• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of Question and Answering on Virtual Human Dialogue:a Review and Prediction

    2015-04-15 13:26:08LIULi

    LIU Li(劉 里)

    1 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,Tianjin University of Technology,Tianjin 300384,China

    2 Key Laboratory of Computer Vision and System(Tianjin University of Technology),Ministry of Education,Tianjin 300384,China

    Application of Question and Answering on Virtual Human Dialogue:a Review and Prediction

    LIU Li(劉 里)1,2*

    1 Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology,Tianjin University of Technology,Tianjin 300384,China

    2 Key Laboratory of Computer Vision and System(Tianjin University of Technology),Ministry of Education,Tianjin 300384,China

    Nowadays,virtual human(VH)is becom ing a hot research topic in virtualization.VH dialogue can be categorized as an application of natural language processing(NLP)technology,since it is relational to question and answering(QA)technologies.In order to integrate these technologies,this paper reviews some important work on VH dialogue,and predicts some research points on the view of QA technologies.

    virtual human(VH)dialogue;natural language processing (NLP);question and answering(QA);interaction

    Introduction

    Virtual human (VH) is a hot research field of virtualization.VH dialogue is the application of natural language processing(NLP)technology on the research field,since it is relational to question and answering (QA) technologies.This paper reviews the important work of VH dialogue,and proposes some research points on the view of QA technologies.

    1 Review

    Recently,some research facilities have focused on the research of VH dialogue,such as Institute for Creative Technologies(ICT)[1]and Virtual Experiences Research Group (VERG)[2].The purpose of their work is to improve the intelligence of VH.Their works are summarized as follows.

    Rossen et al.used VH to bootstrap the creation of other VHs[3].They developed a system called Roleplay Trainer Creator,which created a virtual medical student based on hundreds of interactions between real medical students and a virtual patient.Then,this virtual medical student was used to train standardized patients-human actors who role-played the patients in practice in doctor-patient encounters.By generating new VHs w ith human VH interaction logs,it showed the significant potential for interpersonal training applications w ith VH.It also displayed that the Roleplay Trainer Creator was beneficial for increasing the standardization of roleplay partners.

    Rossen et al.presented a new approach to create robust conversational models, called human-centered distributed conversationalmodeling(HDCM,shown in Fig.1)[45]which was a distributed system.In HDCM,domain experts and novices could collaborate asynchronously through a graphical user interface(GUI).Virtual people factory(VPF,shown in Fig.2)was the realization of HDCM,which was used to evaluate HDCM.The experiment showed that the VPF obviously reduced expert time in creating the speechunderstanding portion of a conversational model,and it also increased the possibility of building larger corpus than pervious methods.Finally,they released VPF to the public and obtained much languages resources from various domains.

    Sun developed a sem i-automated analytic model,called Articulate(shown in Fig.3)[6].The implementation of the model was as follows:(1)parsing user queries w ith NLP technologies,by tagging the words in queries w ith part-ofspeech labels,to obtain the root of words;(2)based on the parsing results,mapping the queries into a smaller feature space,and applying a supervised learning method in the space to predicting the class of task;(3) proposing simplified visualization language(SimVL)to pass the classification results and the specifying attributes to graph reasoner precisely;(4) finally,generating the graph.W ith respect to SimVL commands,several types of graph were generated.

    Articulate was guided by a conversational user interface to allow users to verbally describe and then manipulate what they want to see.Compared w ith many traditional visualization tools,Articulate needed less specific know ledge to generate graph,so itwas convenient.

    Artstein et al.studied the lim its of simple dialogue acts fortactical questioning dialogues[7].Tactical questioning used a simple scheme of dialogue acts, which were generated automatically from a representation of facts in〈object,attribute,value〉triples and actions in〈character,action〉pairs.They found the simple dialogue acts combined w ith some dialogue management techniques could cover over 75% of unseen utterances,and it could generate coherent interaction.They also found out even the kinds of utterances were not covered,and the simplex source of corpus was finally pointed out,then led to the result.

    Nouri et al.analyzed the influence of adding new know ledge to a conversational virtual character[8].They presented an experiment,which took a conversational character trained on a setof hand-authored,linked question-answer pairs,and let the character import the new sets of question-answer pairswhich were generated automatically from texts on different topics.The experiment showed that adding such know ledge affected the character's performance,and increased the error rate on questions that the original character was trained to answer.In return,the experiment showed the augmented character could also answer questions in the new topics.

    Raij et al.proposed virtual social perspective-taking (VSP),a new class of virtualexperience that immersed users in the experience lived by another person[9].Their exploration of VSP was driven by medical interview,and presented three principals to immerse the users:(1)providing input to user senses from the logs of target's senses;(2)instructing users to act and interact like the target;(3)reminding users that they were playing the role of the target.

    VSP elicited perspective-taking,and a new study pointed it would allow users to live and learn from the diverse experiences of others.It would help participants deeply understand others and the world,so that they could improve their behavior.

    Traditional method in VH dialogue system was to use professional human recordings or domain-specified speech synthesis.Georgila et al.performed a systematic evaluation to determ ine the best trade-off of these methods between performance and cost[10].The evaluation was on naturalness,conversation,and likability.They tested different types(indomain vs.out-of-domain),length,and content of utterances,and took into account the age and native language of raters as well as their fam iliarity w ith speech synthesis.They performed two experiments—a pilot one and the one running on Amazon's Mechanical Turk.The experiment showed that: (1) a professional human voice worked well than an amateur human voice and synthesized voices;(2)a high-quality generalpurpose voice or a good limited-domain voice could perform better than amateur human recordings;(3)both trained w ith speech recorded by actors,a high-quality general-purpose voice and a limited-domain voice had almost the same performance; (4)for out-of-domain sentences,the high-quality generalpurpose voice's rating was higher than the domain-specified voice's rating,but for in-domain sentences,the high-quality general-purpose voice's rating was lower;(5)long or negativecontent utterances did not receive lower ratings.

    Yao et al.proposed a new question generation tool for extracting question-answer pairs from text articles[11].They performed three experiments to demonstrate whether the new tool was suitable for giving domain-specific know ledge to conversational characters.The experiment showed that the new tool was convenient,effective,but w ith some degradation of the ability to answer questions about topics that the original character was trained to answer.Overall,question generation was prom ising for creating or augmenting a question answering conversational character using an existing text.

    Georgila et al.presented a new annotation scheme for cross-cultural argumentation and persuasion dialogues[12].The goal has two-fold:(1)aiming to fill the gap in the literature of cross-cultural argumentation and persuasion;(2)using this coding scheme to annotate negotiation dialogues to automatically learn argumentation and persuasion dialogue policies for different cultures.

    The scheme was based on a review of literature on crosscultural argumentation and persuasion,and adaptation of existing coding schemes on negotiation.They tested this scheme in three domains: florist-grocer domain, Saudi Arabian Standards Organization(SASO)domain(shown in Fig.4)and toy-naming domain.It proved that the scheme was general enough to be applicable to different domains w ith minor or no modifications at all.This scheme was used to efficiently learn culture-specific dialogue policies for argumentation and persuasion.

    Morbini et al.proposed a method to segment a given utterance into non-overlapping portions,each associated w ith a dialogue act[13].Compared w ith traditional methods,this method only needed labeled utterances(or utterance segments) corresponding to a single dialogue acting as training data.Experiments show the method has the benefit of significantly increased understanding of user intent,but has the drawback of complexity of the segment optimization.

    Brusk et al.studied the people's intuitive notion of gossip and its computational implement[14].They conducted two experiments.One was to identify what type of conversion could be recognized as gossip,and the other was to identify whether these conversations could fulfill three proposed elements: third person focus,pejorative evaluation and substantiating behavior.The results showed that: (1) conversations were very easily to be considered gossip if all elements were present,no intimate relationships existed between the participants,and also the person in focus was unambiguous;(2)conversations that had atmost one gossip elementwere not considered as gossip;(3)conversations that lacked one or two elements or had an ambiguous element led to inconsistent judgments.

    Abu-Jbara et al.presented Attitude M iner(shown in Fig.5),a system for m ining attitude from online discussions[15].Attitude M iner analyzed the online discussion from four levels: the word level,the sentence level,the post level,and the thread level.The discussion thread was represented as a signed network in which each discussantwas represented by a node and message between two discussants was represented as an edge.The polarity of text associated w ith the edge identified the sigh of the edge.The system predicted attitudes and identified subgroups(w ith a homogeneous and common focus among the discussants)w ith high accuracy.

    Traum etal.were concerned w ith situations in which there were at least three parties[16].They tracked the behaviors of head and examined how these behaviors influenced some aspects of a multi-layer dialogue model.They had implemented the model and tested in the Saudi Arabian Standards Organization English(SASO-EN) negotiation domain.The model was perhaps themost comprehensive implemented system involving visual recognition to supportmulti-party dialogue,because the model supported multiple virtual agents and involved head gestures w ith multifunctional meaning.In the model,head gestures could assist participate understanding the other's utterance.

    Morency et al.investigated how dialog context from an embodied conversational agent(ECA)could improve visual recognition of user gestures[1718].They presented a framework to extract information from spoken language to predict head gesture.They found a module of lexical,punctuation and tim ing features that could be used to learn how to predict user feedback.By using thismodule they were able to improve the recognition rate of the vision-only head gesture recognizer.

    2 Prediction

    Nowadays,VH application research in NLP is demanding.If we focus on studying interaction in QA technology,then apply the study result on HV dialogue,we may acquire surprising result.Based on the review of HV dialogue,the follow ing aspectswould be the further research points.

    2.1 Know ledgemodel adapted to VH dialogue

    Know ledgemodel is the foundation of interactive sentences representation and data storage.The know ledgemodel for VHs'dialogue has higher complexity,so that it can represent more know ledge points than traditional know ledgemodel of QA.The existing models(such as rational database,XML database,and RDF)have their own characteristics,but cannot represent VH's dialogue or store dialogue-relational data efficiently.The exploration on adaptive know ledge model would be the initial points of VH dialogue research.

    2.2 Research on VH's dialogue strategy

    The virtual dialogue should not only focus on NLP,but also the dialogue strategy is worth exploring.However,the problem is,many questions cannot be clearly described by just one question.For example,in medical science,doctor cannot diagnose w ith just one symptom described by a patient.VH's dialogue can take interactive QA system as reference,which is based on interaction strategy.How to define the interaction strategy,and base on the interactive strategy to retrieval know ledge base is a key problem which needs exploring.

    2.3 Interaction optim ization and know ledgebase reduction

    Interaction can bemapped into the question thatmatching the“know ledge point set”extracting from question and from know ledgebase.The similarmatching question is proved to be NP-complete problem,which means that just rely on simple interaction strategy will lead to too-high frequency.In order to conquer this weakness,it is essential to study the know ledge storage strategy,data model,search demand,and reduction method for the large data.In the condition ofmany know ledge points from questions,how to reduce the complexity of question and improve the effect of question analysis technology are also important issues.

    Above all, know ledge model, dialogue strategy,interaction optimization and know ledgebase reduction are proposed as research points from QA,and these technologies would be used in VH dialogue.

    3 Conclusions

    This paper reviews the important work of VH dialogue,and proposes some research points on the view of QA technologies.The future work is to find more suitable technologies,and deeply research the interaction QA,for probably improving the result of VH dialogue.

    [1]Institute for Creative Technologies.OfficialWeb Site of Institute for Creative Technologies[EB/OL].[2013-10-23].http://ict.usc.edu/.

    [2]Virtual Experiences Research Group.OfficialWeb Site of Virtual Experiences Research Group[EB/OL].2013-10-23.http:// verg.cise.ufl.edu/.

    [3]Rossen B,Cendan J,Lok B,et al.Using Virtual Humans to Bootstrap the Creation of Other Virtual Humans[C].Intelligent Virtual Agents 2010,Philadelphia,Pennsylvania,USA,2010: 392-398.

    [4]Rossen B,Lind S,Lok B,et al.Human-Centered Distributed Conversational Modeling:Efficient Modeling of Robust Virtual Human Conversations[C].Intelligent Virtual Agents 2009,the Netherlands,2009:474-481.

    [5]Rossen B,Lok B.A Crowdsourcing Method to Develop Virtual Human Conversational Agents[J].International Journal of Human-Computer Studies,2012,70(4):301-319.

    [6] Sun Y.Articulate:a Sem i-automated Model for Translating Natural Language Queries into Meaningful Visualizations[C].The 10th International Symposium on Smart Graphics,Banff,Canada,2010:184-195.

    [7]Artstein R,Rushforth M,Gandhe S,et al.Limits of Simple Dialogue Acts for Tactical Questioning Dialogues[C].The 7th IJCAI Workshop on Know ledge and Reasoning in Practical Dialogue Systems,Hyderabad,India,2011:1-7.

    [8]Nouri E,Artstein R,Leuski A,etal.Augmenting Conversational Characters with Generated Question-Answer Pairs[C].AAAI Fall Symposium:Question Generation,Arlington,Virginia,2011:49-52.

    [9]Raij A,Kotranza A,Lind D S,et al.Virtual Experiences for Social Perspective-Taking[C].Virtual Reality Conference2009,Lafayette,Louisiana,2009:99-102.

    [10]Georgila K,Black A W,Sagae K,et al.Practical Evaluation of Human and Synthesized Speech for Virtual Human Dialogue Systems[C].The 8th International Conference on Language Resources and Evaluation,Istanbul,2012:3519-3526.

    [11]Yao X C,Tosch E,Chen G,et al.Creating Conversational Characters Using Question Generation Tools[J].Dialogue&Discourse,2012,3(2):125-146.

    [12]Georgila K,Artstein R,Nazarian A,et al.An Annotation Scheme for Cross-cultural Argumentation and Persuasion Dialogues[C].The 12th Annual SIGdial Meeting on Discourse and Dialogue,Portland,Oregon,USA,2011:272-278.

    [13]Morbini F,Sagae K.Joint Identification and Segmentation of Domain-Specific Dialogue Acts for Conversational Dialogue Systems[C].The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies,Portland,Oregon,USA,2011:95-100.

    [14]Brusk J,Artstein R,Traum D.Don't Tell Anyone!:Two Experiments on Gossip Conversations[C].The 11th Annual Meeting of the Special Interest Group on Discourse and Dialogue,Tokyo,Japan,2010:193-200.

    [15]Abu-Jbara A,Hassan A,Radev D.Attitude M iner:M ining Attitude from Online Discussions[C].2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Demonstration Session,Montréal,Canada,2012:33-36.

    [16]Traum D,Morency L P.Integration of Visual Perception in Dialogue Understanding for Virtual Humans in Multi-party interaction[C].International Workshop on Interacting w ith ECAs as Virtual Characters,Toronto,Canada,2010:70.

    [17]Morency L P,Sidner C,Lee C,et al.The Role of Context in Head Gesture Recognition[C].The 21st National Conference on Artificial Intelligence,Boston,Massachusetts,2006:1650.

    [18]Morency L P,Sidner C,Lee C,et al.Head Gestures for Perceptual Interfaces: The Role of Context in Improving Recognition[J].Artificial Intelligence,2007,171(8/9):568-585.

    TP181 Document code:A

    1672-5220(2015)02-0341-04

    date:2014-10-10

    s:National Nature Science Foundations of China(Nos.61170027,61202169,and 61301140);Tianjin“131”Creative Talents Training Project,China(the 3rd level)

    * Correspondence should be addressed to LIU Li,E-mail:niceliuli@sina.com

    中国三级夫妇交换| 欧美最新免费一区二区三区| 99视频精品全部免费 在线| 最新的欧美精品一区二区| 亚州av有码| 久久精品久久精品一区二区三区| 欧美3d第一页| 久久精品国产亚洲av涩爱| 日韩一本色道免费dvd| 少妇人妻久久综合中文| 精品国产国语对白av| 国产视频内射| 人妻一区二区av| 久久久久久久久久久久大奶| 亚洲欧洲日产国产| 老司机影院成人| 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花| 如日韩欧美国产精品一区二区三区 | 一区二区av电影网| 国精品久久久久久国模美| 青春草国产在线视频| 日韩电影二区| 国产永久视频网站| 一级毛片电影观看| 在线 av 中文字幕| 国产成人精品一,二区| 波野结衣二区三区在线| 色婷婷av一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 久久久久久人妻| 欧美日本中文国产一区发布| 人体艺术视频欧美日本| 精品国产一区二区三区久久久樱花| 欧美一级a爱片免费观看看| 日韩一区二区视频免费看| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 国产av国产精品国产| 国产亚洲一区二区精品| 人妻一区二区av| 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 人妻 亚洲 视频| 久久热精品热| 九色成人免费人妻av| 大香蕉97超碰在线| 免费少妇av软件| 中文字幕人妻丝袜制服| 最近最新中文字幕免费大全7| 美女内射精品一级片tv| 午夜影院在线不卡| 亚洲av欧美aⅴ国产| 国产一区亚洲一区在线观看| 老司机亚洲免费影院| 乱码一卡2卡4卡精品| 久久国产精品大桥未久av| 九九久久精品国产亚洲av麻豆| av国产精品久久久久影院| 热re99久久精品国产66热6| 日韩在线高清观看一区二区三区| 亚洲美女黄色视频免费看| 亚洲国产精品一区三区| 嘟嘟电影网在线观看| 99re6热这里在线精品视频| 日本与韩国留学比较| 18禁在线播放成人免费| 久久久久久人妻| 伦理电影大哥的女人| 3wmmmm亚洲av在线观看| 视频中文字幕在线观看| 国产精品一二三区在线看| 熟女av电影| 汤姆久久久久久久影院中文字幕| 日本av手机在线免费观看| 丝袜在线中文字幕| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 在线观看免费高清a一片| 国产爽快片一区二区三区| 国产白丝娇喘喷水9色精品| 精品国产乱码久久久久久小说| 毛片一级片免费看久久久久| 国产高清三级在线| 大话2 男鬼变身卡| 2018国产大陆天天弄谢| 久久久久精品性色| 在线播放无遮挡| 婷婷色麻豆天堂久久| 中文字幕最新亚洲高清| 18禁动态无遮挡网站| 黄色配什么色好看| 一边摸一边做爽爽视频免费| 午夜福利视频在线观看免费| 男女边摸边吃奶| 亚洲内射少妇av| 国产 精品1| 午夜免费男女啪啪视频观看| 只有这里有精品99| 综合色丁香网| 亚洲精品国产av蜜桃| 看十八女毛片水多多多| 九色成人免费人妻av| 熟女人妻精品中文字幕| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 亚洲,一卡二卡三卡| 亚洲人成网站在线播| 色94色欧美一区二区| 国产成人91sexporn| 国产亚洲精品久久久com| 精品久久久噜噜| 欧美精品一区二区大全| 视频中文字幕在线观看| 涩涩av久久男人的天堂| 日韩一本色道免费dvd| 黄片播放在线免费| 97在线人人人人妻| 国产成人精品久久久久久| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 亚洲久久久国产精品| 又大又黄又爽视频免费| 老司机亚洲免费影院| 久久久精品免费免费高清| 亚洲精品久久久久久婷婷小说| 久久综合国产亚洲精品| 高清在线视频一区二区三区| 精品人妻偷拍中文字幕| 青青草视频在线视频观看| 91精品国产九色| 九草在线视频观看| 在线观看三级黄色| 亚洲五月色婷婷综合| 久久av网站| 日韩中字成人| 成年人午夜在线观看视频| 日韩一区二区视频免费看| 亚洲精品视频女| 国产综合精华液| 欧美日韩亚洲高清精品| 在线看a的网站| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 91精品三级在线观看| 美女主播在线视频| 一二三四中文在线观看免费高清| 在线观看人妻少妇| 日本-黄色视频高清免费观看| xxx大片免费视频| 精品卡一卡二卡四卡免费| 亚洲人成网站在线播| 国产精品久久久久久久电影| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看| 国产亚洲欧美精品永久| 麻豆精品久久久久久蜜桃| 久久久久国产网址| 中国三级夫妇交换| 简卡轻食公司| 日韩视频在线欧美| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 亚洲国产精品成人久久小说| 成年人免费黄色播放视频| av免费在线看不卡| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 免费人妻精品一区二区三区视频| 各种免费的搞黄视频| 国产亚洲午夜精品一区二区久久| 中文字幕人妻丝袜制服| 亚洲av欧美aⅴ国产| freevideosex欧美| 欧美97在线视频| 91精品一卡2卡3卡4卡| 亚洲人成77777在线视频| 边亲边吃奶的免费视频| av免费观看日本| 久久久久久久久大av| 国产高清有码在线观看视频| 99热全是精品| 在线观看免费视频网站a站| 最近中文字幕2019免费版| av福利片在线| 天堂8中文在线网| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 天堂中文最新版在线下载| 亚洲av.av天堂| 卡戴珊不雅视频在线播放| 在线亚洲精品国产二区图片欧美 | 99热国产这里只有精品6| 制服人妻中文乱码| av黄色大香蕉| 欧美精品一区二区大全| av卡一久久| 青春草视频在线免费观看| 欧美日韩视频精品一区| 美女国产高潮福利片在线看| 夫妻性生交免费视频一级片| 9色porny在线观看| 欧美97在线视频| 午夜av观看不卡| 亚洲精品国产av成人精品| 久久久欧美国产精品| 国产国语露脸激情在线看| 女性被躁到高潮视频| 99re6热这里在线精品视频| 色吧在线观看| 飞空精品影院首页| 亚洲激情五月婷婷啪啪| 能在线免费看毛片的网站| 国产av一区二区精品久久| 看非洲黑人一级黄片| 亚洲av免费高清在线观看| 日韩电影二区| 日韩伦理黄色片| 下体分泌物呈黄色| 99国产综合亚洲精品| 一级毛片电影观看| 欧美精品高潮呻吟av久久| 日产精品乱码卡一卡2卡三| 日韩免费高清中文字幕av| 免费看不卡的av| 极品人妻少妇av视频| 少妇人妻精品综合一区二区| 免费观看av网站的网址| 91久久精品国产一区二区成人| 精品视频人人做人人爽| 亚洲av.av天堂| 天堂俺去俺来也www色官网| 国产成人精品久久久久久| 一本色道久久久久久精品综合| 国产精品一区www在线观看| 伦理电影大哥的女人| 有码 亚洲区| 熟妇人妻不卡中文字幕| 日本与韩国留学比较| 欧美 亚洲 国产 日韩一| 伦精品一区二区三区| 日韩中文字幕视频在线看片| 九九爱精品视频在线观看| 国产精品 国内视频| av卡一久久| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 国产成人精品久久久久久| 久久精品久久精品一区二区三区| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 亚洲少妇的诱惑av| 69精品国产乱码久久久| 麻豆精品久久久久久蜜桃| 欧美日韩一区二区视频在线观看视频在线| 91久久精品国产一区二区成人| 国产成人午夜福利电影在线观看| 国产男人的电影天堂91| 日日啪夜夜爽| 亚洲美女黄色视频免费看| 久久久久网色| 夜夜看夜夜爽夜夜摸| 黑人欧美特级aaaaaa片| 国产色婷婷99| 亚洲av.av天堂| 亚洲精品456在线播放app| 在线看a的网站| 久久韩国三级中文字幕| 人人妻人人爽人人添夜夜欢视频| 午夜久久久在线观看| 国产乱人偷精品视频| 街头女战士在线观看网站| 亚洲精品日本国产第一区| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 18在线观看网站| 久久国内精品自在自线图片| 夫妻性生交免费视频一级片| 一二三四中文在线观看免费高清| 久久精品国产亚洲av涩爱| 午夜久久久在线观看| 国产乱人偷精品视频| 制服诱惑二区| 成人二区视频| 亚洲精品,欧美精品| 免费日韩欧美在线观看| 一级毛片黄色毛片免费观看视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品一二三| 高清av免费在线| 久久精品国产鲁丝片午夜精品| 亚洲美女黄色视频免费看| 国产 精品1| 熟女电影av网| 国产免费一区二区三区四区乱码| 性高湖久久久久久久久免费观看| 欧美日韩视频高清一区二区三区二| 精品一品国产午夜福利视频| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 午夜av观看不卡| 久久精品夜色国产| 91久久精品电影网| 曰老女人黄片| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| videosex国产| 国产免费视频播放在线视频| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 91精品一卡2卡3卡4卡| 午夜激情久久久久久久| 日本欧美视频一区| 99久久中文字幕三级久久日本| 欧美日韩亚洲高清精品| 日本色播在线视频| 亚洲国产成人一精品久久久| 五月伊人婷婷丁香| 美女视频免费永久观看网站| 午夜av观看不卡| 亚洲精品成人av观看孕妇| 午夜福利网站1000一区二区三区| 欧美日韩av久久| 久久鲁丝午夜福利片| 日本wwww免费看| 午夜91福利影院| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 成人亚洲精品一区在线观看| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 中文字幕最新亚洲高清| 久久毛片免费看一区二区三区| 五月玫瑰六月丁香| 在线观看一区二区三区激情| 精品久久蜜臀av无| 午夜影院在线不卡| 在线观看三级黄色| 日韩视频在线欧美| 午夜久久久在线观看| 国产成人精品一,二区| 国产成人免费观看mmmm| 日本91视频免费播放| 成人国产麻豆网| 国产一级毛片在线| 日韩中字成人| 熟妇人妻不卡中文字幕| 一区二区av电影网| 国产欧美日韩一区二区三区在线 | 嘟嘟电影网在线观看| 久久99蜜桃精品久久| 麻豆精品久久久久久蜜桃| 亚洲精品亚洲一区二区| 久久精品国产亚洲网站| 国产黄频视频在线观看| 久久人人爽人人片av| 久久久亚洲精品成人影院| 简卡轻食公司| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 久久人妻熟女aⅴ| 欧美日韩国产mv在线观看视频| 色网站视频免费| 丝袜美足系列| 大陆偷拍与自拍| 午夜91福利影院| 老司机影院毛片| 国产成人a∨麻豆精品| 看免费成人av毛片| 精品国产国语对白av| 久久女婷五月综合色啪小说| 一区二区三区免费毛片| videosex国产| 亚洲国产最新在线播放| 在线天堂最新版资源| 成人无遮挡网站| 亚洲人成77777在线视频| 亚洲国产最新在线播放| 精品熟女少妇av免费看| 久久久久精品性色| 午夜日本视频在线| 国产69精品久久久久777片| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 超色免费av| 久久人人爽人人片av| 国产精品国产三级专区第一集| 51国产日韩欧美| 久久久亚洲精品成人影院| 欧美xxxx性猛交bbbb| a级毛片在线看网站| 51国产日韩欧美| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 国产精品久久久久久久久免| 少妇人妻 视频| 新久久久久国产一级毛片| 美女国产视频在线观看| av黄色大香蕉| 亚洲国产欧美在线一区| 午夜免费观看性视频| 男女国产视频网站| 久久毛片免费看一区二区三区| 中文字幕最新亚洲高清| 一个人看视频在线观看www免费| 日日爽夜夜爽网站| 免费av不卡在线播放| 性色avwww在线观看| 全区人妻精品视频| 国产老妇伦熟女老妇高清| av网站免费在线观看视频| 2018国产大陆天天弄谢| 成人午夜精彩视频在线观看| 久久人人爽人人爽人人片va| 人妻 亚洲 视频| 国产高清国产精品国产三级| 欧美人与善性xxx| xxxhd国产人妻xxx| 国产精品一区二区三区四区免费观看| 成人无遮挡网站| 男女免费视频国产| 欧美精品亚洲一区二区| 免费高清在线观看视频在线观看| 香蕉精品网在线| 亚洲欧美成人综合另类久久久| 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 另类亚洲欧美激情| 国产亚洲最大av| 日日摸夜夜添夜夜添av毛片| 久久精品久久精品一区二区三区| 国产高清不卡午夜福利| 色婷婷久久久亚洲欧美| 国产黄色免费在线视频| 如何舔出高潮| 18禁裸乳无遮挡动漫免费视频| 亚洲国产毛片av蜜桃av| 丰满乱子伦码专区| 不卡视频在线观看欧美| 国产高清有码在线观看视频| 亚洲性久久影院| 免费av中文字幕在线| 久久av网站| 国产视频首页在线观看| 久久狼人影院| 夫妻午夜视频| 欧美激情国产日韩精品一区| 国产成人a∨麻豆精品| 大陆偷拍与自拍| 女性被躁到高潮视频| 亚洲精品乱码久久久久久按摩| 妹子高潮喷水视频| 国产一区二区在线观看日韩| 国产成人精品一,二区| 夫妻午夜视频| 不卡视频在线观看欧美| 国模一区二区三区四区视频| 两个人的视频大全免费| 青春草国产在线视频| 久久精品国产自在天天线| 精品亚洲乱码少妇综合久久| 色哟哟·www| 精品人妻熟女毛片av久久网站| 亚洲国产最新在线播放| 国产成人精品无人区| 欧美日韩av久久| 午夜av观看不卡| 新久久久久国产一级毛片| 大码成人一级视频| 国语对白做爰xxxⅹ性视频网站| 欧美三级亚洲精品| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久小说| 国产精品麻豆人妻色哟哟久久| a级毛片免费高清观看在线播放| 久久久久国产网址| 国产精品熟女久久久久浪| 久久99精品国语久久久| av线在线观看网站| 欧美少妇被猛烈插入视频| 国产欧美亚洲国产| 亚洲精品日本国产第一区| 黄片无遮挡物在线观看| 91成人精品电影| 亚洲欧洲精品一区二区精品久久久 | 欧美亚洲 丝袜 人妻 在线| 特大巨黑吊av在线直播| 777米奇影视久久| 亚洲国产精品999| 精品卡一卡二卡四卡免费| 欧美精品人与动牲交sv欧美| 中文字幕亚洲精品专区| 日韩av免费高清视频| 免费看光身美女| 99久国产av精品国产电影| 国产精品国产三级专区第一集| 老熟女久久久| 一级毛片电影观看| 国产成人精品在线电影| 少妇 在线观看| 人人妻人人澡人人看| 精品一品国产午夜福利视频| 久久 成人 亚洲| 久久99一区二区三区| 999精品在线视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美成人精品一区二区| 最后的刺客免费高清国语| 亚洲精品自拍成人| 伊人久久国产一区二区| 国产高清国产精品国产三级| 久久av网站| 综合色丁香网| 国产成人freesex在线| 搡老乐熟女国产| 午夜影院在线不卡| 高清av免费在线| 在线播放无遮挡| 日韩欧美精品免费久久| 18在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 伦理电影免费视频| 免费av不卡在线播放| 少妇人妻精品综合一区二区| 精品一区二区免费观看| 欧美老熟妇乱子伦牲交| 婷婷色综合www| 亚洲美女黄色视频免费看| 亚洲国产毛片av蜜桃av| 久久99热这里只频精品6学生| 满18在线观看网站| 国产欧美日韩一区二区三区在线 | 免费看光身美女| 男人爽女人下面视频在线观看| 最黄视频免费看| 在线观看免费视频网站a站| 久久韩国三级中文字幕| 亚洲精品日韩在线中文字幕| 国产日韩欧美亚洲二区| 国产综合精华液| 三级国产精品欧美在线观看| 晚上一个人看的免费电影| 免费久久久久久久精品成人欧美视频 | 又黄又爽又刺激的免费视频.| 青青草视频在线视频观看| 日本黄大片高清| 亚洲av不卡在线观看| 国产男女内射视频| 亚洲成色77777| 国产日韩欧美视频二区| 国产成人91sexporn| 国产毛片在线视频| 久久国内精品自在自线图片| 美女主播在线视频| 国产av一区二区精品久久| 午夜91福利影院| 街头女战士在线观看网站| 精品人妻一区二区三区麻豆| 伦理电影免费视频| 全区人妻精品视频| 亚洲国产欧美日韩在线播放| 色哟哟·www| 免费看光身美女| 一本一本综合久久| 91精品三级在线观看| 国产国语露脸激情在线看| 老女人水多毛片| av一本久久久久| 国产伦理片在线播放av一区| 国精品久久久久久国模美| 日本黄大片高清| 久久韩国三级中文字幕| 美女大奶头黄色视频| 内地一区二区视频在线| 亚洲欧洲日产国产| 久久久精品免费免费高清| 18禁在线播放成人免费| 狠狠婷婷综合久久久久久88av| 国产乱来视频区| 国产极品天堂在线| 丝袜喷水一区| xxxhd国产人妻xxx| 亚洲av二区三区四区| 久久精品国产亚洲网站| 亚州av有码| 欧美精品高潮呻吟av久久| 9色porny在线观看| 满18在线观看网站| 成年人午夜在线观看视频| 婷婷色综合大香蕉| 午夜视频国产福利| 中文字幕精品免费在线观看视频 | 精品一区二区三区视频在线| 高清黄色对白视频在线免费看| 99热这里只有精品一区| av天堂久久9| 黄色一级大片看看| 亚洲欧美一区二区三区国产| 18+在线观看网站| 在线观看免费高清a一片| 日韩av在线免费看完整版不卡| 精品人妻一区二区三区麻豆| 在线观看美女被高潮喷水网站| 久久精品熟女亚洲av麻豆精品| 久久99热这里只频精品6学生|