• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dual-Band Infrared Dim Target Detection Algorithm Based on Wavelet Domain

    2015-04-02 06:22:26SHIXiaogangBAIXiaodongLILijuanHANYumeng
    紅外技術(shù) 2015年12期
    關(guān)鍵詞:紅外技術(shù)于小波雙色

    SHI Xiao-gang,BAI Xiao-dong,LI Li-juan,HAN Yu-meng

    ?

    A Dual-Band Infrared Dim Target Detection Algorithm Based on Wavelet Domain

    SHI Xiao-gang,BAI Xiao-dong,LI Li-juan,HAN Yu-meng

    (,471009,)

    It is difficult to detect infrared dim target in single-band because the message acquired is relatively insufficient. Aimed at solving this problem, an algorithm for infrared dim target detection in dual-band based in wavelet domain is introduced. The dual-band images are decomposed by wavelet filters firstly, and the different methods which are used to ascertain the thresholds is introduced by the feature difference in the dual-band images, then the high frequency images are segmented by the corresponding thresholds. The high frequency segment images are fused with different Boolean logic strategies afterwards. Finally the dim target detection is accomplished by morphological operation and multiple frames accumulative detection.

    dual-band,wavelet domain,dim target detection

    0 INTRODUCTION

    Infrared dim target detection is a key technology of infrared imaging guidance in complicated backgrounds, but with the development of photoelectricity technology, infrared detector noise, infrared background, long distance, the target’s low SNR, and so on, infrared dim target detection has become very hard. The current researches on infrared dim target detection almost are based on single-band image. The detection ability has became weak when the system faces to the complicated battlefield because the message acquired from the single-band detector is relatively insufficient. The researches on infrared dim target detection have turned into dual-band or multi-band fusion technology and good results have been achieved[1-4]. The essence of dim target detection is choosing the insular singular points in image, and wavelet transform can commendably distinguish the insular singular points (target) from the high frequency parts. So wavelet transforms are employed to research dual-band infrared dim target detection, which has became popular nowadays.

    In this passage an algorithm of infrared dim target detection in dual-band based in wavelet domain is introduced. Firstly the dual-band images will be decomposed by wavelet filters, and the different methods which are used to ascertain the thresholds will be introduced by the feature difference in the dual-band images. Then the high-frequency images will be segmented by the corresponding thresholds. The high frequency segment images will be fused with different Boolean logic strategies afterwards. Finally the dim target detection will be accomplished by morphological operation and multiple frames accumu- lative detection. The experiments show that this algorithm has favorable infrared dim target detection ability and excellent real-time property.

    1 WAVELET ANALYSIS OF INFRARED IMAGES

    The wavelet generally has a good time resolution ratio and frequency resolution ratio whether in high frequency parts or in low frequency parts, so it can extract the message that is needed from the signal efficiently. The continuous wavelet transform can be defined as:

    Whereis scale factor andis time-lapse factor, and() is basic wavelet function, but it cannot be applied easily in image analysis because the calculation is extremely complicated. The introduction of the Mallat wavelet fast algorithm can speed up the calculation of wavelet transform greatly in discrete decomposition, although the amount of calculation has been highly decreased while the quality of the image has not been obviously deteriorated yet, so it can be easily applied by hardware[5].

    An infrared image can be decomposed into one low frequency part and three high frequency parts by wavelet filters. The low frequency reflects the character of the infrared background and the main characters of target are included in the high frequency parts. Fig.1(a) and (b) have given the dual-band images and their high frequency images decomposed by first-lever wavelet, the size of these images is 128×128. Obviously, most of the background has been filtered in these high frequency images, and the dim target is included in the collection of insular singular points.

    2 ACHIEVEMENT OF THE AlGORITHM

    The wavelet coefficients can be divided into two kinds. The first kind is acquired from backgrounds, these coefficients have a large number but low amplitude. The second kind is acquired from target and some background, these coefficients have a small number but high amplitude, so if we set up a threshold for coefficients, the coefficients which are larger than the threshold can be kept, and the others will be changed into zero. As we mentioned above, choosing a suitable threshold is extraordinary important in infrared dim target detection in wavelet domain.

    Fig.1 Images decomposed by first-lever wavelet

    The ability of the system’s detection could be improved greatly by using this method because the dual-band has more messages than the single-band. As is shown in Fig.1, the gray scale of the clouds changes fiercely and gray scale of the sky changes placidly in the band 1 image, while the gray scale of the clouds changes a little fiercely but the gray scale of some areas in the sky does not change placidly in the band 2 image. So after decomposition, the band 1 high frequency images have lots of noise points which almost come from the cloud while a few noise points come from the sky. The band 2 high frequency images have less noise points, but half these noise points come from the sky, and it has been found that the SNR of band 1 images are higher than band 2 corresponding images. Based on these characters a new dual-band infrared dim target detection algorithm is introduced. Firstly, according to the difference of the SNR, the method given by Donoho will be introduced to ascertain the threshold of band 1[6]:

    Where1is the standard variance of high frequency image of band 1, andis the quantity of pixels.

    The method given by literature 7 will be introduced to ascertain the threshold of band 2[7]:

    Where2is standard variance of high frequency image of band 2,is the quantity of pixels, andis the floor number of wavelet decomposition.

    The process of the algorithm is as follows:

    Step 1: One group of cubic splines wavelet filters has been employed to decompose the dual-band infrared images and then we obtain a group of low frequency images and three groups of high frequency images. The directions of these images are horizontal, vertical and diagonal.

    Step 2: Abandon the low frequency images, and the dual-band high frequency images will be segmented by the corresponding thresholds acquired by formula (2) and (3). The results have been shown in Fig.2(a)、(b).

    Step 3: As is shown in Fig.2(a), the band 1 binary images have lots of noise points which almost come from the cloud, but a few noise points come from the sky. As is shown in Fig.2(b), the band 2 binary images have a few noise points but half of which come from the sky. According to this character, the high frequency binary images which have the same direction will be fused in OR operation to filter the most noise points, so we will obtain three different directional fusion images.

    Fig.2 The high frequency segment image

    Step 4: The position of the target will change in the process of convolution operation. Aimed at avoiding the departure of the target’s position in image segment, the three binary images will be fused in AND operation, so the dual-band images have been finally fused after this step.

    Step 5: Considering the size of dim target is only a few pixels, we shall handle the fusion image in an open operation with a 2×1 template. This operation can not only eliminate some noises left but also decrease the size of target, because the size of the target may become larger after operating by step 4. The single frame detection has been finished after this step.

    Step 6: The SNR of dim target is too low to detect exactly in single frame detection, so considering continuity of the target’s motion, and several frames accumulative detection will be employed to confirm the target. The algorithm will end after this step.

    Aimed at proving the effect of our algorithm, a dual-band high-pass filtering fusion algorithm and a dual-band infrared dim target detection algorithm based on wavelet transform[8]are employed to compare with our algorithm. The former which is named as algorithm 1 will handle the dual-band images with high-pass filtering firstly. Then the self-adaption threshold will be introduced to segment the dual-band images respectively[9]:

    =+S(4)

    Whereis the mean of gray scale,is standard variance, and the range ofis from 1 to 4, so the single frame detection of algorithm 1 will be completed after the dual-band segment images are handled in AND operation. The latter which is named as algorithm 2 will fuse the dual-band images with the certain rule firstly, and then the fusion image will subtract the low frequency image in order to filter the background. The initial threshold is also acquired by formula 4. The gray scale of the filtering image will be changed to zero if it is lower than the threshold and the other will remain, so the new image is obtained and will also be handled in the same operation mentioned until new threshold is equal to the former threshold. The single frame detection of algorithm 2 will be completed after image is segmented by the threshold obtained finally. And then the several aspects will be employed to evaluate the performances of the three algorithms.

    3 EVALUATION OF ALGORITHMS

    Taking the dual-band images which are shown as Fig.1 for example, the results handled with three algorithms in single frame detection have been shown respectively as Fig.2(a)-(c), and=4.

    As is shown inFig.3(a), the image which has been handled with algorithm 1 obviously contains a number of noise points, especially some noise points have the same size as the target, it will inevitably increase the detection difficulty of the system. As is shown in Fig.3(b), the number of noise points has been obviously decreased which means that the algorithm 2 does better in dim target detection. As is shown in Fig.3(c), our algorithm can detect the target exactly and have no noise point existing, which means that our algorithm does best in three algorithms above.

    Fig.3 The results of single frame detection

    Due to the existence of noise points, the dim target often cannot be detected exactly in single frame detection, so the guidance system often adopt the method of several frames accumulative detection to confirm the target because whose motion is continuous in accumulative frames. So the motion trails handled with three algorithms in several frames accumulative detection have been shown respectively in Fig.3(a)-(c), and the target is moving in line towards the bottom left from the primary coordinates(12,82).

    As is shown in Fig.4(a), there are several broken parts in target’s motion trail which means that the algorithm 1 exists missing detection inevitably, so the guidance system need more frames to confirm the target. As is shown in Fig.4(b). The continuity of the target’s motion trail has become better after being handled with algorithm 2, but the previous motion trail is also not clear. As is shown in Fig.4(c), the continuity of the target’ motion trail is very clear after being handled with our algorithm, and therefore it also has better ability in several frames accumulative detection than the other two algorithms.

    Detection ratio and false-alarm ratio will also be employed to evaluate the detection ability of the three algorithms. Firstly there are 200 frames dual-band infrared images have been chosen randomly which contains dim target to detect, the detection ratio is 87% and the false-alarm ratio is 18% when the algorithm 1 is adopted. The detection ratio is 96% and the false-alarm ratio is 8% when the algorithm 2 is adopted, and the detection ratio is 97% and the false-alarm ratio is 3% when our algorithm is adopted, so it can be seen that our algorithm can obtain a preferable detection ratio while decreasing the false-alarm ratio obviously. The real-time also will be employed to evaluate the three algorithms. The results have been given by table 1.

    Fig.4 The motion trails of continuous frames detection

    Table 1 Evaluation of real-time

    As is shown in table 1,algorithm 1 has the least average single frame operating time than the other two, but the discontinuity of its trail has led the guidance system need at least 8 frames to confirm the target, so algorithm 1 have to take the longest total time in target detection. Algorithm 2 and our algorithm usually need 2-3 frames to confirm the target in accumulative frame detection, but the average single frame operating time of algorithm 2 is two times as long as ours which is attributed to wavelet inverse transform and choosing the threshold. It also needs more time to confirm the target than ours, so our algorithm has a good real-time obviously. As far as these evaluating factors we have discussed, our algorithm has not only favorable ability of dim target detection but also the good real-time compared with the other two algorithms.

    4 CONCLUSIONS

    A algorithm of infrared dim target detection in dual-band based on wavelet domain is introduced in the passage. The dual-band images are decomposed by wavelet filter firstly, and different methods which are used to ascertain the thresholds will be introduced by the feature difference of the dual-band images. Then the high frequency images will be segmented by corresponding thresholds, after that the high frequency segment images will be fused with different Boolean logic strategies. Finally the dim target detection is accomplished by morphological operation and multiple frames accumulative detection. The experiments show that this algorithm has favorable ability of infrared dim target detection and excellent real-time property.

    [1] BAI Xiao-dong, LIU Dai-jun. The deliberate of demonstration confirmation about the precision guidance weapon technology[J]., 2004, 5(6): 40-42.

    白曉東, 劉代軍. 關(guān)于精確制導(dǎo)武器制導(dǎo)技術(shù)演示驗證的思考[J]. 航空兵器, 2004, 5(6): 40-42.

    [2] SHI Xiao-hua, ZHANG Tong-he. The counter-countermeasures techno- logy for dual-band multi-element IR seeker[J]., 2009, 31(6): 311-314.

    史曉華, 張同賀. 紅外雙色多元導(dǎo)引頭抗干擾技術(shù)研究[J]. 紅外技術(shù), 2009, 31(6): 311-314.

    [3] ZONG Si-guang, WANG Jiang-an, MA Zhi-guo. New detection algorithm of weak targets on double bands under strong clutter[J]., 2005, 27(1): 57-61.

    宗思光, 王江安, 馬治國. 強雜波中雙波段目標檢測新算法[J]. 紅外技術(shù), 2005, 27(1): 57-61.

    [4] LI Qiu-hua, DU Yi. The algorithm of two color IR small extended target precision segmentation based on multiple features integration[J]., 2009, 31(2): 112-118.

    李秋華, 杜鹢. 基于多特征整合的雙色紅外小擴展目標精確分割算法[J]. 紅外技術(shù), 2009, 31(2): 112-118.

    [5] Mallats S G. Multifrequency channel decomposition of images and wavelet models[J]., 1989, 37(12): 2091-2110.

    [6] Donoho D L. Denoising by soft-thresholding[J]., 1995, 41(3): 613-627.

    [7] Zhao ruizhen, Song Guoxiang, Wang Hong. Better threshold estimation of wavelet coefficients for improving denoising[J]., 2001, 19(4): 625-628.

    趙瑞珍, 宋國鄉(xiāng), 王紅. 小波系數(shù)閾值估計的改進模型[J]. 西北工業(yè)大學(xué)學(xué)報, 2001, 19(4): 625-628.

    [8] SUN Yu-Qiu, TIAN Jin-wen, LIU Jian. Dual band infrared image fusion detection based on wavelet transform[J]., 2007, 36(2): 240-243.

    孫玉秋, 田金文, 柳健. 基于小波變換的雙色紅外圖像融合檢測方[J]. 紅外與激光工程, 2007, 36(2): 240-243.

    [9] WEI Dao-zhi, HUANG Shu-cai, XIA Xun-hui. Temporal-spatial fusion filtering algorithm for small infrared target detection[J]., 2014, 36(11): 905-908.

    韋道知, 黃樹彩, 夏訓(xùn)輝. 基于時空域融合濾波的小目標檢測算法[J]. 紅外技術(shù), 2014, 36(11): 905-908.

    一種基于小波域的雙色紅外弱小目標檢測算法

    史曉剛,白曉東,李麗娟,韓宇萌

    (中國空空導(dǎo)彈研究院,河南 洛陽 471009)

    針對單波段紅外弱小目標檢測難度大、信息量少的問題,提出一種基于小波域的雙色紅外弱小目標檢測算法。首先運用小波濾波器對雙色圖像進行分解,利用雙色圖像的特征差異提出了不同的閾值確定方法對高頻圖像進行分割,通過采用不同策略的布爾邏輯運算完成高頻分割圖像的融合,最后運用形態(tài)學(xué)運算和多幀累積檢測的方法完成弱小目標的檢測。

    雙色紅外;小波域;弱小目標檢測

    TP391

    A

    1001-8891(2015)12-1027-05

    2015-06-24;

    2015-09-23.

    史曉剛(1982-),男,河南舞陽人,博士研究生,主要從事紅外成像制導(dǎo)方向的研究工作。

    航空科學(xué)基金項目,編號:20110112007。

    猜你喜歡
    紅外技術(shù)于小波雙色
    雙色玫瑰的誕生
    美麗的雙色花
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    簡析《雙色豐收南瓜》的壺藝韻味
    基于小波去噪的稱重雨量數(shù)據(jù)分析
    一種新的基于小波基的時變信道估計
    基于小波和Hu 矩的颮線雷達回波識別
    日本一二三区视频观看| 无遮挡黄片免费观看| 久久精品国产鲁丝片午夜精品| 在线看三级毛片| 欧美性猛交╳xxx乱大交人| 日韩av不卡免费在线播放| 午夜日韩欧美国产| 欧美3d第一页| 国产高清有码在线观看视频| 女同久久另类99精品国产91| 免费av观看视频| 韩国av在线不卡| 成人午夜高清在线视频| 欧美bdsm另类| 欧美日韩一区二区视频在线观看视频在线 | 国产精品人妻久久久久久| 久久久国产成人免费| 我要看日韩黄色一级片| 日本黄色视频三级网站网址| 人人妻人人看人人澡| 国产91av在线免费观看| 最近手机中文字幕大全| 国国产精品蜜臀av免费| 国产三级中文精品| 成人高潮视频无遮挡免费网站| 免费观看精品视频网站| 色视频www国产| 在线观看午夜福利视频| or卡值多少钱| 看非洲黑人一级黄片| 欧美三级亚洲精品| 欧美激情国产日韩精品一区| 欧美另类亚洲清纯唯美| 国产精品一区二区免费欧美| 成人二区视频| 欧美zozozo另类| eeuss影院久久| 色哟哟哟哟哟哟| 精品国内亚洲2022精品成人| 日本撒尿小便嘘嘘汇集6| 18禁在线无遮挡免费观看视频 | 高清毛片免费看| 在线免费十八禁| 少妇裸体淫交视频免费看高清| 热99在线观看视频| 精品一区二区三区视频在线观看免费| 18+在线观看网站| 日韩欧美国产在线观看| 麻豆精品久久久久久蜜桃| 国内少妇人妻偷人精品xxx网站| 青春草视频在线免费观看| 99热这里只有精品一区| 国内精品宾馆在线| 综合色丁香网| 高清日韩中文字幕在线| eeuss影院久久| 色在线成人网| 熟女电影av网| 成人高潮视频无遮挡免费网站| 成人一区二区视频在线观看| 欧美极品一区二区三区四区| 午夜爱爱视频在线播放| 美女xxoo啪啪120秒动态图| 日韩三级伦理在线观看| 久久亚洲精品不卡| 此物有八面人人有两片| 成人特级黄色片久久久久久久| 麻豆一二三区av精品| 精品日产1卡2卡| 亚洲国产色片| 99久久无色码亚洲精品果冻| 国产成人福利小说| 高清日韩中文字幕在线| 99国产极品粉嫩在线观看| 久久精品国产亚洲av涩爱 | 免费在线观看成人毛片| 国产精品嫩草影院av在线观看| 六月丁香七月| 日韩强制内射视频| 日韩精品有码人妻一区| ponron亚洲| 两个人的视频大全免费| 久久久久国产精品人妻aⅴ院| 日本一本二区三区精品| 日本三级黄在线观看| 特大巨黑吊av在线直播| 午夜激情欧美在线| 毛片女人毛片| 99riav亚洲国产免费| 亚洲五月天丁香| 欧美激情在线99| 免费看美女性在线毛片视频| 国产精品日韩av在线免费观看| 亚洲熟妇中文字幕五十中出| 国产精品一区二区三区四区久久| 免费av毛片视频| 日本色播在线视频| av在线观看视频网站免费| 一进一出抽搐gif免费好疼| 国产极品精品免费视频能看的| 网址你懂的国产日韩在线| 国产成人freesex在线 | 99在线人妻在线中文字幕| 日韩欧美三级三区| 香蕉av资源在线| 国产伦精品一区二区三区视频9| 日本色播在线视频| 大型黄色视频在线免费观看| 一级毛片aaaaaa免费看小| 国产精品一二三区在线看| 给我免费播放毛片高清在线观看| 国产成人影院久久av| 国产黄色视频一区二区在线观看 | 99久久精品一区二区三区| 丝袜喷水一区| 国产乱人偷精品视频| 高清毛片免费看| 男人狂女人下面高潮的视频| 日本撒尿小便嘘嘘汇集6| a级毛色黄片| 精品一区二区三区视频在线| 美女cb高潮喷水在线观看| 六月丁香七月| 99久久无色码亚洲精品果冻| 丝袜美腿在线中文| 两个人视频免费观看高清| 91在线精品国自产拍蜜月| 最近中文字幕高清免费大全6| 色哟哟·www| 精品久久国产蜜桃| 成人特级av手机在线观看| 91久久精品国产一区二区三区| 亚洲无线在线观看| 久久久久久久午夜电影| 丰满乱子伦码专区| 成人特级av手机在线观看| 久久久精品欧美日韩精品| 亚洲国产欧美人成| 国产黄a三级三级三级人| 久久婷婷人人爽人人干人人爱| 日本熟妇午夜| 午夜免费男女啪啪视频观看 | 深夜a级毛片| 国产av在哪里看| 日韩av不卡免费在线播放| 国内少妇人妻偷人精品xxx网站| 亚洲欧美精品自产自拍| 国产午夜福利久久久久久| 夜夜看夜夜爽夜夜摸| 亚洲中文字幕一区二区三区有码在线看| 三级国产精品欧美在线观看| 人妻夜夜爽99麻豆av| 欧美区成人在线视频| 国产亚洲精品久久久久久毛片| 亚洲国产高清在线一区二区三| 国产视频一区二区在线看| 国产精品亚洲一级av第二区| 亚洲专区国产一区二区| 亚洲色图av天堂| 老熟妇乱子伦视频在线观看| 精品福利观看| 成人亚洲欧美一区二区av| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕久久专区| 成年女人看的毛片在线观看| av福利片在线观看| 国产探花在线观看一区二区| 成人特级av手机在线观看| 热99在线观看视频| 国产私拍福利视频在线观看| 亚洲av成人av| 麻豆国产97在线/欧美| or卡值多少钱| 日本欧美国产在线视频| 在线观看午夜福利视频| 欧美成人a在线观看| 插阴视频在线观看视频| 久久久色成人| 51国产日韩欧美| 麻豆成人午夜福利视频| 国产麻豆成人av免费视频| 国产成人aa在线观看| 色视频www国产| 亚洲人成网站在线播| 99久久成人亚洲精品观看| 精品国内亚洲2022精品成人| 亚洲人成网站高清观看| 国产探花在线观看一区二区| 亚洲在线自拍视频| 一级毛片aaaaaa免费看小| 欧美一级a爱片免费观看看| 精品久久久久久久人妻蜜臀av| 亚洲中文日韩欧美视频| 在线播放无遮挡| 国产精品亚洲美女久久久| 欧美激情国产日韩精品一区| h日本视频在线播放| 亚洲成人av在线免费| 三级国产精品欧美在线观看| 午夜福利在线在线| 在线观看av片永久免费下载| 无遮挡黄片免费观看| 日日撸夜夜添| 成年女人永久免费观看视频| 综合色丁香网| 亚洲精品国产av成人精品 | 色5月婷婷丁香| 国产午夜精品论理片| 国产白丝娇喘喷水9色精品| 色哟哟哟哟哟哟| 深夜a级毛片| 久久久久久久久大av| 成年女人永久免费观看视频| 欧美日韩乱码在线| 久久九九热精品免费| 成人鲁丝片一二三区免费| 国产又黄又爽又无遮挡在线| 国产精品电影一区二区三区| 不卡视频在线观看欧美| 欧美日韩一区二区视频在线观看视频在线 | 97超碰精品成人国产| 日韩国内少妇激情av| 波野结衣二区三区在线| 国产极品精品免费视频能看的| 人人妻,人人澡人人爽秒播| 亚洲成人精品中文字幕电影| 最新中文字幕久久久久| 色综合亚洲欧美另类图片| 有码 亚洲区| 丝袜美腿在线中文| 日本一二三区视频观看| 三级毛片av免费| 女人被狂操c到高潮| 人妻久久中文字幕网| 国产综合懂色| 免费人成视频x8x8入口观看| 国产一区二区在线av高清观看| 偷拍熟女少妇极品色| 亚洲av第一区精品v没综合| 亚洲精品国产av成人精品 | av福利片在线观看| 男女啪啪激烈高潮av片| 一区福利在线观看| 婷婷六月久久综合丁香| 香蕉av资源在线| 我要看日韩黄色一级片| 97热精品久久久久久| 热99re8久久精品国产| 欧美极品一区二区三区四区| av在线老鸭窝| 两性午夜刺激爽爽歪歪视频在线观看| av.在线天堂| 日本色播在线视频| 亚洲精品国产成人久久av| videossex国产| 国产亚洲欧美98| 观看免费一级毛片| 亚洲,欧美,日韩| 国产精品亚洲一级av第二区| av在线观看视频网站免费| 我的女老师完整版在线观看| 99九九线精品视频在线观看视频| 亚洲va在线va天堂va国产| 午夜精品在线福利| 校园春色视频在线观看| 亚洲人成网站在线观看播放| 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清无吗| 国产精品av视频在线免费观看| 噜噜噜噜噜久久久久久91| 国产精华一区二区三区| 精品日产1卡2卡| 美女被艹到高潮喷水动态| 亚洲欧美日韩东京热| 日韩欧美 国产精品| 国产不卡一卡二| 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| 级片在线观看| 国产亚洲精品av在线| 少妇熟女aⅴ在线视频| 人妻夜夜爽99麻豆av| 精华霜和精华液先用哪个| 国产精品三级大全| 男人的好看免费观看在线视频| 国产成人影院久久av| 99热这里只有是精品在线观看| 国产又黄又爽又无遮挡在线| 真人做人爱边吃奶动态| 成年版毛片免费区| www日本黄色视频网| 舔av片在线| 麻豆成人午夜福利视频| 国产色爽女视频免费观看| av福利片在线观看| 黄片wwwwww| 在线观看美女被高潮喷水网站| 国产精品一区www在线观看| 欧美国产日韩亚洲一区| 黄色配什么色好看| 蜜臀久久99精品久久宅男| 久久久久久久午夜电影| 99riav亚洲国产免费| 老司机福利观看| 午夜日韩欧美国产| 99视频精品全部免费 在线| 国产不卡一卡二| 校园人妻丝袜中文字幕| aaaaa片日本免费| 99热精品在线国产| 久久久久国产网址| 精华霜和精华液先用哪个| 深爱激情五月婷婷| 国产日本99.免费观看| 美女被艹到高潮喷水动态| 夜夜看夜夜爽夜夜摸| 久久精品国产自在天天线| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 在线播放无遮挡| 国产乱人视频| 国产私拍福利视频在线观看| 午夜福利在线观看吧| 欧美国产日韩亚洲一区| 伦理电影大哥的女人| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 欧美丝袜亚洲另类| 日韩一区二区视频免费看| 国产亚洲精品久久久久久毛片| 久久久成人免费电影| 欧美激情在线99| 欧美另类亚洲清纯唯美| 黄色配什么色好看| 久久精品国产自在天天线| 成人午夜高清在线视频| 亚洲av不卡在线观看| 日韩成人伦理影院| 蜜臀久久99精品久久宅男| 舔av片在线| 欧美3d第一页| 少妇熟女aⅴ在线视频| 一级a爱片免费观看的视频| 日本爱情动作片www.在线观看 | 精品不卡国产一区二区三区| 亚洲成人精品中文字幕电影| 免费观看人在逋| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 一区福利在线观看| 毛片一级片免费看久久久久| 免费黄网站久久成人精品| 亚洲av五月六月丁香网| 亚洲欧美成人综合另类久久久 | 亚洲人成网站在线观看播放| 成年女人看的毛片在线观看| 91麻豆精品激情在线观看国产| 18禁在线无遮挡免费观看视频 | 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 成年版毛片免费区| 亚洲av.av天堂| 亚洲av免费高清在线观看| 国产精品野战在线观看| 欧美又色又爽又黄视频| 偷拍熟女少妇极品色| 如何舔出高潮| 国产高清不卡午夜福利| 久久中文看片网| 精品欧美国产一区二区三| 日日摸夜夜添夜夜添小说| 国产成人精品久久久久久| 国产成人福利小说| 日韩 亚洲 欧美在线| 国产激情偷乱视频一区二区| 亚洲真实伦在线观看| 一区二区三区四区激情视频 | 国产黄色视频一区二区在线观看 | 国产精品人妻久久久影院| 亚洲精品影视一区二区三区av| 老女人水多毛片| 国产免费一级a男人的天堂| 久久久精品94久久精品| 秋霞在线观看毛片| 亚洲av五月六月丁香网| 99热只有精品国产| 最近手机中文字幕大全| 日韩大尺度精品在线看网址| 亚洲av中文av极速乱| 欧美性猛交黑人性爽| 热99re8久久精品国产| 真人做人爱边吃奶动态| 日日啪夜夜撸| 久久综合国产亚洲精品| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 成人一区二区视频在线观看| 婷婷精品国产亚洲av在线| 美女内射精品一级片tv| 国内精品久久久久精免费| 国产女主播在线喷水免费视频网站 | 99久久九九国产精品国产免费| 精品人妻视频免费看| 偷拍熟女少妇极品色| 老司机午夜福利在线观看视频| 欧美最新免费一区二区三区| 国产精品免费一区二区三区在线| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 久久人人精品亚洲av| 亚洲婷婷狠狠爱综合网| 啦啦啦观看免费观看视频高清| 久久久午夜欧美精品| 俄罗斯特黄特色一大片| 色av中文字幕| 国产亚洲精品久久久久久毛片| 男女边吃奶边做爰视频| 国产精品一二三区在线看| 精品福利观看| 波多野结衣高清作品| 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 我的女老师完整版在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 午夜影院日韩av| 最好的美女福利视频网| 成人三级黄色视频| 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 三级国产精品欧美在线观看| av在线天堂中文字幕| 亚洲国产精品久久男人天堂| 国产精品综合久久久久久久免费| 欧美日韩乱码在线| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 日日摸夜夜添夜夜爱| 天堂网av新在线| 美女大奶头视频| 国产亚洲精品久久久com| 中文资源天堂在线| 国产成人91sexporn| 最近的中文字幕免费完整| 色综合色国产| 精品久久久久久久久av| 久久99热6这里只有精品| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 中出人妻视频一区二区| 免费观看在线日韩| 免费观看人在逋| 国产精品一区二区免费欧美| 午夜影院日韩av| 亚洲精品国产av成人精品 | 久久久久久伊人网av| 欧美xxxx性猛交bbbb| h日本视频在线播放| 国产av不卡久久| 精品日产1卡2卡| 国产爱豆传媒在线观看| а√天堂www在线а√下载| 青春草视频在线免费观看| 国产真实伦视频高清在线观看| 欧美性感艳星| 国产综合懂色| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 成人永久免费在线观看视频| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 天堂动漫精品| 欧美3d第一页| 国产成人精品久久久久久| 成人午夜高清在线视频| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久 | 亚洲电影在线观看av| 91久久精品国产一区二区三区| 国产精品永久免费网站| 自拍偷自拍亚洲精品老妇| 午夜精品在线福利| 成年版毛片免费区| 91久久精品国产一区二区三区| 亚洲av不卡在线观看| 中文字幕av成人在线电影| 夜夜爽天天搞| 久久人妻av系列| 99国产极品粉嫩在线观看| 男插女下体视频免费在线播放| 特级一级黄色大片| 国产av不卡久久| 高清毛片免费看| 大型黄色视频在线免费观看| 欧美zozozo另类| 看片在线看免费视频| 婷婷色综合大香蕉| 秋霞在线观看毛片| 精品一区二区三区人妻视频| 夜夜爽天天搞| 成人永久免费在线观看视频| 有码 亚洲区| 国产综合懂色| 日韩中字成人| 在线免费观看不下载黄p国产| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 久久久久免费精品人妻一区二区| 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 深夜a级毛片| 久久精品夜色国产| 日本黄大片高清| 亚洲婷婷狠狠爱综合网| 亚洲无线观看免费| 亚洲自偷自拍三级| 在线播放国产精品三级| 3wmmmm亚洲av在线观看| 欧美色欧美亚洲另类二区| 国产高清视频在线播放一区| 一级毛片我不卡| 国产黄片美女视频| 国产黄色小视频在线观看| 看黄色毛片网站| 哪里可以看免费的av片| 午夜久久久久精精品| 在线观看一区二区三区| 在线看三级毛片| 国内少妇人妻偷人精品xxx网站| 国产精品嫩草影院av在线观看| 成人亚洲欧美一区二区av| 69av精品久久久久久| 99久久精品一区二区三区| avwww免费| 美女高潮的动态| 欧美又色又爽又黄视频| 一本一本综合久久| 亚洲精品一卡2卡三卡4卡5卡| 97在线视频观看| 国产成人a区在线观看| 久久久成人免费电影| 亚洲av电影不卡..在线观看| 国产精品福利在线免费观看| 熟女人妻精品中文字幕| 不卡一级毛片| 免费观看的影片在线观看| 女同久久另类99精品国产91| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 一区二区三区四区激情视频 | 免费av观看视频| 亚洲无线在线观看| 美女被艹到高潮喷水动态| 男女做爰动态图高潮gif福利片| 精品日产1卡2卡| 欧美日韩精品成人综合77777| 成年女人毛片免费观看观看9| 无遮挡黄片免费观看| 成人鲁丝片一二三区免费| 亚洲精品在线观看二区| 亚洲人与动物交配视频| 在线观看av片永久免费下载| 亚洲成人久久爱视频| 免费在线观看影片大全网站| 最近在线观看免费完整版| av在线蜜桃| 麻豆国产av国片精品| 我的老师免费观看完整版| 国内精品宾馆在线| 国产极品精品免费视频能看的| 99riav亚洲国产免费| 欧美日韩一区二区视频在线观看视频在线 | 国产精品免费一区二区三区在线| 久久精品国产亚洲av天美| 久久久成人免费电影| 久久久久精品国产欧美久久久| 国产私拍福利视频在线观看| 欧美国产日韩亚洲一区| 久久亚洲精品不卡| 欧美国产日韩亚洲一区| 99热网站在线观看| 国产精品一区二区免费欧美| 国产高清视频在线观看网站| 国产探花在线观看一区二区| 国产一区二区激情短视频| 午夜免费男女啪啪视频观看 | 欧美一级a爱片免费观看看| 国产男人的电影天堂91| 99精品在免费线老司机午夜| 十八禁网站免费在线| 免费人成在线观看视频色| 国产av不卡久久| av专区在线播放| 嫩草影院精品99| 91狼人影院| av视频在线观看入口| 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 欧美日韩一区二区视频在线观看视频在线 | 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 大又大粗又爽又黄少妇毛片口| 亚洲精品色激情综合| 一本精品99久久精品77| 国产私拍福利视频在线观看| 久久人妻av系列| 天堂动漫精品| 99精品在免费线老司机午夜| 国产精品日韩av在线免费观看| 在线国产一区二区在线| 久久久精品欧美日韩精品|