能的血管內(nèi)皮細(xì)胞[25]。
通過(guò)iPS技術(shù),建立了有TDP43基因突變的運(yùn)動(dòng)神經(jīng)元病的iPS模型,然后進(jìn)行藥物篩選,發(fā)現(xiàn)漆樹(shù)酸(Anacardic Acid)能抑制TDP43蛋白質(zhì)的蓄積,還發(fā)現(xiàn)添加了漆樹(shù)酸后,運(yùn)動(dòng)神經(jīng)元的突觸長(zhǎng)度發(fā)育到正常水平[26]。TDP43蛋白質(zhì)的蓄積是運(yùn)動(dòng)神經(jīng)元病的發(fā)病機(jī)制。漆樹(shù)酸是一種組蛋白乙酰轉(zhuǎn)移抑制劑。試驗(yàn)結(jié)果顯示,漆樹(shù)酸可能是未來(lái)治療運(yùn)動(dòng)神經(jīng)元病的藥物。因?yàn)樵搶?shí)驗(yàn)是患者的自體移植實(shí)驗(yàn),因此更具有意義。建立了有SMN基因突變的脊髓性肌萎縮病(spinal muscular atrophy, SMA)小鼠模型,用特殊設(shè)計(jì)的寡核苷酸鏈對(duì)突變的SMN基因進(jìn)行修復(fù),發(fā)現(xiàn)修復(fù)后,SMN突變特異性表型不再出現(xiàn),將其移植入SMA模型小鼠體內(nèi),發(fā)現(xiàn)SMA模型小鼠壽命延長(zhǎng)[27]。這一發(fā)現(xiàn)為未來(lái)研究SMA藥物提供了方向。SMN蛋白是人的運(yùn)動(dòng)神經(jīng)元的生存蛋白,在SMA中,其含量降低,導(dǎo)致運(yùn)動(dòng)神經(jīng)元數(shù)量和體積減少。在建立的雷特綜合征(Rett syndrome,RTT)人iPS模型上進(jìn)行了藥物試驗(yàn),發(fā)現(xiàn)胰島素生長(zhǎng)因子1(insulin growth factor 1, IGF1)和一定濃度的慶大霉素(100 μg/mL)可以消除RTT的異常表型,表明IGF1和慶大霉素是未來(lái)可能的RTT的治療藥物。在建立的SMA模型小鼠上進(jìn)行了藥物試驗(yàn),結(jié)果發(fā)現(xiàn),丙戊酸和妥布霉素可以上調(diào)SMN基因的表達(dá),增加SMN蛋白的含量,說(shuō)明丙戊酸和妥布霉素是未來(lái)可能的SMA的治療藥物。纖維母細(xì)胞生長(zhǎng)因子2(fibroblast growth factor,F(xiàn)GF2)蛋白具有促進(jìn)肌肉SC分化為肌肉細(xì)胞的功能,肌肉中FGF2蛋白含量越高,肌肉內(nèi)的SC數(shù)量越少,F(xiàn)GF2蛋白抑制劑可以通過(guò)降低肌肉中FGF2蛋白含量,抑制肌肉SC向肌肉細(xì)胞轉(zhuǎn)化,阻止肌肉內(nèi)SC數(shù)量的進(jìn)一步下降[28]。β淀粉樣蛋白(Aβ)沉積導(dǎo)致的老年斑和神經(jīng)纖維纏結(jié)是阿爾茨海默病(Alzheimer’s disease, AD)AD的病理改變。建立了家族性阿爾茨海默病(familiar Alzheimer’s disease, FAD)的iPSc動(dòng)物模型,利用FAD-iPSc動(dòng)物模型進(jìn)行了藥物篩查,結(jié)果發(fā)現(xiàn),γ分泌酶抑制劑能夠降低FAD-iPSc分化神經(jīng)細(xì)胞的β淀粉樣蛋白42(Aβ42)和β淀粉樣蛋白40(Aβ40)的水平,說(shuō)明,γ分泌酶抑制劑是治療AD的藥物[29]。利用建立的AD患者的特異性iPSc模型對(duì)AD的治療用藥進(jìn)行了篩選,結(jié)果發(fā)現(xiàn),β、γ分泌抑制劑或非甾體類(lèi)抗炎藥可以抑制由AD-iPSc轉(zhuǎn)化的神經(jīng)細(xì)胞產(chǎn)生的Aβ[30],說(shuō)明,β、γ分泌抑制劑或非甾體類(lèi)抗炎藥是對(duì)AD有治療效果的藥物。建立了不同AD患者的iPSc動(dòng)物模型,然后觀(guān)察其對(duì)藥物的治療反應(yīng),不同藥物可以引起不同的反應(yīng)[31],說(shuō)明,AD的藥物治療效果存在個(gè)體差異。
通過(guò)干細(xì)胞誘導(dǎo)技術(shù),篩選出一種β-分泌物抑制劑的藥物,該藥能恢復(fù)耳聾小鼠的聽(tīng)力[32]。該藥是Notch蛋白抑制劑。Notch蛋白是毛細(xì)胞周?chē)闹С旨?xì)胞表面的蛋白。其的作用機(jī)制是使支持細(xì)胞發(fā)生重編程,轉(zhuǎn)化為毛細(xì)胞。這一成果,在未來(lái)人類(lèi)的耳聾治療應(yīng)用上有光明前景。
近期開(kāi)展的動(dòng)物模型試驗(yàn)已初步顯示出干細(xì)胞移植在人類(lèi)難治性疾病中的治療效果。
3.1 移植膠質(zhì)細(xì)胞,提高智力及認(rèn)知功能
將人類(lèi)膠質(zhì)細(xì)胞移植到大鼠腦內(nèi),發(fā)現(xiàn)移植大鼠在成長(zhǎng)過(guò)程中表現(xiàn)出更好地學(xué)習(xí)能力[33]。人體膠質(zhì)細(xì)胞在智慧和認(rèn)知能力方面扮演著一個(gè)重要角色。研究者認(rèn)為,這將為研究和治療與智力及認(rèn)知能力有關(guān)的神經(jīng)疾病提供了一個(gè)切入點(diǎn)。
3.2 使用功能化膠原支架,治療脊髓損傷
脊髓損傷后產(chǎn)生的大量髓鞘相關(guān)抑制蛋白是抑制神經(jīng)干細(xì)胞向神經(jīng)細(xì)胞轉(zhuǎn)化的重要障礙,也是脊髓損傷難治的關(guān)鍵所在。將承載神經(jīng)干細(xì)胞的表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR)抗體功能化的膠原三維支架移植到脊髓半橫斷模型大鼠的缺損處,模型大鼠的運(yùn)動(dòng)功能得到滿(mǎn)意的恢復(fù)[34]。功能化膠原支架上的EGFR抗體西妥昔(cetuximab)通過(guò)阻斷髓鞘相關(guān)抑制蛋白信號(hào)通路,抵消髓鞘相關(guān)抑制蛋白對(duì)神經(jīng)干細(xì)胞分化的抑制作用,促進(jìn)移植的神經(jīng)干細(xì)胞向神經(jīng)元轉(zhuǎn)化。功能化膠原支架還促進(jìn)神經(jīng)細(xì)胞生長(zhǎng)和突觸形成。兩者共同作用,使脊髓損傷模型大鼠得到了的修復(fù)。
3.3參與腫瘤的過(guò)繼免疫治療,增強(qiáng)過(guò)繼免疫治療效果
腫瘤的過(guò)繼免疫治療就是將腫瘤患者的T淋巴細(xì)胞在體內(nèi)擴(kuò)增,然后回輸給患者。但在體外將T淋巴細(xì)胞進(jìn)行大量擴(kuò)增有一定困難。先將惡性黑色素瘤患者的T淋巴細(xì)胞在實(shí)驗(yàn)室轉(zhuǎn)化為iPSc,然后對(duì)iPSc進(jìn)行擴(kuò)增,再將擴(kuò)增后的iPSc轉(zhuǎn)化為T(mén)淋巴細(xì)胞[35]。這樣做的好處是既大量開(kāi)發(fā)出T淋巴細(xì)胞,又使開(kāi)發(fā)出的T淋巴細(xì)胞像以前的T淋巴細(xì)胞一樣,對(duì)癌細(xì)胞具有攻擊性。通過(guò)iPSc技術(shù),將T淋巴細(xì)胞轉(zhuǎn)化為iPSc后,T淋巴細(xì)胞能通過(guò)改變基因排列的方式,將對(duì)癌細(xì)胞的特異性蛋白的“記憶”傳遞給iPSc;將iPSc再轉(zhuǎn)化為T(mén)淋巴細(xì)胞后,iPSc又能將這種“記憶”傳遞給T淋巴細(xì)胞。干細(xì)胞的參與既解決了T淋巴細(xì)胞大量培育的難題,又保持了T淋巴細(xì)胞對(duì)癌細(xì)胞的攻擊性。
3.4 參與腫瘤的化療,增強(qiáng)化療效果
以昆蟲(chóng)桿狀病毒為載體,將單純皰疹病毒胸苷(一種自殺基因)導(dǎo)入到來(lái)源于人類(lèi)iPSc的神經(jīng)干細(xì)胞(neural stem cells,NSC)內(nèi),將NSC注射到乳腺癌模型小鼠體內(nèi),再將抗癌藥更昔洛韋(ganciclovir)注射到乳腺癌模型小鼠體內(nèi),在原發(fā)灶和轉(zhuǎn)移灶內(nèi)都發(fā)現(xiàn)有iPSc-NSC,與未注射iPSc-NSC的乳腺癌模型小鼠相比,生存期延長(zhǎng)(由34 d延長(zhǎng)至39 d)[36]。
[1] Cheng X, Ying L, Lu L,etal. Self-renewing endodermal progenitor lines generated from human pluripotent stem cells[J]. Cell Stem Cell, 2012, 10: 371- 384.
[2] Ouyang H, Xue Y, Lin YC,etal. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis[J]. Nature Publishing Group, 2014,511:358- 361.doi:10.1038/nature13465.
[3] Zhong X, Gutierrez C, Xue T,etal. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J]. Nat Commun, 2014,5:4047.doi.10.1038/ncomms5047.
[4] Singh MS, Vharbel LP, Butler R,etal. Reversal of end-stage retinal degeration and restoration of visual function by photoreceptor transplantation[J]. ProcNatl Acad Sci U S A,2013, 110: 1101- 1106.
[5] Tohyama S, Hattori F, Sano M,etal. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes[J]. Cell Stem Cell,2013, 12: 127- 137.
[6] Kim C, Wong J, Wen J,etal. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSc[J]. Nature, 2013, 494: 105- 110.
[7] Koehler KR, Mikosz AM, Molosh AI,etal. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culure[J]. Nature, 2013,doi:10:10.1038/nature12298.
[8] Xie J, Zhang H, Yea K,etal. Autocrine signaling based selection of combinatorial antibodies that transdifferentiate human stem cells[J]. Proc Natl Acad Sci U S A,2013,110: 8099- 8104.
[9] Najm FJ, Lager AM, Zaremba A,etal. Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells[J]. Nat Biotechnol,2013, 31: 426- 433.
[10] Takebe T, Sekine K,Enomura M,etal. Vascularized and functional human liver from an iPSC-derived orgen bud transplant[J]. Nature,2013, 499: 481- 484.
[11] Huch M, Dorrell C, Boj SF,etal.Invitroexpansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature, 2013,494: 247- 250.
[12] Filareto A, Parker S, Darabi R,etal. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells[J]. Nat Commun,2013,4: 1549- 1552.
[13] de Peppo GM, Marcos-Campos I, Kahler DJ,etal. Engineering bone tissue substitutes from human induced pluripotent stem cells[J]. Proc Natl Acad Sci, USA, 2013, 110: 8680- 8685.
[14] Juhas M, Engelmayr GC, Fontanella AN,etal. Biomimetic engineered muscle with capacity for vascular integration and functional maturationinvivo[J]. Proc Nat Acad Sci, 2014,111:5568- 5513.doi:10.1073/pnas.1402723111.
[15] Ahfeldt T, Schinzel RT, Lee YK,etal. Programming human pluripotent stem cells into white and brown adipocytes[J]. Nat Cell Biol, 2012,14: 209- 219.
[16] Toyoshima K, Asakawa K, Ishibashi N,etal.Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches[J]. Nat Commun, 2012, 3: 784- 787.
[17] arakaki M, Ishikawa M, Nakamura T,etal. Role of epithelial-stem cell interactions during dental cell differentiation[J]. J Biol Chen, 2012, doi: 10. 1074/jbc. M111. 285874.
[18] Pereira CF, Chang B, Qiu J,etal. Induction of a hemogenic program in mouse fibroblasts[J]. Cell, 2013,doi:10.1016/j.stem.2013.05.024.
[19] Ono Y, Li L, Pandey R,etal. The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network[J]. Cell Stem Cell, 2012,11: 163- 178.
[20] White YA, Woods DC, Takai Y,etal. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women[J]. Nat Med, 2012,18: 413- 421.
[21] Hayashi K, Ogushi S, Kurimoto K,etal. Offspring from oocytes derived frominvitroprimordial germ cell-like in mice[J]. Science, 2012.doi:10.1126/scince.1226889.
[22] Suzuki H, Shibata R, Kito T,etal. Comparative angiogenic activities of induced pluripotent stem cells derived from young and old mice[J]. PLoS One,2012, 7: e39562- 39565.
[23] Margariti A, Winkler B, Karamariti E,etal. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels[J]. Proc Natl Acad Sci U S A, 2012,109: 13793- 13798.
[24] Egawa N,Kitaoka S,Tsukita K,etal. Drug screening for ALS using patient-specific induced pluripotent stem cells[J]. Sci Transl Med,2012,4:104- 106
[25] Corti S, Nizzardo M, Simone C,etal. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy[J]. Sci Transl Med,2012, 4:162- 165.
[26] Marchetto MC, Carromeu C, Acab A,etal. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells[J]. Cell, 2010, 143: 527- 539.
[27] Ebert AD, Yu J, Rose FF Jr,etal. Induced pluripotent stem cells from a spinal muscular atrophy patient[J]. Nature,2009, 457: 277- 280.
[28] Chakkalakal JV, Jones KM, Basson MA,etal. The aged niche disrupts muscle stem cell quiescence[J]. Nature, 2012. doi: 10. 1038/nature 11438.
[29] Yagi T, Ito D, Okada Y,etal. Modeling familial Alzheimer’s disease with induced pluripotent stem cells[J]. Hum Mol Genet, 2011, 20: 4530- 4539.
[30] Yahada N, Asai M, Kitaoka S,etal. Anti-Abeta drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease[J]. PLoS One, 2011, 6: e25788- 25789.
[31] Kondo T, Asai M, Tsukita K,etal. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness[J]. Cell Stem Cell,2013, 12:487- 496.
[32] Mizutari K, Fujioka M, Hosoya M,etal. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma[J]. Neuron,2013,77: 58- 69.
[33] Han X, Chen M, Wang F,etal. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learing in adult mice[J]. Cell Stem Cell, 2013, 12: 342- 353.
[34] Li X, Xuao Z, Han J,etal. Promotion of neuronal differentiation of nural prognitor cells by using EGFR antibody functionalied collagen scaffolds for spinal cord injury repair[J]. Biomaterials,2013,34: 5107- 5116.
[35] Vizcardo R, Masuda K, Yamada D,etal. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells[J]. Cell Stem Cell, 2013,12: 31- 36.
[36] Yang J, Lam DH,Goh SS,etal. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and thrir gene therapy application in a metastatic breast cancer model[J]. Stem Cells,2012, 30: 1021- 1029.
The role of stem cells and inducing technology in breeding adult cells, screening drugs and the basic research and transplantation
TU Xue-song*
(Beijing Cerebrovascular Disease Hospital, Beijing 100039, China)
Stem cells and inducing technology for adult cells is the basis of stem cell research and clinical transplantation test to potential treatment of human diseases. In addition, stem cells and inducing technology can play a role in drug screening.
stem cells; induced pluripotent stem cells; embryonic stem cells; neural stem cells; adult cells
2014- 05- 14
:2014- 09- 26
*通信作者(correspondingauthor): txss-888@163.com
1001-6325(2015)02-0273-05
短篇綜述
R 318
:A