段友強(qiáng) 張正偉 楊曉勇**
DUAN YouQiang1,ZHANG ZhengWei2 and YANG XiaoYong1**
1. 中國(guó)科學(xué)技術(shù)大學(xué)地球和空間科學(xué)學(xué)院,合肥 230026
2. 中國(guó)科學(xué)院地球化學(xué)研究所礦床地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,貴陽(yáng) 550002
1. School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China
2. State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China 2014-08-22 收稿,2014-12-30 改回.
秦嶺造山帶是中央造山帶的重要組成部分,自北向南由欒川斷裂和勉縣洛陽(yáng)斷裂兩條縫合線將秦嶺造山帶分成三個(gè)部分,即欒川斷裂以北的華北陸塊南緣,與勉縣洛陽(yáng)斷裂之間的秦嶺微陸塊,及勉縣洛陽(yáng)斷裂以南的揚(yáng)子地塊北緣(張國(guó)偉等,2001)。秦嶺造山帶為復(fù)合型造山帶,經(jīng)歷了元古代、古生代和中生代造山運(yùn)動(dòng)。發(fā)育了大量的侵入巖,新元古代時(shí)期經(jīng)歷了陸塊匯聚與裂解的構(gòu)造巖漿事件形成同碰撞-后碰撞花崗巖系(Wang et al.,2003)。古生代時(shí)期,北秦嶺沿商丹斷裂帶一線俯沖增生及碰撞,伴有大量花崗巖侵入的構(gòu)造巖漿熱事件(Ratschbacher et al.,2003;Wang et al.,2005)。中生代整個(gè)秦嶺造山帶經(jīng)歷了強(qiáng)烈的早中生代構(gòu)造巖漿熱事件,形成大量中生代花崗巖體。華北克拉通南緣的東秦嶺鉬礦帶是中國(guó)重要的大型鉬礦分布區(qū)之一,產(chǎn)出了金堆城、南泥湖、三道莊、上房溝等五個(gè)超大型鉬礦床和雷門溝等十余處大中型鉬(鎢)多金屬礦床,其中鉬金屬儲(chǔ)量約占全國(guó)總儲(chǔ)量的66% (Mao et al.,2011)。前人曾將中生代劃分出三期成礦作用:235 ~220Ma,150 ~135Ma 和130 ~110Ma 并提出區(qū)內(nèi)大規(guī)模的成礦作用和同時(shí)期的巖漿作用存在密切關(guān)系(Mao et al.,2003,2008)。因此對(duì)區(qū)內(nèi)巖漿巖的研究有助于理解大規(guī)模成礦作用的地質(zhì)背景。
近年來(lái)一些研究表明在華北南緣發(fā)育一系列形成于拉張環(huán)境下的與巖石圈減薄或轉(zhuǎn)型有關(guān)的中生代巖漿巖。如早白堊世A 型花崗巖、基性巖墻群、及鉀質(zhì)玄武巖(葉會(huì)壽等,2008;王團(tuán)華等,2008;謝桂青等,2007)。張士英巖體位于舞陽(yáng)南部(圖1),東秦嶺東端,緊鄰西大別,為一套富堿性侵入巖。堿性巖是地球上產(chǎn)出環(huán)境特殊的一種巖石類型,分布較少,主要形成于巖石圈拉張環(huán)境。堿性巖可能與碰撞造山作用、下地殼拆沉減薄作用、殼-幔相互作用等深部地質(zhì)過(guò)程有密切的成因聯(lián)系是深部地球動(dòng)力學(xué)過(guò)程在淺部地殼的直接表現(xiàn)(Karmalkar et al.,2005)。因此對(duì)該巖體的研究有助于我們理解華北地臺(tái)南緣乃至整個(gè)中國(guó)東部在晚中生代的演化。前人曾對(duì)張士英巖體的巖石地球化學(xué)特征及巖體形成時(shí)代進(jìn)行過(guò)詳細(xì)研究。但就成巖時(shí)代和巖漿源區(qū)存在較大的爭(zhēng)議。筆者之一曾獲得全巖的Rb-Sr 等時(shí)線年齡為133.4 ±0.5Ma (張正偉等,2000)。李創(chuàng)舉和包志偉(2010)對(duì)張士英巖體進(jìn)行鋯石LA-ICP-MS 的U-Pb 定年測(cè)得的結(jié)果為124.2 ±0.5Ma。認(rèn)為巖漿形成過(guò)程是軟流圈地幔巖漿底侵造成的下地殼部分熔融及殼?;旌线^(guò)程。而向君峰等(2010)對(duì)張士英巖體進(jìn)行了劃分并測(cè)得鉀長(zhǎng)花崗巖、似斑狀花崗巖和石英斑巖脈的SHRIMP 鋯石U-Pb 年齡分別為107.3 ±2.4Ma、106.7 ±2.5Ma 和101 ±3Ma。認(rèn)為巖漿是1.9 ~2.3Ga 期間新生地殼部分熔融形成的。精細(xì)的成巖成礦年齡是探討成礦作用地質(zhì)背景及其發(fā)生發(fā)展過(guò)程的基礎(chǔ)。所以有必要對(duì)張士英巖體進(jìn)行系統(tǒng)的研究。本文通過(guò)對(duì)張士英巖體進(jìn)行主微量元素分析,并對(duì)鋯石進(jìn)行LA-ICP-MS UPb 定年和Hf 同位素的分析,重新確定了巖體的形成年齡,又結(jié)合最新區(qū)域地質(zhì)研究數(shù)據(jù)對(duì)巖體的物質(zhì)源區(qū)進(jìn)行了進(jìn)一步限制,并探討了成巖模式及形成時(shí)的動(dòng)力學(xué)背景。
圖1 張士英巖體所處地理位置與構(gòu)造環(huán)境(據(jù)劉振宏等,2004)Fig.1 Location and simplified geological map of Zhangshiying pluton (modified after Liu et al.,2004)
華北地塊南緣是秦嶺造山帶后陸逆沖斷裂褶皺帶(張正偉等,2002),區(qū)內(nèi)出露的地層有太華群結(jié)晶基底,為一套中高級(jí)變質(zhì)的中基性-中酸性火山沉積變質(zhì)巖系,主要由英云閃長(zhǎng)質(zhì)-奧長(zhǎng)花崗質(zhì)-花崗閃長(zhǎng)質(zhì)(TTG)片麻巖和斜長(zhǎng)角閃巖組成。片麻巖形成時(shí)代主要集中于新太古代(2.84 ~2.76Ga)(Liu et al.,2009)。斜長(zhǎng)角閃巖的年齡主要集中于兩個(gè)時(shí)間段2.84 ~2.54Ga 和2.50 ~2.28Ga(Wan et al.,2006;Xu et al.,2009;Liu et al.,2009)。區(qū)內(nèi)還出露中新元古代的熊耳群、汝陽(yáng)群。中元古界熊耳群為一套中基性-中酸性雙峰式火山巖夾海陸相碎屑沉積的火山沉積巖系,呈角度不整合覆蓋于太華群結(jié)晶基底之上,是華北克拉通南緣最主要的蓋層巖系。鋯石的U-Pb 年代學(xué)研究表明其形成于1.75 ~1.95Ga 之間,單階段tDM1為2.66Ga(趙太平等,2001;Zhao et al.,2004)。中元古界汝陽(yáng)群為一套濱海相碎屑巖-碳酸鹽巖沉積建造覆蓋于熊耳群之上。
區(qū)內(nèi)巖漿巖廣泛發(fā)育,具有多期次特征。以燕山期花崗質(zhì)巖漿活動(dòng)最為強(qiáng)烈,該期次花崗巖分為大巖基和小斑巖體。大巖基主要以黑云二長(zhǎng)花崗巖及黑云母花崗巖為主,被認(rèn)為是陸殼重熔型花崗巖(張宗清等,2002;李先梓等,1993)。小斑巖體多與鉬礦化有成因關(guān)系(Chen et al.,2000;朱賴民等,2008)。已有年齡數(shù)據(jù)顯示花崗巖侵位于160 ~110Ma,巖石類型具有多樣性,顯示從S 型-I 型-A 型演化趨勢(shì)(毛景文等,2005;李永峰等2005;朱賴民等,2008;Mao et al.,2011)。在靠近黑溝-欒川-確山深大斷裂帶及兩側(cè),自西向東陸續(xù)出現(xiàn)了30 多個(gè)富堿侵入巖巖體,空間上構(gòu)成約400km 的富堿侵入巖帶。在巖帶橫向上,自北向南按照不同的巖石組合類型進(jìn)一步劃分為三個(gè)亞帶,即北亞帶為霓輝正長(zhǎng)巖-正長(zhǎng)巖;中部亞帶為堿性花崗巖-鉀長(zhǎng)花崗巖;南部亞帶為石英正長(zhǎng)巖-霞石正長(zhǎng)巖帶。北亞帶中亞帶以石門-馬超營(yíng)斷裂為界,中亞帶與南亞帶以黑溝欒川斷裂為界(張正偉等,2002)。
張士英巖體位于河南舞鋼-方城之間(圖1),本巖區(qū)地處華北陸塊南緣,分布于舞陽(yáng)張士英、馬莊、房莊一帶。區(qū)內(nèi)斷裂構(gòu)造發(fā)育,直接控制著堿性巖的分布,在25km2范圍內(nèi),出露大小多個(gè)堿性巖體,其中張士英巖體出露面積5.5km2,呈小巖株產(chǎn)出,近南北向展布。平面上呈不規(guī)則橢圓形,與圍巖太華群、熊耳群和汝陽(yáng)群呈侵入接觸,接觸面產(chǎn)狀較陡,呈不規(guī)則港灣狀,主要巖石類型為石英正長(zhǎng)巖。
石英正長(zhǎng)巖,呈肉紅色,中細(xì)?;◢徑Y(jié)構(gòu),交代環(huán)斑結(jié)構(gòu),塊狀構(gòu)造。主要礦物鉀長(zhǎng)石占55%,斜長(zhǎng)石20%,石英5% ~10%,角閃石5%;次要礦物有黑云母及少量透輝石;副礦物有磁鐵礦、榍石、鈦鐵礦。鉀長(zhǎng)石主要為微斜長(zhǎng)石,呈它形、半自形板狀、柱狀,部分為粒狀,粒徑1 ~5mm,多與更長(zhǎng)石組成條紋狀構(gòu)造,格子雙晶不明顯,個(gè)別具卡氏雙晶,強(qiáng)烈交代斜長(zhǎng)石,多以蠶蝕或穿孔式交代斜長(zhǎng)石,形成斜長(zhǎng)石團(tuán)塊或包體,或形成環(huán)斑狀結(jié)構(gòu);斜長(zhǎng)石半自形-他形板柱狀或交代殘留體,粒徑1 ~5mm。部分具聚片和卡氏復(fù)合雙晶,具絹云母化和泥化現(xiàn)象。石英呈灰白、乳白色,它形粒狀,粒徑0.5 ~2mm,多呈填隙狀分布于長(zhǎng)石間。角閃石深綠-綠色、半自形粒狀或針狀,部分呈殘留體。粒徑0.2 ~2mm,常被絹云母和綠泥石交代,且與少量透輝石、黑云母共生。
此外前人對(duì)該地區(qū)的其它巖石類型進(jìn)行過(guò)研究,包括鉀長(zhǎng)花崗巖、似斑狀花崗巖和石英斑巖脈(向君峰等,2010)。但由于其缺少主量、微量元素?cái)?shù)據(jù)本文未能與其很好地進(jìn)行綜合討論。
全巖的主量元素和微量元素分析在廣州澳實(shí)礦物實(shí)驗(yàn)室完成。主量元素分析采用X 射線熒光熔片法完成,分析精度分別為:SiO2,0.8%;Al2O3,0.5%;Fe2O3,0.4%;MgO,0.4%;CaO,0.6%;Na2O,0.3%;K2O,0.4%;MnO,0.7%;TiO2,0.9%;P2O5,0.8%。微量元素分析采用HF +HNO3溶解樣品,加入Rh 內(nèi)標(biāo)溶液,用PE Elan6000 型ICP-MS 完成測(cè)定,分析精度優(yōu)于5%。
鋯石的單礦物分選由河北廊坊地質(zhì)調(diào)查院完成。在雙目鏡下觀察分選好的鋯石,將晶形好、無(wú)裂隙和包裹體的鋯石挑出,用環(huán)氧樹(shù)脂制靶。將鋯石靶打磨,拋光,然后拍攝反射光、透射光顯微照相和陰極發(fā)光(CL)顯微照片。鋯石的陰極發(fā)光在中國(guó)科學(xué)技術(shù)大學(xué)理化科學(xué)實(shí)驗(yàn)中心掃描電鏡實(shí)驗(yàn)室完成,所用儀器為FEI 公司生產(chǎn)的Sirion200 型電子顯微鏡。
鋯石的微區(qū)原位U-Pb 定年和微量元素分析在廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室利用激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)完成。儀器采用美國(guó)Resonetics 公司生產(chǎn)的RESOlution M-50 激光剝蝕系統(tǒng)和Agilent 7500a 型的ICP-MS 聯(lián)機(jī)。用He 作為剝蝕物質(zhì)的載氣。用美國(guó)國(guó)家標(biāo)準(zhǔn)技術(shù)研究院人工合成硅酸鹽玻璃標(biāo)準(zhǔn)參考物質(zhì)NIST610 進(jìn)行儀器最佳化,使儀器達(dá)到最佳的靈敏度、最小的氧化物產(chǎn)率(CeO/Ce <3%)和最低的背景值。實(shí)驗(yàn)采用標(biāo)準(zhǔn)鋯石TEMORA (Black et al.,2003)作為測(cè)年外標(biāo),所測(cè)元素激光斑束直徑為31μm,頻率為8Hz。相關(guān)分析方法詳見(jiàn)(涂湘林等,2011)。數(shù)據(jù)處理使用軟件ICPMSDataCal 7.2 (Liu et al.,2008)。鋯石的諧和年齡圖繪制和年齡計(jì)算采用軟件Isoplot3.0(Ludwig,2003)。
圖2 張士英石英正長(zhǎng)巖的主量元素關(guān)系圖(a,據(jù)Middlemost,1994;c,據(jù)Peccerillo and Taylor,1976;d,據(jù)Maniar and Piccoli,1989)Fig.2 Major element variation diagrams of Zhangshiying quartz syenite (a,after Middlemost,1994;c,after Peccerillo and Taylor,1976;d,after Maniar and Piccoli,1989)
鋯石的微區(qū)原位Lu-Hf 同位素分析在西北大學(xué)大陸動(dòng)力學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。所用質(zhì)譜為Nu Plasma 型多接收電感耦合等離子體質(zhì)譜(MC-ICP-MS),激光剝蝕系統(tǒng)為193nm ArF 準(zhǔn)分子激光器的GeoLas 2005。激光斑束直徑為44μm,激光脈沖頻率為8Hz。具體分析方法和儀器參數(shù)詳見(jiàn)(Yuan et al.,2008)。用176Lu/175Lu =0.02655 (De Biévre and Taylor,1993)和176Yb/172Yb=0.58545 (Chu et al.,2001)作為校正因子來(lái)進(jìn)行同質(zhì)異位干擾校正,計(jì)算樣品的176Lu/177Hf 和176Hf/177Hf。以標(biāo)準(zhǔn)鋯石MON-1、GJ-1、91500 作為外標(biāo),其推薦的標(biāo)準(zhǔn)值依次為0.282739 ± 0.000057,0.282015 ±0.000056,0.282307 ±0.000055。在進(jìn)行εHf(t)計(jì)算時(shí),采用176Lu 衰變常數(shù)(=1.867 ×10-11year-1(S?derlund et al.,2004),球粒隕石現(xiàn)今的176Hf/177Hf =0.282772 和176Lu/177Hf=0.0332(Blichert and Albarède,1997)。在進(jìn)行模式年齡計(jì)算時(shí),采用現(xiàn)今的虧損地幔176Hf/177Hf =0.28325 和176Lu/177Hf = 0.0384(Griffin et al.,2000),現(xiàn)今平均大陸殼的176Lu/177Hf=0.015(Griffin et al.,2002)。
石英正長(zhǎng)巖的全巖主微量元素結(jié)果見(jiàn)表1。
張士英石英正長(zhǎng)巖具有高硅、高堿特征。從表1 中可以看出樣品SiO2含量變化范圍為57.81% ~68.10%大多集中在中性巖范圍。Mg#變化范圍在12.9 ~39.4,富堿(Na2O +K2O 含量為9.03% ~10.97%)。里特曼指數(shù)σ 變化范圍為3.46 ~8.04,平均值為5.01,屬于堿性巖系列。除去燒失量,重新?lián)Q算為100%,在TAS 分類圖解上樣品點(diǎn)均落入堿性系列正長(zhǎng)巖范圍(圖2a)。A.R 變化范圍在2.66 ~3.99,在A.R-SiO2關(guān)系圖解上均落入堿性系列(圖2b)。K2O 變化范圍在4.40% ~6.37%。K2O/Na2O >1。在SiO2-K2O 圖解上所有樣品均落入橄欖玄粗巖系列。(圖2c)。樣品的Al2O3的含量變化范圍在15.27 ~18.17,鋁飽和指數(shù)A/CNK =1.26 ~1.58,均大于1.0,A/NK =1.63 ~1.79。在A/NK-A/CNK 圖解(圖2d)上所有樣品都落入過(guò)鋁質(zhì)系列。以上表明張士英石英正長(zhǎng)巖具有高鉀、富堿、過(guò)鋁質(zhì)特征。
8 個(gè)樣品的微量元素及稀土元素分析數(shù)據(jù)具有很好的一致性。稀土元素組成上,石英正長(zhǎng)巖巖體稀土配分形式呈現(xiàn)明顯的右傾型(圖3)。ΣREE=246.1×10-6~411.1×10-6。輕稀土富集,重稀土虧損,LREE/HREE =18.51 ~21.11,具有高的(La/Yb)N比為15.48 ~21.12。Eu 呈弱的負(fù)異常,δEu=0.54 ~0.99 指示巖漿源區(qū)殘留斜長(zhǎng)石或者在結(jié)晶過(guò)程中有斜長(zhǎng)石的分異。在微量元素原始地幔標(biāo)準(zhǔn)化圖上,相對(duì)虧損P 和Ti,這可能與成巖過(guò)程中磷灰石、鈦鐵礦等礦物的分離結(jié)晶有關(guān)或者部分熔融過(guò)程中作為源區(qū)殘留相。高場(chǎng)強(qiáng)元素Nb、Ta 虧損。大離子親石元素Rb、K、Th、U 富集。Pb表現(xiàn)出正的異常,Ba 相對(duì)于Rb 和Th 呈現(xiàn)虧損特征。Sr 表現(xiàn)為負(fù)的異常這一點(diǎn)與Eu 的負(fù)異常相一致,都指示了斜長(zhǎng)石作為源區(qū)的殘留或者在巖漿演化早期結(jié)晶分異出去。
表1 張士英石英正長(zhǎng)巖的全巖主量(wt%)與微量元素(×10 -6)組成Table 1 Whole rock major element (wt%)and trace elements (×10 -6)data for the Zhangshiying Quartz syenite
圖3 張士英石英正長(zhǎng)巖的原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(a)和球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.3 Primitive mantle-normalized trace elements patterns (a)and chondrite-normalized REE patterns (b)of Zhangshiying quartz syenite (normalization values after Sun and McDonough,1989)
表2 鋯石LA-ICP-MS U-Pb 定年結(jié)果Table 2 LA-ICP-MS zircon U-Pb data of the Zhangshiying quartz syenite
對(duì)樣品進(jìn)行了24 個(gè)點(diǎn)的鋯石U-Pb 年齡測(cè)定,定年結(jié)果見(jiàn)表2。所測(cè)樣品中的鋯石形貌上多呈現(xiàn)規(guī)則的短柱狀。鋯石CL 圖像顯示內(nèi)部結(jié)構(gòu)清晰,發(fā)育有典型的巖漿振蕩環(huán)帶。不具有核幔結(jié)構(gòu)可判斷為巖漿形成后一次結(jié)晶形成,所以所測(cè)的鋯石年齡可以代表冷卻及巖體侵位的年齡。Th/U 比除7 號(hào)點(diǎn)較高(2.47),其它均大于0.4,變化范圍在0.76 ~1.14之間。鋯石的稀土總含量高,HREE 逐步富集,具有明顯的Eu 負(fù)異常和Ce 的正異常(圖4)。以上特征均表明其為巖漿成因的鋯石(Hoskin,2000;Sun et al.,2002;Wu and Zheng,2004)。
圖4 張士英巖體的鋯石稀土元素球粒隕石標(biāo)準(zhǔn)化圖(球粒隕石值據(jù)Sun and McDonough,1989)Fig.4 Chondrite-normalized REE patterns of zircon grains of Zhangshiying plutons (chondrite values after Sun and McDonough,1989)
通過(guò)鉛校正后的張士英石英正長(zhǎng)巖的鋯石的U-Pb 年齡列于表2,對(duì)于小于1Ga 的年輕樣品,鋯石年齡采用206Pb/238U 比較合適(Compston et al.,1992)。在206Pb/238U-207Pb/235U 諧和圖上(圖5),24 個(gè)數(shù)據(jù)點(diǎn)均集中在諧和線上或在其附近,諧和度在95%以上,獲得的206Pb/238U 加權(quán)平均年齡為122.8 ±1.5Ma(MSWD=1.6)。這一特征指示被測(cè)鋯石未遭受明顯的后期熱事件影響,得到的年齡可代表該巖體形成年齡。
表3 張士英巖體的鋯石Hf 同位素組成Table 3 Zircon Hf isotope data for the Zhangshiying quartz syenite
石英正長(zhǎng)巖的鋯石Hf 同位素分析結(jié)果見(jiàn)表3。石英正長(zhǎng)巖的24 個(gè)鋯石的測(cè)點(diǎn)的176Yb/177Hf 比值范圍分別0.019404 ~0.064039,而176Lu/177Hf 變化范圍在0.000587 ~0.001844,所有鋯石顆粒的176Lu/177Hf 比值均小于0.002,表明這些鋯石在形成以后僅具有較少的放射成因Hf 的積累,因而可以用樣品176Hf/177Hf 比值代表鋯石形成時(shí)的176Hf/177Hf 比值(吳福元等,2007)。fLu/Hf變化范圍在-0.98 ~-0.94,明顯小于鎂鐵質(zhì)地殼的fLu/Hf(-0.34)和硅鋁質(zhì)地殼的fLu/Hf(-0.72)(Vervoort and Jonathan,1996)。因此二階段模式年齡更能反映其源區(qū)從虧損地幔被抽取出來(lái)的時(shí)間(或其源區(qū)物質(zhì)在地殼的平均存留年齡)。根據(jù)Hf 同位素相關(guān)計(jì)算公式(吳福元等,2007),采用硅鋁質(zhì)大陸地殼的fLu/Hf計(jì)算了巖體的初始εHf(t)、tDM1和tDM2。所有鋯石的176Hf/177Hf 變化范圍在0.282227 ~0.282573。根據(jù)各個(gè)鋯石對(duì)應(yīng)的206Pb/238U 年齡計(jì)算得到它們的εHf(t)除6 號(hào)測(cè)點(diǎn)為-5.7偏高外大部分集中于-17.6 ~-13.9,平均值為-15.2。單階段Hf 模式年齡(tDM1)除6 號(hào)測(cè)點(diǎn)為1.1Ga 外,主要變化范圍在1.36 ~1.5Ga,平均為1.41Ga。兩階段Hf 模式年齡(tDM2)除6 號(hào)測(cè)點(diǎn)為1.3Ga 外,主要變化范圍在1.73 ~1.91Ga,平均為1.79Ga。
圖5 張士英石英正長(zhǎng)巖的鋯石U-Pb 年齡諧和圖Fig.5 The zircon concordia diagrams for the Zhangshiying quartz syenite
關(guān)于張士英巖體的形成時(shí)代存在較大的爭(zhēng)議,前人做過(guò)大量工作得到3 組不同的年齡數(shù)據(jù):(1)采用巖體內(nèi)不同巖性巖石獲得全巖的Rb-Sr 等時(shí)線年齡為133.4 ±0.5Ma (張正偉等,2000);(2)向君峰等(2010)等對(duì)張士英巖體進(jìn)行了鋯石SHRIMP U-Pb 測(cè)年,結(jié)果顯示鉀長(zhǎng)花崗巖、似斑狀花崗巖和石英斑巖的結(jié)晶年齡分別是107.3 ±2.4Ma、106.7 ±2.5Ma 和101 ±3Ma。因此認(rèn)為張士英巖體形成于110 ~100Ma。(3)李創(chuàng)舉和包志偉(2010)通過(guò)LA-ICP-MS 鋯石U-Pb 測(cè)年得到的年齡結(jié)果為124.2 ±0.5Ma。由于Rb-Sr 法測(cè)年的自身局限性即封閉溫度低很容易受到后期的變質(zhì)作用的影響,因此定年的結(jié)果不如鋯石U-Pb 測(cè)年結(jié)果可靠。本文通過(guò)LA-ICP-MS 鋯石U-Pb 定年,得到巖體形成年齡為122.8±1.5Ma,結(jié)果與李創(chuàng)舉和包志偉(2010)得到的年齡結(jié)果在誤差范圍內(nèi)一致。此外劉振宏等(2004)將華北南緣燕山期形成的巖體自南向北劃分了三個(gè)帶。張士英巖體位于北部的太山廟-葉莊-角子山花崗巖帶,并測(cè)得黑云母K-Ar 年齡為121 ~123Ma,這個(gè)年齡也與本文得到的年齡相一致。研究區(qū)西南方向還存在侵位于汝陽(yáng)群和新元古代花崗巖中的祖師頂和角子山巖體,巖體的主體巖性為黑云母二長(zhǎng)花崗巖,周紅升等(2008)對(duì)這兩個(gè)巖體采用LA-ICP-MS U-Pb 定年獲得了131.9Ma 和120.9Ma 的年齡。祖師頂、角子山和張士英石英正長(zhǎng)巖形成時(shí)代相一致,都是燕山期巖漿活動(dòng)的產(chǎn)物。因此筆者認(rèn)為張士英巖體至少在早白堊世晚期(123Ma左右)就開(kāi)始了巖漿活動(dòng)。結(jié)合向君峰等(2010)獲得的110~100Ma 較年輕的巖石年齡,筆者認(rèn)為張士英巖體至少存在兩期的巖漿活動(dòng)。本文的石英正長(zhǎng)巖樣品是早期巖漿活動(dòng)(122.8Ma 左右)的產(chǎn)物。
Watson and Harrison(1983)研究發(fā)現(xiàn)鋯石中Zr 的分配系數(shù)對(duì)溫度極為敏感而受其他因素影響較小,并實(shí)驗(yàn)得到了溫度與全巖鋯含量和主要元素含量之間的關(guān)系。目前全巖的鋯飽和溫度計(jì)是當(dāng)前獲取初始巖漿溫度的主要方法之一。用公式來(lái)計(jì)算鋯石結(jié)晶時(shí)巖漿的溫度,其中M =[(Na +K +2Ca)/(Al×Si)],Zrmelt為全巖的鋯含量。Miller et al.(2003)根據(jù)鋯石的飽和溫度,提出熱(hot)和冷(cold)花崗巖的概念。熱(hot)花崗巖中繼承鋯石含量少,形成溫度集中在837℃(>800℃),其形成過(guò)程可能有外來(lái)熱的加入。而冷(cold)花崗巖富含繼承鋯石,形成溫度集中在766℃(<800℃),其形成過(guò)程主要與流體相的加入有關(guān)。計(jì)算得到張士英石英正長(zhǎng)巖的巖漿溫度為940 ~1000℃。計(jì)算結(jié)果表明形成巖體的巖漿溫度較高。張士英石英正長(zhǎng)巖具有熱(hot)花崗巖性質(zhì),外來(lái)熱源的加入使石英正長(zhǎng)巖具有較高的形成溫度,而幔源巖漿的上涌可能為其外來(lái)熱源。
巖石具有高K (K2O=4.40% ~6.37%)特征,并且K2O含量與SiO2含量不存在相關(guān)性,表明高K 為巖漿源區(qū)固有特征。Mg#可以很好地區(qū)分幔源組分是否參與殼源巖漿作用(Smithies,2000)。大洋中脊玄武巖(MORB)的Mg#在60 左右,玄武質(zhì)下地殼部分熔融產(chǎn)生的熔體,無(wú)論熔融程度高低其Mg#都不會(huì)高于40,但當(dāng)?shù)蒯N镔|(zhì)參與成巖時(shí)Mg#會(huì)增高,研究表明巖漿混染10%的地幔橄欖巖Mg#值從44 提高到55(Rapp et al.,1999)。張士英石英正長(zhǎng)巖的Mg#變化范圍在12.9 ~39.4,變化范圍較大但總體顯示為殼源巖漿成因。石英正長(zhǎng)巖具有與殼源巖石相似的微量元素特征,如富集大離子元素(Rb、K 和Pb)和輕稀土元素,虧損高場(chǎng)強(qiáng)元素,指示石英正長(zhǎng)巖應(yīng)屬地殼來(lái)源。Rb/Nb 比值變化范圍為5.50 ~7.09 高于大陸地殼值(2.2 ~4.7)也指示了陸殼物質(zhì)對(duì)成巖影響大導(dǎo)致Rb 含量的增加(Sylvester,1989)。Nb/U比值因其不隨源區(qū)部分熔融或者分離結(jié)晶作用而改變,因此可以很好地反映巖漿源區(qū)(Sun et al.,2008;Hofmann,1988)。張士英巖體的Nb/U 變化范圍在4.84 ~6.61,相似于大陸地殼的平均值,大陸地殼Nb/U 平均值約為6.2(Rudnick and Fountain,1995)。Ce/Pb 值變化范圍在1.42 ~5.92 也相似于大陸地殼的平均值(Ce/Pb =3.9)(Rudnick and Fountain,1995)。以上均表明巖體成巖物質(zhì)主要來(lái)自地殼。
結(jié)合前人對(duì)該地區(qū)進(jìn)行的Sr-Nd-Pb 研究結(jié)果,根據(jù)最新測(cè)得的鋯石U-Pb 年齡122.8 ±1.5Ma,對(duì)Rb-Sr、Sm-Nd 同位素?cái)?shù)據(jù)進(jìn)行了重新計(jì)算。結(jié)果顯示張士英石英正長(zhǎng)巖的87Sr/86Sr 初始值(87Sr/86Sr)i=0.709 ±0.03,εNd(t)= -21.5~-15.8。較高的初始Sr 同位素組成和較低的εNd(t)值表明巖體主要來(lái)自于古老地殼物質(zhì)的部分熔融。巖體相對(duì)貧放射成因的鉛,Pb 同位素特征(206Pb/204Pb = 17.14 ~17.24,207Pb/204Pb = 15.41 ~15.62,208Pb/204Pb = 37.86 ~38.60)也表明巖體來(lái)源于地殼物質(zhì)的部分熔融(張正偉等,2002;李創(chuàng)舉和包志偉,2010)。Hf 同位素研究表明,εHf(t)<0 的巖石為古老下地殼部分熔融而形成,在εHf(t)-t 圖解(圖6)上,這些鋯石的Hf 同位素位于元古宙地殼演化范圍內(nèi),推測(cè)為古老下地殼物質(zhì)再熔融的產(chǎn)物。
圖6 張士英巖體鋯石的εHf(t)-t 圖解(a)張士英巖體εHf(t)-t 圖解;(b)張士英巖體與部分基底鋯石的εHf(t)-t 圖解. 太華群引自第五春榮等,2007;熊耳群引自Wang et al.,2010;張士英前人數(shù)據(jù)引自向君峰等,2010Fig.6 Diagram of εHf(t)-t of zircon from the Zhangshiying pluton(a)εHf(t)-t diagram of the Zhangshiying pluton;(b)εHf(t)-t diagram of the Zhangshiying pluton and regional basement. Data of Taihua Group are derived from Diwu et al.,2007;data of the Xionger Group are derived from Wang et al.,2010;some data of the Zhangshiying pluton are derived from Xiang et al.,2010
秦嶺造山帶經(jīng)歷了多階段的演化拼合歷史,前已論述張士英巖體區(qū)域出露了多種古老地殼物質(zhì),包括華北陸塊南緣的太華群、熊耳群、汝陽(yáng)群和北秦嶺微陸塊及其以南的古老地殼物質(zhì),這些古老巖石都有可能為其源區(qū)物質(zhì)。前人曾測(cè)得張士英巖體的206Pb /204Pb <17.8,并計(jì)算得到的鉛同位素矢量特征值V2<14(張正偉等,2002)。而華北陸塊相比于揚(yáng)子陸塊具有低放射成因鉛同位素組成(張宏飛等,2005),因此可以排除北秦嶺微陸塊及以南的巖石為其源區(qū)。太華群可以代表華北陸塊南緣新太古代時(shí)期的下地殼,多種同位素年齡顯示形成于2.3Ga,明顯大于本文所測(cè)的張士英石英正長(zhǎng)巖鋯石Hf 同位素兩階段模式年齡(1.73 ~1.91Ga)。在εHf(t)-t 圖上(圖6b)可以看出張士英石英正長(zhǎng)巖位于太華群Hf 同位素演化線之上,所以張士英石英正長(zhǎng)巖不可能單純的由太華群部分熔融形成,必須還有較高εHf(t)值的物質(zhì)加入。并且根據(jù)太華群Nd 同位素組成(張本仁等,2002)計(jì)算到張士英巖體形成(122.8Ma)時(shí)的εNd(t)值分別為-24,該值遠(yuǎn)小于張士英石英正長(zhǎng)巖的εNd(t)值(- 21.5 ~-15.8)。但是張士英巖體后期巖漿活動(dòng)(110 ~100Ma)產(chǎn)生的鉀長(zhǎng)花崗巖、似斑狀花崗巖和石英斑巖(向君峰等,2010)正好落在太華群演化線上。因此張士英后期巖漿活動(dòng)是太華群部分熔融的產(chǎn)物。熊耳群為華北陸塊南緣中元古代火山巖,最新鋯石U-Pb 年齡顯示為1.76Ga(Wang et al.,2010),與本文所測(cè)的張士英巖體鋯石Hf 兩階段模式年齡(1.73 ~1.91Ga)相當(dāng)。但是根據(jù)熊耳群Nd 同位素?cái)?shù)據(jù)和鋯石Hf 同位素?cái)?shù)據(jù)(Wang et al.,2010)分別計(jì)算到張士英巖體形成時(shí)(t=122.8Ma)的εNd(t)和εHf(t)值變化范圍分別是:-29.8 ~-26.6、-49.4 ~-46.1。其值卻遠(yuǎn)小于張士英巖體的εNd(t)(-21.5 ~-15.8)值和εHf(t)(-13.9 ~-5.7)值,在εHf(t)-t 圖上(圖6b)可以看到張士英石英正長(zhǎng)巖位于熊耳群演化線之上。所以張士英早期巖漿活動(dòng)形成的石英正長(zhǎng)巖也不可能單純的由熊耳群部分熔融形成,應(yīng)還有較高εHf的物質(zhì)平衡。6 號(hào)測(cè)點(diǎn)較高(-5.7)的εHf(t)值也表明,存在較高εHf值的物質(zhì)參與了張士英早期的巖漿活動(dòng)。而關(guān)于這種較高εHf的物質(zhì)存在初生陸殼和地幔物質(zhì)這兩種爭(zhēng)議(李創(chuàng)舉和包志偉,2010;向君峰等,2010)。前人曾對(duì)華北克拉通地殼巖石的Nd 模式年齡進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)存在2.8 ~2.5Ga 和2.2 ~1.8Ga 兩個(gè)峰期,因此提出華北克拉通2.2 ~1.8Ga 時(shí)期存在一次陸殼增生(張宗清等,2002;張本仁等,2002)。這一年齡與前寒武紀(jì)巖石圈地幔Re-Os 等時(shí)線年齡(1.9Ga)相一致(高山等,2003),表明前寒武紀(jì)巖石圈地幔與大陸地殼增長(zhǎng)是耦合的,因此也認(rèn)為中元古代華北存在一次陸殼增生事件。近年來(lái)隨著測(cè)試技術(shù)的不斷進(jìn)步以及數(shù)據(jù)的不斷增加,華北前寒武紀(jì)陸殼增生有了更新的認(rèn)識(shí)。有學(xué)者統(tǒng)計(jì)了華北克拉通大量的鋯石數(shù)據(jù)發(fā)現(xiàn)鋯石年齡主要分布在2.4 ~2.6Ga,1.7 ~1.9Ga 和晚古生代三個(gè)階段。2.5Ga 的鋯石εHf具有正值,指示了該階段大量初始陸殼的形成。但是1.9 ~1.7Ga 期間的巖漿巖中的鋯石具有負(fù)的εHf值,代表的是古老地殼物質(zhì)的重熔(Geng et al.,2012;Zhu et al.,2014)。因此華北克拉通前寒武紀(jì)陸殼增生主要發(fā)生在太古代,而1.9 ~1.7Ga 鋯石年齡指示的是一次構(gòu)造熱事件。因此筆者更傾向于第二種觀點(diǎn)即這種較高εHf(t)值的物質(zhì)是地幔物質(zhì)。因此張士英早期巖漿活動(dòng)形成的石英正長(zhǎng)巖的源區(qū)主要是太華群和熊耳群,并且源區(qū)還有少量幔源物質(zhì)的貢獻(xiàn)。而后期巖漿活動(dòng)(110 ~100Ma)主要是太華群部分熔融的結(jié)果。
前人對(duì)正長(zhǎng)巖類巖石的成因進(jìn)行過(guò)大量的研究提出過(guò)多種模式,概括起來(lái)主要有以下三種:(1)殼源部分熔融:下地殼物質(zhì)在高溫高壓下低程度部分熔融形成(Huang and Wyllie,1981;Tchameni et al.,2001);(2)幔源物質(zhì)部分熔融:認(rèn)為正長(zhǎng)巖由富集巖石圈地幔部分熔融(Yang et al.,2005;Kumar et al.,2007;He et al.,2009)或者由堿性玄武巖漿結(jié)晶分異的產(chǎn)物(Brown and Becker,1986);(3)殼幔巖漿混合成因:主要是由硅不飽和的幔源鎂鐵質(zhì)巖漿和其上升過(guò)程中誘發(fā)地殼物質(zhì)熔融形成的長(zhǎng)英質(zhì)巖漿混合并經(jīng)過(guò)進(jìn)一步的結(jié)晶分異形成(Mingram et al.,2000;Litvinovsky et al.,2002;Harris et al.,1999)。
結(jié)合本文的研究工作,張士英早期巖漿活動(dòng)產(chǎn)生的石英正長(zhǎng)巖比古老下地殼的基底巖石太華群、熊耳群具有較高的εNd(t)、εHf(t)及初始176Hf/177Hf。在εHf(t)-t 圖解上位于古老基底和球粒隕石演化線之間(圖6),表明形成巖體時(shí)可能有少量年輕地幔物質(zhì)的參與。較高的鋯石飽和溫度也支持幔源巖漿為巖體提供熱源。結(jié)合主微量、同位素特征并區(qū)域地質(zhì)背景提出:張士英石英正長(zhǎng)巖支持第一種成因觀點(diǎn)即巖體是古老下地殼物質(zhì)在高溫高壓下低程度部分熔融形成的。關(guān)于下地殼物質(zhì)部分熔融,目前主要有兩種機(jī)制:(1)幔源的高溫玄武質(zhì)巖漿底侵下地殼,為下地殼部分熔融提供熱源(Fan et al.,2001;Zhang et al.,2002)。(2)下地殼和巖石圈一起拆沉進(jìn)入軟流圈地幔發(fā)生部分熔融(吳福元等,2003;鄧晉福等,1994)。兩種成因機(jī)制會(huì)造成不同的Mg#值。巖漿底侵的成因模式不會(huì)造成Mg#的升高,但是拆沉模式形成的巖漿在上升過(guò)程中會(huì)與上覆地幔橄欖巖發(fā)生混合導(dǎo)致Mg#的升高(許繼峰和王強(qiáng),2003)。張士英早期巖漿活動(dòng)形成的石英正長(zhǎng)巖較低的Mg#值,顯示其巖體部分熔融的機(jī)制是幔源玄武質(zhì)巖漿底侵。因此張士英早期巖漿活動(dòng)形成的石英正長(zhǎng)巖是幔源巖漿發(fā)生底侵作用導(dǎo)致地殼物質(zhì)發(fā)生部分熔融形成的巖漿經(jīng)結(jié)晶分異作用形成。在其形成過(guò)程中有少量幔源物質(zhì)的加入,幔源巖漿不僅為早期形成的巖漿提供了熱量而且還提供了物質(zhì)。而晚期巖漿主要是太華群部分熔融的結(jié)果,且晚期巖漿相對(duì)于早期具有更加負(fù)的εHf(t)值(圖6a)。
前人研究表明,堿性巖通常產(chǎn)生于碰撞造山作用之后、板內(nèi)裂谷或者伸展構(gòu)造背景下。并且能夠很好地指示大陸巖石圈相互作用和巖漿演化過(guò)程(Bonin,2007;Yang et al.,2005)。張士英巖體主要為石英正長(zhǎng)巖屬于堿性巖范疇。因此斷定華北克拉通南緣早白堊世時(shí)期形成的張士英巖體受巖石圈伸展的構(gòu)造背景控制。巖石圈伸展導(dǎo)致幔源的上涌,為下地殼物質(zhì)部分熔融提供了充足的熱源和少量的物質(zhì)。
那么這種巖石圈的伸展機(jī)制又是什么?結(jié)合區(qū)域地質(zhì)背景,研究區(qū)毗鄰秦嶺造山帶,很有可能受到秦嶺造山帶演化的影響。華北克拉通自加里東運(yùn)動(dòng)開(kāi)始直到三疊紀(jì)早期一直處于穩(wěn)定發(fā)展階段,揚(yáng)子克拉通與華北克拉通在238 ~218Ma 之間實(shí)現(xiàn)碰撞對(duì)接(李曙光等,1989;Meng et al.,1999)。直到中侏羅世晚期完成全面的拼合,巖石圈在150Ma 前后厚度達(dá)到最大(毛景文等,2005)。其后巖石圈開(kāi)始拉張趨于減薄,并誘發(fā)了中國(guó)東部晚中生代大規(guī)模的巖漿活動(dòng)和成礦作用(Li and Li,2007;Wu et al.,2005;毛景文等,2005)。中生代時(shí)中國(guó)大陸中東部的區(qū)域構(gòu)造體制經(jīng)歷了從古生代EW 向構(gòu)造格局轉(zhuǎn)變到中生代早期的NNE 向構(gòu)造格局。并提出構(gòu)造體制轉(zhuǎn)折始于150 ~140Ma,終于110~100Ma,峰期是120 ~110Ma(翟明國(guó)等,2004;王濤等,2007)。華北克拉通及其鄰區(qū)大規(guī)模成礦作用也主要出現(xiàn)在中生代,集中分布于3 個(gè)時(shí)期:200 ~160Ma、140Ma 左右和130 ~110Ma。三大成礦期所對(duì)應(yīng)的地球動(dòng)力學(xué)背景分別為華北板塊與揚(yáng)子板塊的碰撞造山后陸內(nèi)造山和伸展過(guò)程;南北主應(yīng)力場(chǎng)向東西主應(yīng)力場(chǎng)構(gòu)造體制大轉(zhuǎn)時(shí)期(并認(rèn)為163~136Ma 是地球動(dòng)力調(diào)整的時(shí)間段);東西向巖石圈大規(guī)模減薄作用的時(shí)間是130 ~110Ma(120Ma 為峰期)(毛景文等,2005)。三次成礦作用也和華北南緣發(fā)育的大量中酸性侵入時(shí)代具有很好的一致性。最近Mao et al.(2011)基于對(duì)輝鉬礦的Re/Os 年齡,對(duì)東秦嶺-大別造山帶的29 個(gè)鉬礦床統(tǒng)計(jì)發(fā)現(xiàn)鉬礦成礦時(shí)代集中分布于晚三疊紀(jì)(233 ~221Ma)、晚侏羅世到早白堊世(148 ~138Ma)、早-中白堊世(131 ~112Ma)三個(gè)時(shí)期。華北克拉通邊緣的金礦成礦作用也局限在很短的時(shí)間內(nèi),主要發(fā)生在早白堊世(130 ~110Ma)(Yang et al.,2003)。中國(guó)東部廣泛分布的中生代花崗巖,成巖作用也主要在早白堊世,年齡變化范圍在131 ~117Ma (Wu et al.,2005)。以上表明早白堊世華北克拉通巖漿活動(dòng)和成礦作用異?;钴S。張士英石英正長(zhǎng)巖形成于123Ma 左右,形成時(shí)代與構(gòu)造體系大轉(zhuǎn)折以及華北克拉通及其邊緣大規(guī)模成巖成礦作用具有很好的一致性,而華北克拉通中生代大規(guī)模成巖成礦活動(dòng)被證實(shí)為克拉通破壞的響應(yīng)。
華北克拉通太古宙巖石圈地幔在中-新生代發(fā)生了強(qiáng)烈的破壞和減薄這已成為地學(xué)界不爭(zhēng)的事實(shí)(Xu,2001;Gao et al.,2004;Yang et al.,2008;吳福元等,2008)。華北克拉通淺部廣泛發(fā)育的伸展構(gòu)造包括拆離正斷層、變質(zhì)核雜巖、伸展盆地及大規(guī)模發(fā)育的巖漿巖等是區(qū)域伸展環(huán)境最直接的證據(jù)。華北南緣及鄰區(qū)發(fā)育了大規(guī)模晚中生代變質(zhì)核雜巖在131 ~125Ma 存在一個(gè)快速冷卻的過(guò)程,41 個(gè)黑云母40Ar/39Ar定年統(tǒng)計(jì)結(jié)果給出了125Ma 的拆沉活動(dòng)的高峰期(Wang et al.,2011;Cui et al.,2012)。斷陷盆地及拆離斷層出現(xiàn)的高峰期在145 ~115Ma 之間(Zhu et al.,2005;林偉等,2013)。此外華北廣泛發(fā)育了早白堊世時(shí)期(135 ~115Ma)的巖漿活動(dòng)峰期為125Ma。并且具有不同來(lái)源、成因和侵位深度,反映了這一時(shí)期強(qiáng)烈的深部地質(zhì)過(guò)程(Zhao et al.,2012;Jian et al.,2010;Wu et al.,2005;吳福元等,2008)。華北克拉通東部巖石圈地幔的水含量大約從125Ma 開(kāi)始總體上高于MORB 源區(qū)(50 ×10-6~200 ×10-6)(Xia et al.,2013),而克拉通水化必然導(dǎo)致深部地幔其強(qiáng)度顯著的降低。從而也證明了125Ma 左右是華北克拉通破壞的高峰期。
通過(guò)以上分析表明125Ma 左右是華北克拉通破壞的峰期,這個(gè)年齡與翟國(guó)明等(2004)提出的構(gòu)造體制120 ~110Ma 轉(zhuǎn)折峰期具有一致性以及與毛景文等(2005)提出的130 ~110Ma 大規(guī)模成礦時(shí)代一致。張士英早期巖漿活動(dòng)形成的石英正長(zhǎng)巖結(jié)晶于123Ma 左右,正好位于華北克拉通破壞的峰期,而110 ~100Ma 的后期巖漿活動(dòng)位于峰期之后。而破壞峰期時(shí)必然有更多幔源物質(zhì)的上涌,底侵下地殼并參與巖漿形成過(guò)程。故此相比于晚期巖漿活動(dòng)早期形成的石英正長(zhǎng)巖具有相對(duì)較高的εHf(t)值(圖6a)。因此作者認(rèn)為,華北克拉通南緣的晚中生代張士英巖體形成于造山后期構(gòu)造體制從擠壓向伸展的轉(zhuǎn)變階段和之后的巖石圈大規(guī)模伸展環(huán)境,這種構(gòu)造體制的轉(zhuǎn)折導(dǎo)致了巖石圈的減薄和華北克拉通的破壞。而構(gòu)造轉(zhuǎn)折的機(jī)制是受太平洋板塊俯沖方向的轉(zhuǎn)變的影響,研究表明太平洋板塊俯沖方向從140 ~125Ma 的北東方向轉(zhuǎn)變?yōu)?25 ~100Ma 的西北方向(Koppers et al.,2001)。導(dǎo)致了華北構(gòu)造體制由南北向的擠壓轉(zhuǎn)變?yōu)闁|西向的弧后拉張,拉張性的構(gòu)造環(huán)境導(dǎo)致了幔源巖漿的上涌,熾熱的幔源巖漿烘烤導(dǎo)致下地殼發(fā)生部分熔融形成原始巖漿,并經(jīng)過(guò)一系列的結(jié)晶分異在研究區(qū)侵位形成張士英石英正長(zhǎng)巖體。在成巖過(guò)程中有少量的地幔物質(zhì)的加入。
(1)張士英石英正長(zhǎng)巖具有高硅、高鉀、富堿和過(guò)鋁質(zhì)特征,SiO2(57.81% ~68.1%)大多集中在中性巖范圍,σ 變化范圍為3.46 ~8.04,屬于堿性巖。K2O/Na2O >1。鋁飽和指數(shù)A/CNK (1.26 ~1.58)均大于1。輕稀土富集,重稀土虧損Eu 呈弱的負(fù)異常,虧損高場(chǎng)強(qiáng)元素P、Ti、Nb、Ta,富集大離子親石元素Rb、K、Th、U。
(2)鋯石U-Pb 測(cè)年獲得張士英巖體的年齡為122.8 ±1.5Ma,代表該巖體早期巖漿侵位年齡。鋯石的εHf(t)= -17.6 ~-13.9,Hf 兩階段模式年齡tDM2=1.7 ~1.9Ga。指示巖體源區(qū)主要為古老下地殼,可能為基底太華群和熊耳群在幔源玄武質(zhì)巖漿底侵過(guò)程中發(fā)生部分熔融形成,并可能有少量地幔組分的參與。
(3)華北克拉通南緣的晚中生代張士英侵入巖形成于造山后期構(gòu)造體制從擠壓向伸展的轉(zhuǎn)變階段和之后的巖石圈大規(guī)模伸展環(huán)境,這種構(gòu)造體制的轉(zhuǎn)折導(dǎo)致了巖石圈的減薄和華北克拉通的破壞。
致謝 LA-ICP-MS 鋯石U-Pb 定年得到中國(guó)科學(xué)技術(shù)大學(xué)趙乘乘的幫助,鋯石Hf 同位素測(cè)試得到西北大學(xué)張紅老師的幫助,在此表示衷心感謝。感謝匿名審稿人對(duì)本文完善提出的寶貴意見(jiàn)及建議。
Black LP,Kamo SL,Allen CM,Aleinikoff JN,Davis DW,Korsch RJ and Foudoulis C. 2003. TEMORA:A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology,200(1 -2):155 -170
Blichert TJ and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,148(1 -2):243 -258
Brown PE and Becker SM. 1986. Fractionation,hybridisation and magma-mixing in the Kialineq centre East Greenland. Contributions to Mineralogy and Petrology,92(1):57 -70
Bonin B. 2007. A-type granites and related rocks:Evolution of a concept,problems and prospects. Lithos,97(1 -2):1 -29
Chen YJ,Li C,Zhang J,Li Z and Wang HH. 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (Series D),43(S1):82 -94
Compston W,Williams IS and Kirschvink JL. 1992. Zircon U-Pb ages for the Early Cambrian timescale. Journal of the Geological Society,149(2):171 -184
Cui JJ,Liu XC,Dong SW and Hu JM. 2012. U-Pb and40Ar/39Ar geochronology of the Tongbai complex,central China:Implications for Cretaceous exhumation and lateral extrusion of the Tongbai-Dabie HP/UHP terrane. Journal of Asian Earth Sciences,47:155 -170
De Biévre P and Taylor PDP. 1993. Table of the isotopic compositions of the elements. International Journal of Mass Spectrometry and Ion Processes,123(2):149 -166
Deng JF,Mo XX,Zhao HL,Luo ZH and Du YS. 1994. Lithosphere root/de rooting and activation of the East China continent.Geoscience,8(3):349 -356 (in Chinese with English abstract)Diwu CR,Sun Y,Lin CL,Liu XM and Wang HL. 2007. Zircon U-Pb ages and Hf isotopes and their geological significance of Yiyang TTG gneisses from Henan Province,China. Acta Petrologica Sinica,23(2):253 -262 (in Chinese with English abstract)
Fan WM,Guo F,Wang YJ,Lin G and Zhang M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China.Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,26(9 -10):733 -746
Gao S,Rudnick RL,Carlson RW,Mcdonough WF and Liu YS. 2003.Removal of lithospheric mantle in the North China Craton:Re-Os isotopic evidence for coupled crust-mantle growth. Earth Science Frontiers,10(3):61 -67 (in Chinese with English abstract)
Gao S,Rudnick RL,Yuan HL,Liu XM,Liu YS,Xu WL and Wang QH. 2004. Recycling lower continental crust in the North China craton. Nature,432(7019):892 -897
Geng YS,Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes. Gondwana Research,21(2 -3):517 -529 Griffin WL,Pearson NJ,Belousova E,Jackson SE,van Achterbergh E,O’Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,64(1):133 -147 Griffin WL,Wang X,Jackson SE,Pearson NJ,O’Reilly SY,Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan igneous complexes. Lithos,61(3 -4):237 -269
Harris C,Marsh JS and Milner SC. 1999. Petrology of the alkaline core of the Messum igneous complex,Namibia:Evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology,40(9):1377 -1397
He ZY,Xu XS,Yu Y and Zou HB. 2009. Origin of the Late Cretaceous syenite from Yandangshan,SE China,constrained by zircon U-Pb and Hf isotopes and geochemical data. International Geology Review,51(6):556 -582
Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle,continental crust,and oceanic crust.Earth and Planetary Science Letters,90(3):297 -314
Hoskin PWO. 2000. Patterns of chaos:Fractal statistics and the oscillatory chemistry of zircon. Geochimica et Cosmochimica Acta,64(11):1905 -1923
Huang WL and Wyllie PJ. 1981. Phase relationships of S-type granite with H2O to 35kbar:Muscovite granite from Harney Peak,South Dakota. Journal of Geophysical Research,86 (B11):10515-10529
Jian P,Liu D,Kr?ner A,Windley BF,Shi YR,Zhang W,Zhang FQ,Miao LC,Zhang LQ and Tomurhuu D. 2010. Evolution of a Permian intraoceanic arc trench system in the Solonker suture zone,Central Asian Orogenic Belt,China and Mongolia. Lithos,118(1 -2):169-190
Karmalkar NR,Rege S,Griffin WL and O’Reilly SY. 2005. Alkaline magmatism from Kutch, NW India: Implications for plumelithosphere interaction. Lithos,81(1 -4):101 -119
Koppers AA,Morgan JP,Morgan JW and Staudigel H. 2001. Testing the fixed hotspot hypothesis using40Ar/39Ar age progressions along seamount trails. Earth and Planetary Science Letters,185(3):237-252
Kumar KV,F(xiàn)rost CD,F(xiàn)rost BR and Chamberlain KR. 2007. The Chimakurti,Errakonda,and Uppalapadu plutons,Eastern Ghats Belt,India:An unusual association of tholeiitic and alkaline magmatism. Lithos,97(1 -2):30 -57
Li CJ and Bao ZW. 2010. LA-ICPMS zircon U-Pb geochronology and geochemical characteristics of the Zhangshiying syenite from south of Wuyang,Henan Province Geotectonica et Metallogenia,34(3):435-443 (in Chinese with English abstract)
Li SG,Hart SR,Zheng SG,Guo AL,Liu DL and Zhang GW. 1989.The collision time of North China plate and South China plate:Evidence from Sm-Nd ages. Science in China (Series B),19(3):312 -319 (in Chinese)
Li XZ,Yan Z and Lu XX. 1993. The Granites in Qinling-Dabie Mountains. Beijing:Geological Publishing House,11 - 27 (in Chinese with English abstract)
Li YF,Mao JW,Hu HB,Guo BJ and Bai FJ. 2005. Geology,distribution,types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area. Mineral Deposits,24(3):292 -304(in Chinese with English abstract)
Li ZX and Li XH. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab subduction model. Geology,35(2):179 -182
Lin W,Wang J,Liu F,Ji WB and Wang QC. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics. Acta Petrologica Sinica,29 (5):1791 -1810(in Chinese with English abstract)
Litvinovsky BA,Jahn BM,Zanvihvich AN and Shadaev MG. 2002.Crystal fractionation in the petrogenesis of an alkali monzodioritesyenite series: The Oshurkovo plutonic sheeted complex,Transbaik Malia,Russia. Lithos,64(3):97 -130
Liu DY,Wilde SA,Wang YS,Valley JW,Kita N,Dons CY,Xie HQ,Yang CX,Zhang YX and Cao LG. 2009. Combined U-Pb hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology,261(1):140 -154
Liu YS,Hu ZC,Gao S,Güenther D,Xu J,Gao CG and Chen HH.2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard.Chemical Geology,257(1 -2):34 -43
Liu ZH,Wang SY,Zhang L,Yang CX,Wu TA and Cui XF. 2004. The Jurassic magmatism of intracratonic orogen in the southern margin of the North China Craton. Geological Survey and Research,27(1):35 -42(in Chinese with English abstract)
Ludwig KR. 2003. User’s manual for ISOPLOT3.0:A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication,No.4:1 -70
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids.Geological Society of America Bulletin,101(5):635 -643
Mao JW,Wang YT,Zhang ZH,Yu JJ and Niu BG. 2003. Geodynamic settings of Mesozoic large scale mineralization in North China and adjacent areas:Implication from the highly precise and accurate ages of metal deposits. Science in China (Series D),46(8):838 -851
Mao JW,Xie GQ,Zhang ZH,Li XF,Wang YT,Zhang CQ and Li YF.2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica,21(1):169 -188 (in Chinese with English abstract)
Mao JW,Xie GQ,Bierlein F,Qü WJ,Du AD,Ye HS and Yang ZQ.2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt.Geochimica et Cosmochimica Acta,72(18):4607 -4626
Mao JW,Pirajno F,Xiang JF,Gao JJ,Ye HS,Li YF and Guo BJ.2011. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: Characteristics tectonic settings. Ore Geology Reviews,43(1):264 -293
Meng QR and Zhang GW. 1999. Timing of collision of the North and South China blocks:Controversy and reconciliation. Geology,27(2):123 -126
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews,37(3 -4):215 -224
Miller CF,McDowell SM and Mapes RW. 2003. Hot and cold granites?Implications of zircon saturation temperatures and preservation of inheritance. Geology,31(6):529 -532
Mingram B,Trumbull RB,Littman S and Gerstenberger H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex,Namibia:Evidence for mixing of crust and mantle-derived components. Lithos,54(1 -2):1 -22
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey.Contributions to Mineralogy and Petrology,58(1):63 -81
Rapp RP,Shimizu N,Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge:Experimental constraints at 3.8GPa. Chemical Geology,160(4):335 -356
Ratschbacher L,Hacker BR,Calvert A,Webb LE,Grimmer JC,McWilliams MO,Ireland T,Dong SW and Hu JM. 2003. Tectonics of the Qinling(Central China):Tectonostratigraphy,geochronology,and deformation history. Tectonophysics,366(1 -2):1 -53
Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics,33(3):267 -309
Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters,182(1):115 -125
S?derlund U,Patchett JP,Vervoort JD and Isachsen CE. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters,219(3 -4):311 -324
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ. (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publication,42(1):313 -345
Sun WD,Li SG,Chen YD and Li YJ. 2002. Timing of synorogenic granitoids in the South Qinling,central China:Constraints on the evolution of the Qinling-Dabie orogenic belt. Journal of Geology,110(4):457 -468
Sun WD,Hu YH,Kamenetsky VS,Eggins SM,Chen M and Arculus RJ. 2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta,72(14):3542 -3549
Sylvester PJ. 1989. Post-collisional alkaline granites. The Journal of Geology,261 -280
Tchameni R,Mezger K,Nsifa NE and Pouclet A. 2001. Crustal origin of Early Proterozoic syenites in the Congo craton (Ntem complex),South Cameroon. Lithos,57(1):23 -42
Tu XL,Zhang H,Deng WF,Ling MX,Liang HY,Liu Y and Sun WD.2011. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses. Geochimica,40(1):83 -98 (in Chinese with English abstract)
Vervoort JD and Jonathan PP. 1996. Behavior of hafnium and neodymium isotopes in the crust:Constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta,60(19):3717 -3733
Wan YS,Song B,Liu DY,Wilde SA,Wu JS,Shi YR,Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:Evidence for a major Late Palaeoproterozoic tectonothermal event.Precambrian Research,149(3 -4):249 -271
Wang T,Wang XX,Zhang GW,Pei XZ and Zhang CL. 2003.Remnants of a Neoproterozoic collisional orogenic belt in the core of the Phanerozoic Qinling orogenic belt (China ). Gondwana Research,6(4):699 -710
Wang T,Pei XZ,Wang XX,Hu NG,Li WP and Zhang GW. 2005.Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling orogen (China):An example of oblique extrusion of deep-seated metamorphic rocks in a collisional orogen. The Journal of Geology,113(2):181 -200
Wang T,Zheng YD,Zhang JJ,Wang XS,Zeng LS and Tong Y. 2007.Some problems in the study of Mesozoic extensional structure in the North China craton and its significance for the study of lithospheric thinning. Geological Bulletin of China,26(9):1154 -1166 (in Chinese with English abstract)
Wang T,Zheng YD,Zhang JJ,Zeng LS,Donskaya T,Guo L and Li JB.2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics,30(6):345 -360
Wang TH,Mao JW and Wang YB. 2008. Research on SHRIMP U-Pb chronology in Xiaoqinling-Xionger Shan area:The evidence of delamination of lithosphere in Qinling orogenic belt. Acta Petrologica Sinica,24(6):1273 -1287 (in Chinese with English abstract)
Wang XL,Jiang SY and Dai BZ. 2010. Melting of enriched Archean subcontinental lithospheric mantle:Evidence from the ca. 1760Ma volcanic rocks of the Xiong’er Group,southern margin of the North China Craton. Precambrian Research,182(3):204 -216
Watson EB and Harrison TM. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters,64(2):295 -304
Wu FY,Ge WC,Sun DY and Guo CL. 2003. Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers,10(3):51 -60 (in Chinese with English abstract)
Wu FY,Lin JQ,Wilde SA,Zhang XO,Yang JH. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters,233(1):103 -119
Wu FY,Li XH,Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica,23(2):185 -220 (in Chinese with English abstract)
Wu FY,Xu YG,Gao S and Zheng JP. 2008. Lithospheric thinning and destruction of the North China Craton. Acta Petrologica Sinica,24(6):1145 -1174 (in Chinese with English abstract)
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraint on interpretation of U-Pb age. Chinese Science Bulletin,49(15):1554-1569
Xiang JF,Zhao HJ,Li YF,Cheng YB,Gao YL,Hou KJ,Dong CY and Li XQ. 2010. SHRIMP zircon U-Pb ages and Hf isotopic compositions of Zhangshiying intrusive complex in the southern margin of the North China Craton and their geological implications.Acta Petrologica Sinica,26 (3):871 - 887 (in Chinese with English abstract)
Xia QK,Liu J,Liu SC,Kovács I,F(xiàn)eng M and Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere.Earth and Planetary Science Letters,361:85 -97
Xie GQ,Mao JW,Li RL,Ye HS,Zhang YX,Wan YS,Li HM,Gao JJ and Zheng RF. 2007. SHRIMP zircon U-Pb dating for volcanic rocks of the Daying Formation from Baofeng basin in eastern Qinling,China and its implications. Acta Petrologica Sinica,23(10):2387-2396 (in Chinese with English abstract)
Xu JF and Wang Q. 2003. Tracing the thickening process of continental crust through studying adakitic rocks:Evidence from volcanic rocks in the north Tibet. Earth Science Frontiers,10(4):401 -406 (in Chinese with English abstract)
Xu XS,Griffin WL,Ma X,O’Reilly SY,He ZY and Zhang CL. 2009.The Taihua Group on the southern margin of the North China craton:Further insights from U-Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology,97(1 -2):43 -59
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence,timing and mechanism. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,26(9 -10):747 -757
Yang JH,Wu FY and Wilde SA. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:An association with lithospheric thinning. Ore Geology Reviews,23(3):125 -152
Yang JH,Chung SL,Wilde SA,Wu FY,Chu MF,Lo CH and Fan HR.2005. Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt,East China:Geochronologica,geochemical and Nd-Sr isotopic evidence. Chemical Geology,214(1 -2):99 -125
Yang JH,Wu FY,Wilde SA,Belousova E and Griffin WL. 2008.Mesozoic decratonization of the North China block. Geology,36(6):467 -470
Ye HS,Mao JW,Xu LG,Gao JJ,Xie GQ,Li XQ and He CF. 2008.SHRIMP Zircon U-Pb dating and geochemistry of the Taishanmiao aluminous A-type granite in western Henan Province. Geological Review,54(5):699 -711 (in Chinese with English abstract)
Yuan HL,Gao S,Dai MN,Zong CL,Guenther D,F(xiàn)ontaine GH,Liu XM and Diwu CR. 2008. Simultaneous determinations of U-Pb age,Hf isotopes and trace element compositions of zircon by excimer laserablation quadrupole and multiple-collector ICP-MS. Chemical Geology,247(1 -2):100 -118 Zhai MG,Meng QR,Liu JM,Hou QL,Hu SB,Li Z,Zhang HF,Liu W,Shao J and Zhu RX. 2004. Geological features of Mesozoic tectonic regime inversion in eastern North China and implication for geodynamics. Earth Science Frontiers,11(3):285 - 297 (in Chinese with English abstract)
Zhang BR,Gao S and Zhang HF. 2002. Geochemistry of Qinling Orogenic Belt. Beijing:Science Press,1 -187 (in Chinese with English abstract)
Zhang GW,Zhang BR,Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing:Science Press,1 -855 (in Chinese with English abstract)
Zhang HF,Sun M,Zhou XH,F(xiàn)an WM,Zhai MG and Yin JF. 2002.Mesozoic lithosphere destruction beneath the North China Craton:Evidence from major-,trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology,144(2):241 -254
Zhang HF,Jin LL,Zhang L,Harris N,Zhou L,Hu SH and Zhang BR.2005. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt:Constraints on basement nature and tectonic affinity. Science in China (Series D),50(2):184 -196
Zhang ZQ,Zhang GW and Tang SH. 2002. The isotopic Geochronology of Metamorphic Strata in Southern Qingling. Beijing:Geological Publishing House,1 -348 (in Chinese with English abstract)
Zhang ZW,Zhu BQ and Chang XY. 2000. Nd,Sr,Pb isotopic geochemistry of the alkali-rich intrusive rocks in East Qinling,central China and its tectonic significance. Geochimica,29(5):455 -461 (in Chinese with English abstract)
Zhang ZW,Zhu BQ,Chang XY and Xie J. 2002. Major element characteristics of the alkali-rich intrusive rocks zone and distribution of the subzones in the northern part of East Qinling,China. Acta Petrologica Sinica,18(4):468 - 474 (in Chinese with English abstract)
Zhao TP,Zhou MF,Jin CW,Guan H and Li HM. 2001. Discussion on age of the Xiong’er Group in southern margin of North China Craton. Chinese Journal of Geology,36(3):326 -334 (in Chinese with English abstract)
Zhao TP,Zhai MG,Xia B,Li HM,Zhang YX and Wan YS. 2004.Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group:Constraint on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin,49 (23):2495-2502
Zhao XM,Zhang HF,Zhu XK,Tang SH and Yan B. 2012. Iron isotope evidence for multistage melt-peridotite interactions in the lithospheric mantle of eastern China. Chemical Geology,292 -293:127 -139
Zhou HS,Ma CQ,Zhang C,Chen L,Zhang JY and She ZB. 2008.Yanshanian aluminous A-type granitoids in the Chunshui of Biyang,southern margin of North China Craton:Implications from petrology and geochemistry. Acta Petrologica Sinica,24(1):49 - 64 (in Chinese with English abstract)
Zhu G,Wang YS,Liu GS,Niu ML,Xie CL and Li CC. 2005.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone,East China. Journal of Structural Geology,27(8):1379 -1398
Zhu LM,Zhang GW,Guo B and Li B. 2008. U-Pb (LA-ICP-MS)zircon dating for the large Jinduicheng porphyry Mo deposit in the East Qinling,China,and its metallogenetic geodynamical setting.Acta Geologica Sinica,82(2):204 -220 (in Chinese with English abstract)Zhu XQ,Zhu WB,Ge RF and Wang X. 2014. Late Paleozoic provenance shift in the south-central North China Craton:Implications for tectonic evolution and crustal growth. Gondwana Research,25(1):383 -400
附中文參考文獻(xiàn)
鄧晉福,莫宣學(xué),趙海玲,羅照華,杜楊松. 1994. 中國(guó)東部巖石圈根/去根作用與大陸“活化”──東亞型大陸動(dòng)力學(xué)模式研究計(jì)劃. 現(xiàn)代地質(zhì),8(3):349 -356
第五春榮,孫勇,林慈鑾,柳小明,王洪亮. 2007. 豫西宜陽(yáng)地區(qū)TTG 質(zhì)片麻巖鋯石U-Pb 定年和Hf 同位素地質(zhì)學(xué). 巖石學(xué)報(bào),23(2):253 -262
高山,Rudnick RL,Carlson RW,McDonough WF,劉勇勝. 2003. 華北克拉通巖石圈地幔置換作用和殼幔生長(zhǎng)耦合的Re-Os 同位素證據(jù). 地學(xué)前緣,10(3):61 -67
李創(chuàng)舉,包志偉. 2010. 河南舞陽(yáng)南部張士英巖體的地球化學(xué)與成因及其構(gòu)造意義. 大地構(gòu)造與成礦學(xué),34(3):435 -443
李曙光,Hart SR,鄭雙根,郭安林,劉德良,張國(guó)偉. 1989. 中國(guó)華北、華南陸塊碰撞時(shí)代的釤-釹同位素年齡證據(jù). 中國(guó)科學(xué)(B輯),(3):312 -319
李先梓,嚴(yán)陣,盧欣祥. 1993. 秦嶺-大別山花崗巖. 北京:地質(zhì)出版社,11 -27
李永峰,毛景文,胡華斌,郭保健,白鳳軍. 2005. 東秦嶺鉬礦類型、特征、成礦時(shí)代及其地球動(dòng)力學(xué)背景. 礦床地質(zhì),24(3):292-304
林偉,王軍,劉飛,冀文斌,王清晨. 2013. 華北克拉通及鄰區(qū)晚中生代伸展構(gòu)造及其動(dòng)力學(xué)背景的討論. 巖石學(xué)報(bào),29(5):1791-1810
劉振宏,王世炎,張良,楊長(zhǎng)秀,武太安,崔霄峰. 2004. 華北陸塊南緣燕山期陸內(nèi)造山巖漿活動(dòng)特征. 地質(zhì)調(diào)查與研究,27(1):35 -42
毛景文,謝桂青,張作衡,李曉峰,王義天,張長(zhǎng)青,李永峰. 2005.中國(guó)北方中生代大規(guī)模成礦作用的期次及其地球動(dòng)力學(xué)背景.巖石學(xué)報(bào),21(1):169 -188
涂湘林,張紅,鄧文峰,凌明星,梁華英,劉穎,孫衛(wèi)東. 2011.RESOlution 激光剝蝕系統(tǒng)在微量元素原位微區(qū)分析中的應(yīng)用.地球化學(xué),40(1):83 -98
王濤,鄭亞?wèn)|,張進(jìn)江,王新社,曾令森,童英等. 2007. 華北克拉通中生代伸展構(gòu)造研究的幾個(gè)問(wèn)題及其在巖石圈減薄研究中的意義. 地質(zhì)通報(bào),26(9):1154 -1166
王團(tuán)華,毛景文,王彥斌. 2008. 小秦嶺-熊耳山地區(qū)巖墻鋯石SHRIMP 年代學(xué)研究——秦嶺造山帶巖石圈拆沉的證據(jù). 巖石學(xué)報(bào),24(6):1273 -1287
吳福元,葛文春,孫德有,郭春麗. 2003. 中國(guó)東部巖石圈減薄研究中的幾個(gè)問(wèn)題. 地學(xué)前緣,10(3):51 -60
吳福元,李獻(xiàn)華,鄭永飛等. 2007. Lu-Hf 同位素體系及其巖石學(xué)應(yīng)用. 巖石學(xué)報(bào),23(2):185 -220
吳福元,徐義剛,高山,鄭建平. 2008. 華北巖石圈減薄與克拉通破壞研究的主要學(xué)術(shù)爭(zhēng)論. 巖石學(xué)報(bào),24(6):1145 -1174
向君峰,趙海杰,李永峰,程彥博,高亞龍,侯可軍,董春艷,李向前. 2010. 華北地臺(tái)南緣張士英巖體的鋯石SHRIMP U-Pb 測(cè)年、Hf 同位素組成及其地質(zhì)意義. 巖石學(xué)報(bào),26(3):871 -887
謝桂青,毛景文,李瑞玲,葉會(huì)壽,張毅星,萬(wàn)渝生,李厚民,高建京,鄭蓉芬. 2007. 東秦嶺寶豐盆地大營(yíng)組火山巖SHRIMP 定年及其意義. 巖石學(xué)報(bào),23(10):2387 -2396
許繼峰,王強(qiáng). 2003. Adakitic 火成巖對(duì)大陸地殼增厚過(guò)程的指示:以青藏北部火山巖為例. 地學(xué)前緣,10(4):401 -406
葉會(huì)壽,毛景文,徐林剛,高建京,謝桂青,李向前,何春芬. 2008.豫西太山廟鋁質(zhì)A 型花崗巖SHRIMP 鋯石U-Pb 年齡及其地球化學(xué)特征. 地質(zhì)論評(píng),54(5):699 -711
翟明國(guó),孟慶任,劉建明,侯泉林,胡圣標(biāo),李忠,張宏福,劉偉,邵濟(jì)安,朱日祥. 2004. 華北東部中生代構(gòu)造體制轉(zhuǎn)折峰期的主要地質(zhì)效應(yīng)和形成動(dòng)力學(xué)探討. 地學(xué)前緣,11(3):285 -297
張本仁,高山,張宏飛. 2002. 秦嶺造山帶地球化學(xué). 北京:科學(xué)出版社,1 -187
張宏飛,靳蘭蘭,張利,Nigel H,周煉,胡圣虹,張本仁. 2005. 西秦嶺花崗巖類地球化學(xué)和Pb-Sr-Nd 同位素組成對(duì)基底性質(zhì)及其構(gòu)造屬性的限制. 中國(guó)科學(xué)(D 輯),35(10):914 -926
張國(guó)偉,張本仁,袁學(xué)誠(chéng),肖慶輝. 2001. 秦嶺造山帶與大陸動(dòng)力學(xué). 北京:科學(xué)出版社,1 -855
張宗清,張國(guó)偉,唐索寒. 2002. 南秦嶺變質(zhì)地層同位素年代學(xué). 北京:地質(zhì)出版社,1 -348
張正偉,朱炳泉,常向陽(yáng). 2000. 東秦嶺北部富堿侵入巖釹-鍶-鉛同位素特征及構(gòu)造意義. 地球化學(xué),29(5):455 -461
張正偉,朱炳泉,常向陽(yáng),謝靜. 2002. 東秦嶺北部富堿侵入巖巖石化學(xué)與分布特征. 巖石學(xué)報(bào),18(4):468 -474
趙太平,周美夫,金成偉,關(guān)鴻,李惠民. 2001. 華北陸塊南緣熊耳群形成時(shí)代討論. 地質(zhì)科學(xué),36(3):326 -334
周紅升,馬昌前,張超,陳玲,張金陽(yáng),佘振兵. 2008. 華北克拉通南緣泌陽(yáng)春水燕山期鋁質(zhì)A 型花崗巖類:年代學(xué),地球化學(xué)及其啟示. 巖石學(xué)報(bào),24(1):49 -64
朱賴民,張國(guó)偉,郭波,李犇. 2008. 東秦嶺金堆城大型斑巖鉬礦床LA-ICP-MS 鋯石U-Pb 定年及成礦動(dòng)力學(xué)背景. 地質(zhì)學(xué)報(bào),82(2):204 -220