• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    發(fā)光層位置對白光有機(jī)發(fā)光二極管的影響

    2015-04-05 09:02:02向東旭李海蓉謝龍珍楊佳明員朝鑫孫永哲
    發(fā)光學(xué)報(bào) 2015年7期
    關(guān)鍵詞:電致發(fā)光蘭州大學(xué)白光

    向東旭, 李海蓉,2,3*, 謝龍珍, 楊佳明, 王 芳, 員朝鑫, 孫永哲

    (1. 蘭州大學(xué)物理科學(xué)與技術(shù)學(xué)院 微電子研究所, 甘肅 蘭州 730000;2. 蘭州大學(xué) 磁學(xué)與磁性材料教育部重點(diǎn)實(shí)驗(yàn)室, 甘肅 蘭州 730000;3. 特殊功能材料與結(jié)構(gòu)設(shè)計(jì)教育部重點(diǎn)實(shí)驗(yàn)室, 上海 200050)

    發(fā)光層位置對白光有機(jī)發(fā)光二極管的影響

    向東旭1, 李海蓉1,2,3*, 謝龍珍1, 楊佳明1, 王 芳1, 員朝鑫1, 孫永哲1

    (1. 蘭州大學(xué)物理科學(xué)與技術(shù)學(xué)院 微電子研究所, 甘肅 蘭州 730000;2. 蘭州大學(xué) 磁學(xué)與磁性材料教育部重點(diǎn)實(shí)驗(yàn)室, 甘肅 蘭州 730000;3. 特殊功能材料與結(jié)構(gòu)設(shè)計(jì)教育部重點(diǎn)實(shí)驗(yàn)室, 上海 200050)

    同一種主體材料MADN中混摻不同的摻雜劑,分別制備了兩種白光有機(jī)發(fā)光二極管,測試并研究了它們的發(fā)光效率、壽命、發(fā)光亮度、電致發(fā)光光譜以及色平衡度。結(jié)果表明,兩種白光器件的性能受發(fā)光層的順序和厚度的影響顯著。發(fā)光層順序由陽極到陰極方向?yàn)槌?藍(lán)的器件的穩(wěn)定性要優(yōu)于發(fā)光層順序?yàn)樗{(lán)/橙的器件,這是由于橙光發(fā)光層中的rubrene對空穴的陷進(jìn)作用可捕獲穿越橙光發(fā)光層中的空穴,從而有效地調(diào)控了器件內(nèi)部的電子、空穴濃度的平衡。通過對器件的優(yōu)化,制得了色坐標(biāo)為(0.320 1, 0.345 9)的接近標(biāo)準(zhǔn)白光的有機(jī)電致發(fā)光器件。

    有機(jī)電致發(fā)光; 發(fā)光層順序與厚度; 載流子注入; 載流子平衡

    1 Introduction

    Organic light-emitting diodes (OLEDs) have attracted considerable interest due to their potential application in flat-panel displays and thin-film lighting devices[1-4]. Recently, impressive scientific and technological progress have been achieved in this field since Tang and V. Slyke reported their first low operation voltage driven OLED in 1987[5-9]. Blue OLED (BOLED) is a vital component for full-color display as well as solid-state lighting. Blue emitter is used as one of the three primary color sources or as the color converter light source to obtain green or red emission from the fluorescent materials[10-14]. However, a number of technological challenges still need to be resolved for BOLED,e.g., increasing device efficiency, lowering driving voltage, and improving the operational stability.

    Continual efforts have been made towards exploring blue-emitting materials and device structures to improve the performance of OLEDs. In a variety of methods, doping is an effective way to improve the efficiency of OLEDs[15-18]. In this paper, we studied the device structure, especially the fluorescent materials doped light-emitting layer (EML). The fluorescent dye 4, 4-bis[4-(di-ptolylamino)styryl] biphenyl (DPAVBi) has been commonly used as blue fluorescent dopant and several works have been done to improve the efficiency of the DPAVBi based BOLEDs. Here we presented the BOLED with the EML in which DPAVBi was doped in the host 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN). Variation of the thickness of EML affects not only the electrical characteristics of the devices but also the optical properties. And the blue device with a 15-nm-thick EML shows higher current efficiency than that reported in Ref.[19].

    White-light emission originating from the blend of two complementary colors has been widely researched. The fluorescent dye 5,6,11,12-tetraphenylnaphthacene, rubrene (denoted Rb), has been primarily used as an orange dopant in OLEDs. It has been proved that an excellent orange emission can be obtained by doping Rb in either n-type or p-type host. In order to fabricate white OLED (WOLED), we added an orange EML by doping Rb in MADN in BOLED. The effects of the stack order of EMLs on WOLEDs performance were investigated. It was found that the WOLED with an EML sequence of orange/blue showed better stability than that with an EML sequence of blue/orange. In addition, we optimized the performance of the WOLED with an EML sequence of orange/blue.

    2 Experiments

    As a hole injection material, 4, 4′, 4″-tris[phenyl(3-methylphenyl)amino]triphenylamine (m-MTDATA) film was thermally deposited on top of indium tin oxide (ITO) substrate. Then, N,N-diphenyl-N,N-bis(1-naphthyl)-(1,1-biphenyl)-4,4-diamine (α-NPB) film (as hole transport layer, HTL) was deposited on m-MTDATA film and subsequently the EML was deposited onα-NPB film. Next, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) film (as hole blocking layer) was deposited on the EML. Following that, tris(8-hydroxy quinoline)-aluminium (Alq3) film (as electron transport layer) was deposited on BCP film. Finally, Al cathode electrode was deposited on Alq3film. The device with the configuration of ITO/m-MTDATA/NPB/MADN∶DPAVBi(6%, mass fraction) (xnm)/BCP/Alq3/Al was denoted as device A, the devices with the structure of ITO/m-MTDATA/NPB/MADN∶rubrene(1%, mass fraction)(5, 10,15 nm)/ MADN∶DPAVBi(6%, mass fraction) /BCP /Alq3/Al were denoted as device B, D, and E, respectively. And the device with the structure of ITO/m-MTDATA/NPB/MADN∶DPAVBi(6%, mass fraction)/MADN∶Rubrene(1%, mass fraction)/BCP/Alq3/Al was denoted as device C, as shown in Fig.1, the thickness of all devices shown in Table 1. All the organic materials in this study were purchased from Aldrich Chemical Co., Ltd., and their purity is more than 99%. The chamber pressure during deposition was kept at 4×10-4Pa and the deposition rate was 0.2-0.3 nm/s. The film thickness was monitored by a quartz crystal oscillator. The device active area was 3.5 mm× 3.5 mm. All the devices were encapsulated by epoxy resin in N2atmosphere. The current density-voltage and the luminescence characteristics were measured by a Minolta LS-110 luminance meter with a Kiethley 2410 programmable current-voltage digital source unit. The electroluminescence (EL) intensities of devices and the CIE coordinates were measured by Photo Research PR-650 after encapsulation. All the measurements were performed in air at room temperature.

    Table 1 Device structure in the article

    Fig.1 Devices structure and molecular formula of organic materials used in this study

    3 Results and Discussion

    Fig.2(a) shows EL spectra of device Avs. EML thickness, which were measured at a brightness of~10 000 cd·m-2. It is clear that the peaks of the EL spectra of the BOLEDs are at about 466, 495,530 nm, respectively, which are attributed to the electronic vibration transition from excited state (S1) to the ground state (S0) in DPAVBi. The three peaks (466, 495,530 nm) are attributed to 0s1-0s0, 0s1-1s0and 0s1-2s0transition[20], respectively, as shown in the inset of Fig.2(a). It is found that the EL spectra of device A changes varying with the EML thickness. According to related reports[21], the 0-0 vibrational component at 466 nm is much stronger than any other vibrational component. Interestingly, the intensity of the 0-1 component at 495 nm increases with the increasing of EML thickness. The change of the EL spectra may be due to a planar optical microcavity effect, which increases the intensity of the shoulder peak at 495 nm in the line-spectral shape through the light reflection and interference depending on the EML thickness in the multi-layer structure (Fig.4(a))[19,22]. Multiple beam interference between parallel reflectors leads to a spectral emission intensity enhancement[23]. The CIE coordinates of device A with the EML thickness of 15, 20, 25, 30 nm are (0.164 6, 0.228 6), (0.169 7, 0.233 0), (0.178 6, 0.283 3), and (0.200 9, 0.316 3), respectively. The color varies from blue to blue-green with EML thickness increasing, as shown in Fig.2(b).

    Fig.2 EL spectra (a) and CIE chromaticity coordinates (b) of device A

    It is especially noted that a very weak emission is still observed at~430 nm, and the emission intensity at 430 nm increases with the decreasing of EML thickness, as shown in Fig.2(a). This can be ascribed to the emission of the MADN host, because it has an EL peak at 439 nm. However, it is more reasonable that the emission at 430 nm is attributed to formation of a second recombination region near the NPB/DPAVBI-doped MADN interface. This implies that the leakage of electrons from EML to HTL becomes more obvious with EML thickness decreasing, which is caused by the increasing electric field in the organic layer with EML thickness decreasing.

    Fig.3(a) and (b) show the current density and luminancevs. the forward bias of device A with different EML thickness. It is observed the threshold voltage of the devices increases with the increasing of EML thickness, and a maximum luminance of 57 000 cd·m-2is obtained at 17 V when the blue EML thickness is 15 nm.

    Fig.3 Current density-voltage (J-V) (a) and luminance-voltage (L-V) (b) curves of device A

    The current efficiency is plottedvs. the current density for device A with different EML thickness, as shown in Fig.4(b). We observe that the current efficiency decreases with increasing EML thickness, and the current efficiency of all the devices slowly decreases with increasing current density. When the EML thickness varies from 15 to 30 nm, the corresponding highest current efficiency decreases from 47 to 30 cd·A-1. The maximum external quantum efficiency of the BOLEDs with the EML thinness of 15, 20, 25, 30 nm is 9.2%, 8.2%, 7.3% and 6.9%, respectively.

    The EL spectra of WOLEDs are shown in Fig.5(a). The only difference between device B and C is the stack order of two emitting layers, as shown in Fig.1. The WOLED with an EML sequence of orange/blue is denoted device B and the other with an EML sequence of blue/orange is denoted device C. The EL spectra were obtained under the current density of 10 mA·cm-2and 150 mA·cm-2, respectively.

    Fig.4 (a) Microcavity schematic of BOLED. (b) Current efficiency-current density characteristics of device A.

    Fig.5 (a) EL spectra of device B and C at the current density of 10 mA/cm2and 150 mA/cm2, respectively. (b) EL spectra of B, D, E with the orange EML thickness of 5, 10, 15 nm, respectively.

    From Fig.5(a), we can see that in device B the peak intensity of the blue emission is stronger than that of the orange emission, while the situation of device C is the reverse. This is due to the easier hole injection into organic layer than the electron injection. It can be seen from Fig.6 that the highest occupied molecular orbital (HOMO) level of m-MTDATA is 5.1 eV, which is 0.4 eV higher than the work function of ITO (4.7 eV). On the other hand, the work function of Al is 4.2 eV, which is 1.2 eV higher than lowest unoccupied molecular orbital (LUMO) level of Alq3. Thus, a very small hole injection barrier forms between ITO and m-MTDATA and leads to a strong hole injection from ITO to m-MTDATA comparing with the electron injection from Al to Alq3. As a result, most of the mobile carriers would recombine near the cathode. Nevertheless, an impressive phenomenon occurs that the peak intensity of orange emission weakens when the current density varies from 10 to 150 mA·cm-2in device B, while in device C the peak intensity of blue emission weakens under the same conditions. When the current density reaches 150 mA·cm-2, the peak intensity of orange emission in device B weakens slightly but the peak intensity of blue emission in device C weakens dramatically. The CIE coordinates of device B changes from (0.219 6, 0.292 5) to (0.204 7, 0.273 1), and that of device C variesaThe CIE of devices were measured at the current density 150 mA·cm-2from (0.364 3, 0.43 2) to (0.444 2, 0.483 3) when the current density varies from 10 to 150 mA·cm-2, as shown in Fig.7(a). The results show that device B behaves more steadily than device C at the same conditions. This may be attributed to the fact that Rb in the orange EML acts as a hole-trap sites[24-25], which can capture passing holes and reduce the hole mobility even at high current density and finally balance the concentration of electrons and holes between two EMLs.

    Fig.6 Energy band gap schematics of device B (a) and device C (b)

    Table 2 Performance parameters of device B, C, D and E

    The performance parameters of device B and C are listed in Table 2. Table 2 shows that the turn-on voltages of device B and C are basically same (both are 6.8 V), but the brightness of 31 600 cd/m2and the efficiency of 30.9 cd/A of device C are slightly greater than those of device B (30 800 cd/m2and 30.1 cd/A). This can be ascribed to a direct charge trapping mechanism. Rb has a lower LUMO and a higher HOMO compared with DPAVBi (see Fig.6). Therefore, the injected carriers can be more easily trapped by Rb[26]than by DPAVBi, and then a direct carrier recombination occurs at luminescent centers of Rb[27]. The color rendering index (CRI) and color temperature (CCT) are shown in Table 2.

    Although the brightness and efficiency of device C are greater than device B, but the color stability of the latter is better than the former. In order to obtain a more desirable white device, we optimized the thickness of orange EML of device B and fabricated device D and E with the thickness of 10 and 15 nm, respectively. It is observed that the threshold voltage and the orange emission intensity of device B, D and E increase and the CIE coordinates of the devices get closer to standard white light with increasing orange EML thickness (see Fig.5(b) and 7(a)), and an optimal CIE coordinates of (0.320 1, 0.345 9) is obtained when the orange EML thickness is 15 nm,i.e., device E. And we see that the brightness and the efficiency of the devices decrease with orange EML thickness increasing.

    Fig.7 (a) CIE coordinates of device B, C, D and E, respectively. (b) Luminance of device B, C, D and E varies with time, respectively.

    Fig.7(b) shows the luminance of device B, C, D and E with time. The brightness of all white light devices is normalized to the maximum brightness of device C. It is found that the brightness of all the devices decreases with time, the brightness of device B, C, D and E decays by 37.1%, 30%, 21%, 9% after 500 h, respectively. And we find that the decay rate of device B is slower than that of device C, this may be due to Rb in the orange EML that may act as hole trap sites. From Fig.6, we can see that the hole injection efficiency is higher than the electron, thus it is reasonable that the holes would be more than the electrons in device B and C. But Rb in the orange EML in device B can act as hole trap sites and capture passing holes, this balances the concentration of electrons and holes and therefore prolongs the device lifetime[28]comparing with device C. After thickness optimization of device B, the decay rate of the optimized devices (device D and E) becomes slower further.

    Fig.8 Efficiency-current density characteristics of WOLEDs

    The efficiency plots of white OLEDs are shown in Fig.8. Form Fig.8, we can see that the maximum efficiency of device B, C, D, E is 30.1, 30.9, 28.3, 26.6 cd/A, respectively. The maximum efficiency of device C is larger than that of any other device, but the decay rate of device C is faster than that of any other one, this may be due to Rb in the orange EML that can act as hole trap sites.

    4 Conclusion

    In this study, BOLEDs with an EML of MADN∶DPAVBi were successfully fabricated. It is observed that the EL spectra, current efficiencies, operational voltage and operational current density strongly depend on the EML thickness of BOLEDs. By adjusting the thickness of the blue EML, the EL spectra of the BOLEDs can be tuned from blue to green-blue. A maximum luminance of 57 000 cd·m-2and current efficiency of 47 cd·A-1(under illumination of 1 000 cd·m-2) are obtained when the thickness of the BOLED is 15 nm. After that, WOLEDs with blue and orange EMLs were fabricated. The efficiency, lifetime, brightness, spectral voltage-dependence and white balance of the WOLEDs were studied. The results demonstrate that the performance of the WOLEDs is strongly linked to the stack order of two EMLs and the thickness of the EML, which may be due to Rb in orange EML in device B (WOLED with an EML sequence of orange/blue) that can capture the passing holes and hence balance the concentration of electrons and holes. Subsequently, we optimized the orange EML thickness of device B and a favorable CIE coordinates of (0.320 1, 0.345 9) is achieved when the orange EML thickness is 15 nm (i.e., device E).

    [1] Chang K D, Li C Y, Pan J W,etal. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel [J].Opt.Express, 2014, 22(s2):A567-A576.

    [2] Liao Y Q, Gan Z H, Liu X Y. Improvement of OLED performance by using DPVBi as hole-blooking layer [J].Chin.J.Lumin.(發(fā)光學(xué)報(bào)), 2011, 32(10):1041-1045 (in Chinese).

    [3] Cheng C R, Chen Y H, Qin D S,etal. Lithium carbonate doped 3, 4, 9, 10-perylenetetracarboxylic dianhydride for enhanced performance in organic light emitting diode [J].Chin.J.Lumin.(發(fā)光學(xué)報(bào)), 2011, 32(4):387-392 (in Chinese).

    [4] Cho A R, Kim E H, Park S Y,etal. Flexible OLED encapsulated with gas barrier film and adhesive gasket [J].Synth.Met., 2014, 193:77-80.

    [5] Burroughes J H, Bradley D D C, Brown A R,etal. Light-emitting diodes based on conjugated polymers [J].Nature, 1990, 347(6293):539-541.

    [6] Mauser N, Hartmann N, Hofmann M S,etal. Antenna-enhanced optoelectronic probing of carbon nanotubes [J].NanoLett., 2014, 14(7):3773-3778.

    [7] Tseng S R, Meng H F, Lee K C,etal. Multilayer polymer light-emitting diodes by blade coating method [J].Appl.Phys.Lett., 2008, 93(15):153308-1-3.

    [8] Dong M, Zhong L. Chameleon: A color-adaptive web browser for mobile OLED displays [J].IEEETrans.MobileComput, 2012, 11(5):724-738.

    [9] Kessler F, Watanabe Y, Sasabe H,etal. High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium (Ⅲ) complex with fluorinated bipyridyl ligands [J].J.Mater.Chem.C, 2013, 1(6):1070-1075.

    [10] Shi J, Tang C W. Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J].Appl.Phys.Lett., 2002, 80(17):3201-3203.

    [11] Swanson S A, Wallraff G M, Chen J P,etal. Stable and efficient fluorescent red and green dyes for external and internal conversion of blue OLED emission [J].Chem.Mater., 2003, 15(12):2305-2312.

    [12] Su S J, Gonmori E, Sasabe H,etal. Highly efficient organic blue-and white-light-emitting devices having a carrier-and exciton-confining structure for reduced efficiency roll-off [J].Adv.Mater., 2008, 20(21):4189-4194.

    [13] Yongá C H. Highly rigid and twisted anthracene derivatives: A strategy for deep blue OLED materials with theoretical limit efficiency [J].J.Math.Chem., 2012, 22(6):2695-2700.

    [14] Yeh S J, Wu M F, Chen C T,etal. New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices [J].Adv.Mater., 2005, 17(3):285-289.

    [15] Ummartyotin S, Juntaro J, Sain M,etal. Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display [J].IndustrialCropsandProducts, 2012, 35(1):92-97.

    [16] Reineke S, Lindner F, Schwartz G,etal. White organic light-emitting diodes with fluorescent tube efficiency [J].Nature, 2009, 459(7244):234-238.

    [17] Geffroy B, Le Roy P, Prat C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies [J].Polym.Int., 2006, 55(6):572-582.

    [18] Ren X, Li J, Holmes R J,etal. Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices [J].Chem.Mater., 2004, 16(23):4743-4747.

    [19] Wang D, Wu Z, Lei X,etal. Electroluminescence of solution-processed organic light-emitting diodes based on fluorescent small molecules and polymer as hole-transporting layer [J].Phys.Stat.Sol.(a), 2013, 210(12):2556-2560.

    [20] Li C, Tsuboi T, Huang W. Characteristics of blue organic light emitting diodes with different thick emitting layers [J].Opt.Mater., 2014, 36(10):1720-1723.

    [21] Hsiao C H, Lin C F, Lee J H. Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer [J].J.Appl.Phys., 2007, 102(9):094508-1-6.

    [22] Wu Z, Wang L, Lei G,etal. Investigation of the spectra of phosphorescent organic light-emitting devices in relation to emission zone [J].J.Appl.Phys., 2005, 97(10):103105-1-6.

    [23] Riel H, Karg S, Beierlein T,etal. Phosphorescent top-emitting organic light-emitting devices with improved light outcoupling [J].Appl.Phys.Lett., 2003, 82(3):466-468.

    [25] Chin B D, Kim J K, Park O O. Controlled light emission from white organic light-emitting devices with a single blue-emitting host and multiple fluorescent dopants [J].J.Phys. D:Appl.Phys., 2007, 40(15):4436-4441.

    [26] Zheng X Y, Zhu W Q, Wu Y Z,etal. A white OLED based on DPVBi blue light emitting host and DCJTB red dopant [J].Displays, 2003, 24(3):121-124.

    [27] Zhao J, Yu J, Liu S,etal. Combined host-guest doping and host-free systems for high-efficiency white organic light-emitting devices [J].J.Lumin., 2012, 132(8):1994-1998.

    [28] Meerheim R, Scholz S, Olthof S,etal. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent organic light-emitting devices [J].J.Appl.Phys., 2008, 104(14):014510-1-8.

    1000-7032(2015)07-0821-08

    Influence of Light-emitting Layer Position on White Organic Light-emitting Diodes

    XIANG Dong-xu1, LI Hai-rong1,2,3*, XIE Long-zhen1, YANG Jia-ming1, WANG Fang1, YUAN Chao-xin1, SUN Yong-zhe1

    (1.InstituteofMicroelectronics,SchoolofPhysicalScienceandTechnology,LanzhouUniversity,Lanzhou730000,China; 2.KeyLaboratoryforMagnetismandMagneticMaterialsofTheMinistryofEducation,LanzhouUniversity,Lanzhou730000,China; 3.KeyLaboratoryofSpecialFunctionMaterialsandStructureDesign,MinistryofEducation,Shanghai200050,China)*CorrespondingAuthor,E-mail:hrli@lzu.edu.cn

    Two types of white organic light-emitting devices (WOLED) containing a layered light-emitting region composed of a single blue-emitting host and different fluorescent dopants (blue and orange) were fabricated. The efficiency, lifetime, brightness, spectral voltage-dependence and white balance of devices were investigated. The results show that the performance of the devices strongly depends on the stack order of two emitting layers and the thickness of the emitting layer. It is found that the WOLED with an EML sequence of orange/blue (from anode to cathode) shows better stability than that with an EML sequence of blue/orange. It is due to the rubrene in orange emitting layer that acts as hole-trap sites and captures the passing holes and hence balances the concentration of electrons and holes. The optimized white device exhibits a favorable CIE coordinates (0.320 1, 0.345 9) which is close to the standard white light.

    organic electroluminescent; light-emitting layer sequence and thickness; carrier injection; carrier balance

    TN383+.1 Document code: A

    向東旭(1988-),男,湖北隨州人,碩士研究生,主要從事有機(jī)半導(dǎo)體器件的研究。Email: xiangdx12@lzu.edu.cn

    李海蓉(1971-),女,甘肅臨洮人,教授,2004年于蘭州大學(xué)獲得博士學(xué)位,主要從事半導(dǎo)體光電子學(xué)方面的研究。Email: hrli@lzu.edu.cn

    10.3788/fgxb20153607.0821

    2015-04-13;

    2015-05-05

    甘肅省自然科學(xué)基金(1107RJZA090); 蘭州大學(xué)磁學(xué)與磁性材料教育部重點(diǎn)實(shí)驗(yàn)室開放課題; 信息功能材料國家重點(diǎn)實(shí)驗(yàn)室開放課題(12-668)資助項(xiàng)目

    猜你喜歡
    電致發(fā)光蘭州大學(xué)白光
    全噴涂逐層組裝實(shí)現(xiàn)可穿戴電子織物高亮電致發(fā)光
    蘭州大學(xué)第一醫(yī)院簡介
    蘭州大學(xué)法學(xué)院簡介
    蘭州大學(xué)藥學(xué)院簡介
    蘭州大學(xué)高等教育研究院簡介
    ZnO納米晶摻雜的有機(jī)電致發(fā)光特性
    白光LED無線通信的研究進(jìn)展
    白光(選頁)
    中國房地產(chǎn)業(yè)(2016年9期)2016-03-01 01:26:18
    兩種紅光銥配合物的合成和電致發(fā)光性能研究
    乱人伦中国视频| 黄片播放在线免费| 天堂中文最新版在线下载| 亚洲伊人色综图| 又紧又爽又黄一区二区| 人人澡人人妻人| 美女 人体艺术 gogo| 久久天躁狠狠躁夜夜2o2o| 国产精品免费一区二区三区在线| 一区二区三区精品91| 巨乳人妻的诱惑在线观看| 成人特级黄色片久久久久久久| 看片在线看免费视频| 国产aⅴ精品一区二区三区波| 欧美日韩视频精品一区| 国产三级黄色录像| 日本欧美视频一区| 国产无遮挡羞羞视频在线观看| 美女福利国产在线| 午夜久久久在线观看| 欧美日韩视频精品一区| 99国产精品一区二区蜜桃av| 亚洲熟妇中文字幕五十中出 | 黄色女人牲交| 大型黄色视频在线免费观看| 亚洲国产精品合色在线| 国产99久久九九免费精品| 91麻豆av在线| 久久性视频一级片| 国产成人精品在线电影| 少妇被粗大的猛进出69影院| 999精品在线视频| 岛国在线观看网站| 黄片播放在线免费| 国产精品亚洲av一区麻豆| 久久久久久久久久久久大奶| 久久香蕉国产精品| 国产精品香港三级国产av潘金莲| 天堂俺去俺来也www色官网| 午夜日韩欧美国产| 欧美成人免费av一区二区三区| 国产熟女午夜一区二区三区| 免费观看人在逋| 国产精品一区二区三区四区久久 | 久久人人精品亚洲av| 妹子高潮喷水视频| 曰老女人黄片| 咕卡用的链子| 成人影院久久| 国产97色在线日韩免费| 国产精华一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美一区二区综合| 精品免费久久久久久久清纯| 天天添夜夜摸| 女性生殖器流出的白浆| 免费在线观看完整版高清| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av成人不卡在线观看播放网| 亚洲成人久久性| 亚洲 欧美 日韩 在线 免费| 国产乱人伦免费视频| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久久中文| 丁香六月欧美| 免费在线观看日本一区| 50天的宝宝边吃奶边哭怎么回事| 久久影院123| 国内久久婷婷六月综合欲色啪| 成熟少妇高潮喷水视频| 女警被强在线播放| 两性夫妻黄色片| 一区二区三区精品91| 国产精品成人在线| 国产精品偷伦视频观看了| 欧美精品一区二区免费开放| 久久精品成人免费网站| 啪啪无遮挡十八禁网站| 99国产精品一区二区蜜桃av| 亚洲七黄色美女视频| 嫩草影院精品99| 成年人免费黄色播放视频| 亚洲成av片中文字幕在线观看| 国产欧美日韩一区二区三| 精品一区二区三卡| 色在线成人网| 神马国产精品三级电影在线观看 | 搡老熟女国产l中国老女人| 国产精品一区二区免费欧美| www.精华液| 国产片内射在线| 国内久久婷婷六月综合欲色啪| 最近最新中文字幕大全电影3 | 欧美不卡视频在线免费观看 | 99精品久久久久人妻精品| 麻豆av在线久日| a在线观看视频网站| 亚洲国产欧美一区二区综合| 在线观看免费日韩欧美大片| 国产精华一区二区三区| 中国美女看黄片| 高清毛片免费观看视频网站 | 精品日产1卡2卡| 精品一区二区三区四区五区乱码| 成人手机av| a在线观看视频网站| 91国产中文字幕| 中文欧美无线码| 亚洲av熟女| 女性生殖器流出的白浆| 免费观看人在逋| 国产精品爽爽va在线观看网站 | 中亚洲国语对白在线视频| 成人免费观看视频高清| 亚洲熟妇熟女久久| 国产黄a三级三级三级人| 国产欧美日韩一区二区三| 亚洲成人免费av在线播放| 91成人精品电影| 伊人久久大香线蕉亚洲五| 黄色成人免费大全| 欧美 亚洲 国产 日韩一| 香蕉久久夜色| 好看av亚洲va欧美ⅴa在| 一区二区三区国产精品乱码| 淫妇啪啪啪对白视频| 日韩一卡2卡3卡4卡2021年| 亚洲五月天丁香| 免费观看人在逋| 叶爱在线成人免费视频播放| 视频区欧美日本亚洲| 欧美日本中文国产一区发布| 国产真人三级小视频在线观看| 18禁观看日本| 国产一区二区三区视频了| ponron亚洲| 99久久久亚洲精品蜜臀av| 91成人精品电影| 久久亚洲精品不卡| 国产精品香港三级国产av潘金莲| a级片在线免费高清观看视频| 国产精品免费一区二区三区在线| 91麻豆精品激情在线观看国产 | 日本vs欧美在线观看视频| 无人区码免费观看不卡| 精品国产一区二区久久| 精品熟女少妇八av免费久了| 中文欧美无线码| 欧美人与性动交α欧美精品济南到| 无人区码免费观看不卡| 大香蕉久久成人网| 99在线视频只有这里精品首页| 老司机午夜十八禁免费视频| 免费在线观看黄色视频的| 波多野结衣一区麻豆| 一区二区三区精品91| 丝袜人妻中文字幕| 久久精品亚洲av国产电影网| 最近最新免费中文字幕在线| 欧美成人性av电影在线观看| 国产精品av久久久久免费| 精品免费久久久久久久清纯| 久久人妻熟女aⅴ| 亚洲五月天丁香| 免费看十八禁软件| 久久精品91无色码中文字幕| 99精品久久久久人妻精品| 18禁黄网站禁片午夜丰满| 国产熟女午夜一区二区三区| 国产精品美女特级片免费视频播放器 | 欧美在线一区亚洲| 国产成人精品无人区| 麻豆av在线久日| 中文欧美无线码| 一进一出抽搐动态| 色综合欧美亚洲国产小说| 国产片内射在线| 伦理电影免费视频| av天堂久久9| 法律面前人人平等表现在哪些方面| 大码成人一级视频| 久久这里只有精品19| 成人国语在线视频| 男女高潮啪啪啪动态图| 欧美乱码精品一区二区三区| 日韩国内少妇激情av| 一级黄色大片毛片| www国产在线视频色| 高清在线国产一区| 中文字幕av电影在线播放| 亚洲自偷自拍图片 自拍| 欧美日韩亚洲高清精品| 国产精品国产av在线观看| 99国产精品免费福利视频| 女生性感内裤真人,穿戴方法视频| 欧美激情高清一区二区三区| 中文字幕人妻丝袜制服| 久久性视频一级片| 国产精品亚洲av一区麻豆| www.熟女人妻精品国产| 日日夜夜操网爽| 精品高清国产在线一区| 午夜福利影视在线免费观看| 9热在线视频观看99| 999久久久精品免费观看国产| 日韩免费av在线播放| 最好的美女福利视频网| 美女大奶头视频| 欧美午夜高清在线| 五月开心婷婷网| 久久精品国产亚洲av高清一级| 国产黄色免费在线视频| 一区在线观看完整版| x7x7x7水蜜桃| www.精华液| 淫妇啪啪啪对白视频| 精品国产国语对白av| 亚洲欧美日韩另类电影网站| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av香蕉五月| 99在线人妻在线中文字幕| 嫩草影院精品99| 中亚洲国语对白在线视频| 男人操女人黄网站| av片东京热男人的天堂| 国内久久婷婷六月综合欲色啪| 国产99久久九九免费精品| 久久精品亚洲精品国产色婷小说| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩一区二区三区在线| 国产野战对白在线观看| 另类亚洲欧美激情| 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 丝袜人妻中文字幕| 精品国产一区二区久久| 日韩欧美在线二视频| 看免费av毛片| 亚洲专区字幕在线| 国产精品99久久99久久久不卡| 免费在线观看影片大全网站| 人人妻,人人澡人人爽秒播| 男女做爰动态图高潮gif福利片 | 精品国产国语对白av| 国产精品一区二区精品视频观看| 欧美一区二区精品小视频在线| 亚洲片人在线观看| 午夜福利免费观看在线| 欧美精品一区二区免费开放| 亚洲精品国产一区二区精华液| 国产99久久九九免费精品| 中文亚洲av片在线观看爽| 波多野结衣高清无吗| 亚洲精品一二三| 亚洲av第一区精品v没综合| 99精品久久久久人妻精品| 久久伊人香网站| 午夜免费鲁丝| 激情在线观看视频在线高清| 国产精品影院久久| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看的高清视频| 久久久久国内视频| 69精品国产乱码久久久| 成人亚洲精品av一区二区 | 99re在线观看精品视频| 五月开心婷婷网| 久久天躁狠狠躁夜夜2o2o| 无人区码免费观看不卡| 国产日韩一区二区三区精品不卡| 在线国产一区二区在线| 手机成人av网站| 亚洲少妇的诱惑av| 日本精品一区二区三区蜜桃| 一个人观看的视频www高清免费观看 | 国产av又大| 精品日产1卡2卡| 中文字幕av电影在线播放| 亚洲精品成人av观看孕妇| 国产av在哪里看| 久久精品影院6| 免费高清在线观看日韩| 国产精品久久久久久人妻精品电影| 首页视频小说图片口味搜索| 精品国产国语对白av| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看| 亚洲国产欧美一区二区综合| 最新在线观看一区二区三区| 日日夜夜操网爽| 久久婷婷成人综合色麻豆| 欧美黑人精品巨大| 国产伦人伦偷精品视频| 天天添夜夜摸| 久久久久国内视频| 精品久久久久久成人av| 国产成+人综合+亚洲专区| 亚洲国产看品久久| 日韩av在线大香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片高清免费大全| 悠悠久久av| 日韩三级视频一区二区三区| 老鸭窝网址在线观看| 亚洲一区高清亚洲精品| 无限看片的www在线观看| 国产亚洲精品第一综合不卡| 成年人免费黄色播放视频| 亚洲五月婷婷丁香| 欧美另类亚洲清纯唯美| 欧美乱码精品一区二区三区| 久久久久久人人人人人| 午夜福利,免费看| 久久久久久久久久久久大奶| 中文字幕色久视频| 国产伦一二天堂av在线观看| 亚洲全国av大片| 长腿黑丝高跟| 91国产中文字幕| 亚洲精品国产色婷婷电影| 岛国在线观看网站| 亚洲美女黄片视频| 亚洲人成77777在线视频| 欧美色视频一区免费| 中文字幕最新亚洲高清| 亚洲精品一卡2卡三卡4卡5卡| 少妇被粗大的猛进出69影院| 一个人观看的视频www高清免费观看 | 国产成人精品久久二区二区91| 精品日产1卡2卡| 欧美乱色亚洲激情| 国产av在哪里看| 久久精品人人爽人人爽视色| 免费在线观看黄色视频的| 99国产精品99久久久久| 久久久久久人人人人人| 女生性感内裤真人,穿戴方法视频| 两性夫妻黄色片| 窝窝影院91人妻| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 亚洲五月天丁香| 精品久久久久久久久久免费视频 | 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 精品日产1卡2卡| 黑人巨大精品欧美一区二区mp4| 两个人免费观看高清视频| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 高清欧美精品videossex| 午夜精品国产一区二区电影| 99在线人妻在线中文字幕| 后天国语完整版免费观看| 国产精品永久免费网站| 水蜜桃什么品种好| 国产xxxxx性猛交| 18禁美女被吸乳视频| 欧美丝袜亚洲另类 | 黄片播放在线免费| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久人妻精品电影| 日韩欧美在线二视频| 亚洲欧美精品综合一区二区三区| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| 中文亚洲av片在线观看爽| 99在线人妻在线中文字幕| 久99久视频精品免费| 日日爽夜夜爽网站| 久久久久亚洲av毛片大全| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 激情视频va一区二区三区| 亚洲成av片中文字幕在线观看| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 亚洲国产毛片av蜜桃av| 高清黄色对白视频在线免费看| 高清av免费在线| 老司机在亚洲福利影院| 一进一出好大好爽视频| 亚洲五月婷婷丁香| 可以在线观看毛片的网站| 久久人人97超碰香蕉20202| 久久人妻福利社区极品人妻图片| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 在线观看一区二区三区激情| 母亲3免费完整高清在线观看| 久久影院123| 老熟妇仑乱视频hdxx| 嫩草影院精品99| 黑人猛操日本美女一级片| 纯流量卡能插随身wifi吗| 露出奶头的视频| 女人精品久久久久毛片| 又黄又爽又免费观看的视频| 精品一品国产午夜福利视频| 大香蕉久久成人网| 日日夜夜操网爽| 国产三级在线视频| 大型av网站在线播放| 精品久久久久久成人av| 国产视频一区二区在线看| 88av欧美| 精品国产一区二区久久| 老司机深夜福利视频在线观看| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 欧美日韩中文字幕国产精品一区二区三区 | √禁漫天堂资源中文www| 又紧又爽又黄一区二区| 国产欧美日韩精品亚洲av| 很黄的视频免费| 曰老女人黄片| 亚洲av美国av| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 国产不卡一卡二| 丝袜人妻中文字幕| 久久青草综合色| 韩国精品一区二区三区| 亚洲av第一区精品v没综合| 级片在线观看| 国产深夜福利视频在线观看| 午夜亚洲福利在线播放| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 久久中文字幕人妻熟女| 亚洲avbb在线观看| 超碰97精品在线观看| 极品教师在线免费播放| 高清av免费在线| 女人被躁到高潮嗷嗷叫费观| 黄频高清免费视频| 91老司机精品| 亚洲欧美日韩无卡精品| 久久久国产成人免费| 国产乱人伦免费视频| videosex国产| 正在播放国产对白刺激| 国产精品国产高清国产av| 久久精品人人爽人人爽视色| 高清av免费在线| 亚洲全国av大片| 久久天躁狠狠躁夜夜2o2o| av电影中文网址| 黄色女人牲交| 日本wwww免费看| 侵犯人妻中文字幕一二三四区| 黑丝袜美女国产一区| 亚洲情色 制服丝袜| 国产精品久久久av美女十八| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 天堂动漫精品| 高清av免费在线| 久久久久久人人人人人| 亚洲精品中文字幕一二三四区| 可以在线观看毛片的网站| 日本欧美视频一区| 午夜精品久久久久久毛片777| 在线观看66精品国产| 极品教师在线免费播放| 怎么达到女性高潮| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩综合在线一区二区| 国产精品免费视频内射| 成在线人永久免费视频| 9色porny在线观看| 国产在线观看jvid| 成年人黄色毛片网站| 欧美国产精品va在线观看不卡| 琪琪午夜伦伦电影理论片6080| 在线播放国产精品三级| 午夜免费成人在线视频| 欧美乱妇无乱码| 9热在线视频观看99| 俄罗斯特黄特色一大片| 我的亚洲天堂| 国产不卡一卡二| 午夜精品在线福利| a级毛片黄视频| 黄色视频,在线免费观看| 精品国产乱子伦一区二区三区| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 少妇粗大呻吟视频| 成人手机av| 久久香蕉精品热| 久久99一区二区三区| 色婷婷久久久亚洲欧美| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜添小说| 亚洲第一青青草原| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 青草久久国产| 午夜激情av网站| 极品教师在线免费播放| 日日摸夜夜添夜夜添小说| 天堂动漫精品| 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 十分钟在线观看高清视频www| 亚洲成人久久性| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 亚洲熟妇熟女久久| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| x7x7x7水蜜桃| 身体一侧抽搐| 国产黄色免费在线视频| www日本在线高清视频| 国产一区二区激情短视频| 国产日韩一区二区三区精品不卡| 美女午夜性视频免费| 久久这里只有精品19| 亚洲一区二区三区色噜噜 | 国产精华一区二区三区| 9热在线视频观看99| 91av网站免费观看| 99国产精品99久久久久| 亚洲av美国av| 黄色丝袜av网址大全| 免费少妇av软件| 色婷婷av一区二区三区视频| 少妇粗大呻吟视频| 亚洲人成电影观看| 国产精品98久久久久久宅男小说| 国产av精品麻豆| 亚洲欧美一区二区三区久久| 亚洲中文av在线| 国产在线精品亚洲第一网站| 少妇被粗大的猛进出69影院| 免费久久久久久久精品成人欧美视频| 日韩成人在线观看一区二区三区| 如日韩欧美国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | 精品久久久久久久毛片微露脸| 两个人看的免费小视频| 在线永久观看黄色视频| 午夜成年电影在线免费观看| 亚洲国产看品久久| 国产区一区二久久| 亚洲av成人不卡在线观看播放网| 69精品国产乱码久久久| 99久久久亚洲精品蜜臀av| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 久久精品亚洲av国产电影网| 黄网站色视频无遮挡免费观看| 黄片大片在线免费观看| 久久精品91蜜桃| 青草久久国产| 变态另类成人亚洲欧美熟女 | 久久人妻av系列| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 一a级毛片在线观看| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 国产欧美日韩综合在线一区二区| 欧美一区二区精品小视频在线| 亚洲色图 男人天堂 中文字幕| 老司机靠b影院| 一区在线观看完整版| 免费在线观看影片大全网站| 后天国语完整版免费观看| 成人av一区二区三区在线看| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 国产国语露脸激情在线看| 亚洲全国av大片| 亚洲人成伊人成综合网2020| 自线自在国产av| 免费在线观看亚洲国产| 精品人妻1区二区| 成人国语在线视频| 国产又爽黄色视频| 欧美另类亚洲清纯唯美| 久久亚洲精品不卡| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 亚洲avbb在线观看| 男女做爰动态图高潮gif福利片 | 在线天堂中文资源库| 久久青草综合色| 国产午夜精品久久久久久| 国产精品电影一区二区三区| 黄色视频不卡| 美女福利国产在线| 露出奶头的视频| 国产熟女xx| 一夜夜www| 欧美人与性动交α欧美软件| 国产精品自产拍在线观看55亚洲| 咕卡用的链子| а√天堂www在线а√下载| 午夜激情av网站| av超薄肉色丝袜交足视频| 久久国产精品影院| 满18在线观看网站| 精品福利观看| 超色免费av| 久久婷婷成人综合色麻豆| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 久久久久国产一级毛片高清牌|