• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dual-Band Infrared Dim Target Detection Algorithm Based on Wavelet Domain

    2015-04-02 06:22:26SHIXiaogangBAIXiaodongLILijuanHANYumeng
    紅外技術(shù) 2015年12期
    關(guān)鍵詞:紅外技術(shù)于小波雙色

    SHI Xiao-gang,BAI Xiao-dong,LI Li-juan,HAN Yu-meng

    ?

    A Dual-Band Infrared Dim Target Detection Algorithm Based on Wavelet Domain

    SHI Xiao-gang,BAI Xiao-dong,LI Li-juan,HAN Yu-meng

    (,471009,)

    It is difficult to detect infrared dim target in single-band because the message acquired is relatively insufficient. Aimed at solving this problem, an algorithm for infrared dim target detection in dual-band based in wavelet domain is introduced. The dual-band images are decomposed by wavelet filters firstly, and the different methods which are used to ascertain the thresholds is introduced by the feature difference in the dual-band images, then the high frequency images are segmented by the corresponding thresholds. The high frequency segment images are fused with different Boolean logic strategies afterwards. Finally the dim target detection is accomplished by morphological operation and multiple frames accumulative detection.

    dual-band,wavelet domain,dim target detection

    0 INTRODUCTION

    Infrared dim target detection is a key technology of infrared imaging guidance in complicated backgrounds, but with the development of photoelectricity technology, infrared detector noise, infrared background, long distance, the target’s low SNR, and so on, infrared dim target detection has become very hard. The current researches on infrared dim target detection almost are based on single-band image. The detection ability has became weak when the system faces to the complicated battlefield because the message acquired from the single-band detector is relatively insufficient. The researches on infrared dim target detection have turned into dual-band or multi-band fusion technology and good results have been achieved[1-4]. The essence of dim target detection is choosing the insular singular points in image, and wavelet transform can commendably distinguish the insular singular points (target) from the high frequency parts. So wavelet transforms are employed to research dual-band infrared dim target detection, which has became popular nowadays.

    In this passage an algorithm of infrared dim target detection in dual-band based in wavelet domain is introduced. Firstly the dual-band images will be decomposed by wavelet filters, and the different methods which are used to ascertain the thresholds will be introduced by the feature difference in the dual-band images. Then the high-frequency images will be segmented by the corresponding thresholds. The high frequency segment images will be fused with different Boolean logic strategies afterwards. Finally the dim target detection will be accomplished by morphological operation and multiple frames accumu- lative detection. The experiments show that this algorithm has favorable infrared dim target detection ability and excellent real-time property.

    1 WAVELET ANALYSIS OF INFRARED IMAGES

    The wavelet generally has a good time resolution ratio and frequency resolution ratio whether in high frequency parts or in low frequency parts, so it can extract the message that is needed from the signal efficiently. The continuous wavelet transform can be defined as:

    Whereis scale factor andis time-lapse factor, and() is basic wavelet function, but it cannot be applied easily in image analysis because the calculation is extremely complicated. The introduction of the Mallat wavelet fast algorithm can speed up the calculation of wavelet transform greatly in discrete decomposition, although the amount of calculation has been highly decreased while the quality of the image has not been obviously deteriorated yet, so it can be easily applied by hardware[5].

    An infrared image can be decomposed into one low frequency part and three high frequency parts by wavelet filters. The low frequency reflects the character of the infrared background and the main characters of target are included in the high frequency parts. Fig.1(a) and (b) have given the dual-band images and their high frequency images decomposed by first-lever wavelet, the size of these images is 128×128. Obviously, most of the background has been filtered in these high frequency images, and the dim target is included in the collection of insular singular points.

    2 ACHIEVEMENT OF THE AlGORITHM

    The wavelet coefficients can be divided into two kinds. The first kind is acquired from backgrounds, these coefficients have a large number but low amplitude. The second kind is acquired from target and some background, these coefficients have a small number but high amplitude, so if we set up a threshold for coefficients, the coefficients which are larger than the threshold can be kept, and the others will be changed into zero. As we mentioned above, choosing a suitable threshold is extraordinary important in infrared dim target detection in wavelet domain.

    Fig.1 Images decomposed by first-lever wavelet

    The ability of the system’s detection could be improved greatly by using this method because the dual-band has more messages than the single-band. As is shown in Fig.1, the gray scale of the clouds changes fiercely and gray scale of the sky changes placidly in the band 1 image, while the gray scale of the clouds changes a little fiercely but the gray scale of some areas in the sky does not change placidly in the band 2 image. So after decomposition, the band 1 high frequency images have lots of noise points which almost come from the cloud while a few noise points come from the sky. The band 2 high frequency images have less noise points, but half these noise points come from the sky, and it has been found that the SNR of band 1 images are higher than band 2 corresponding images. Based on these characters a new dual-band infrared dim target detection algorithm is introduced. Firstly, according to the difference of the SNR, the method given by Donoho will be introduced to ascertain the threshold of band 1[6]:

    Where1is the standard variance of high frequency image of band 1, andis the quantity of pixels.

    The method given by literature 7 will be introduced to ascertain the threshold of band 2[7]:

    Where2is standard variance of high frequency image of band 2,is the quantity of pixels, andis the floor number of wavelet decomposition.

    The process of the algorithm is as follows:

    Step 1: One group of cubic splines wavelet filters has been employed to decompose the dual-band infrared images and then we obtain a group of low frequency images and three groups of high frequency images. The directions of these images are horizontal, vertical and diagonal.

    Step 2: Abandon the low frequency images, and the dual-band high frequency images will be segmented by the corresponding thresholds acquired by formula (2) and (3). The results have been shown in Fig.2(a)、(b).

    Step 3: As is shown in Fig.2(a), the band 1 binary images have lots of noise points which almost come from the cloud, but a few noise points come from the sky. As is shown in Fig.2(b), the band 2 binary images have a few noise points but half of which come from the sky. According to this character, the high frequency binary images which have the same direction will be fused in OR operation to filter the most noise points, so we will obtain three different directional fusion images.

    Fig.2 The high frequency segment image

    Step 4: The position of the target will change in the process of convolution operation. Aimed at avoiding the departure of the target’s position in image segment, the three binary images will be fused in AND operation, so the dual-band images have been finally fused after this step.

    Step 5: Considering the size of dim target is only a few pixels, we shall handle the fusion image in an open operation with a 2×1 template. This operation can not only eliminate some noises left but also decrease the size of target, because the size of the target may become larger after operating by step 4. The single frame detection has been finished after this step.

    Step 6: The SNR of dim target is too low to detect exactly in single frame detection, so considering continuity of the target’s motion, and several frames accumulative detection will be employed to confirm the target. The algorithm will end after this step.

    Aimed at proving the effect of our algorithm, a dual-band high-pass filtering fusion algorithm and a dual-band infrared dim target detection algorithm based on wavelet transform[8]are employed to compare with our algorithm. The former which is named as algorithm 1 will handle the dual-band images with high-pass filtering firstly. Then the self-adaption threshold will be introduced to segment the dual-band images respectively[9]:

    =+S(4)

    Whereis the mean of gray scale,is standard variance, and the range ofis from 1 to 4, so the single frame detection of algorithm 1 will be completed after the dual-band segment images are handled in AND operation. The latter which is named as algorithm 2 will fuse the dual-band images with the certain rule firstly, and then the fusion image will subtract the low frequency image in order to filter the background. The initial threshold is also acquired by formula 4. The gray scale of the filtering image will be changed to zero if it is lower than the threshold and the other will remain, so the new image is obtained and will also be handled in the same operation mentioned until new threshold is equal to the former threshold. The single frame detection of algorithm 2 will be completed after image is segmented by the threshold obtained finally. And then the several aspects will be employed to evaluate the performances of the three algorithms.

    3 EVALUATION OF ALGORITHMS

    Taking the dual-band images which are shown as Fig.1 for example, the results handled with three algorithms in single frame detection have been shown respectively as Fig.2(a)-(c), and=4.

    As is shown inFig.3(a), the image which has been handled with algorithm 1 obviously contains a number of noise points, especially some noise points have the same size as the target, it will inevitably increase the detection difficulty of the system. As is shown in Fig.3(b), the number of noise points has been obviously decreased which means that the algorithm 2 does better in dim target detection. As is shown in Fig.3(c), our algorithm can detect the target exactly and have no noise point existing, which means that our algorithm does best in three algorithms above.

    Fig.3 The results of single frame detection

    Due to the existence of noise points, the dim target often cannot be detected exactly in single frame detection, so the guidance system often adopt the method of several frames accumulative detection to confirm the target because whose motion is continuous in accumulative frames. So the motion trails handled with three algorithms in several frames accumulative detection have been shown respectively in Fig.3(a)-(c), and the target is moving in line towards the bottom left from the primary coordinates(12,82).

    As is shown in Fig.4(a), there are several broken parts in target’s motion trail which means that the algorithm 1 exists missing detection inevitably, so the guidance system need more frames to confirm the target. As is shown in Fig.4(b). The continuity of the target’s motion trail has become better after being handled with algorithm 2, but the previous motion trail is also not clear. As is shown in Fig.4(c), the continuity of the target’ motion trail is very clear after being handled with our algorithm, and therefore it also has better ability in several frames accumulative detection than the other two algorithms.

    Detection ratio and false-alarm ratio will also be employed to evaluate the detection ability of the three algorithms. Firstly there are 200 frames dual-band infrared images have been chosen randomly which contains dim target to detect, the detection ratio is 87% and the false-alarm ratio is 18% when the algorithm 1 is adopted. The detection ratio is 96% and the false-alarm ratio is 8% when the algorithm 2 is adopted, and the detection ratio is 97% and the false-alarm ratio is 3% when our algorithm is adopted, so it can be seen that our algorithm can obtain a preferable detection ratio while decreasing the false-alarm ratio obviously. The real-time also will be employed to evaluate the three algorithms. The results have been given by table 1.

    Fig.4 The motion trails of continuous frames detection

    Table 1 Evaluation of real-time

    As is shown in table 1,algorithm 1 has the least average single frame operating time than the other two, but the discontinuity of its trail has led the guidance system need at least 8 frames to confirm the target, so algorithm 1 have to take the longest total time in target detection. Algorithm 2 and our algorithm usually need 2-3 frames to confirm the target in accumulative frame detection, but the average single frame operating time of algorithm 2 is two times as long as ours which is attributed to wavelet inverse transform and choosing the threshold. It also needs more time to confirm the target than ours, so our algorithm has a good real-time obviously. As far as these evaluating factors we have discussed, our algorithm has not only favorable ability of dim target detection but also the good real-time compared with the other two algorithms.

    4 CONCLUSIONS

    A algorithm of infrared dim target detection in dual-band based on wavelet domain is introduced in the passage. The dual-band images are decomposed by wavelet filter firstly, and different methods which are used to ascertain the thresholds will be introduced by the feature difference of the dual-band images. Then the high frequency images will be segmented by corresponding thresholds, after that the high frequency segment images will be fused with different Boolean logic strategies. Finally the dim target detection is accomplished by morphological operation and multiple frames accumulative detection. The experiments show that this algorithm has favorable ability of infrared dim target detection and excellent real-time property.

    [1] BAI Xiao-dong, LIU Dai-jun. The deliberate of demonstration confirmation about the precision guidance weapon technology[J]., 2004, 5(6): 40-42.

    白曉東, 劉代軍. 關(guān)于精確制導(dǎo)武器制導(dǎo)技術(shù)演示驗證的思考[J]. 航空兵器, 2004, 5(6): 40-42.

    [2] SHI Xiao-hua, ZHANG Tong-he. The counter-countermeasures techno- logy for dual-band multi-element IR seeker[J]., 2009, 31(6): 311-314.

    史曉華, 張同賀. 紅外雙色多元導(dǎo)引頭抗干擾技術(shù)研究[J]. 紅外技術(shù), 2009, 31(6): 311-314.

    [3] ZONG Si-guang, WANG Jiang-an, MA Zhi-guo. New detection algorithm of weak targets on double bands under strong clutter[J]., 2005, 27(1): 57-61.

    宗思光, 王江安, 馬治國. 強雜波中雙波段目標檢測新算法[J]. 紅外技術(shù), 2005, 27(1): 57-61.

    [4] LI Qiu-hua, DU Yi. The algorithm of two color IR small extended target precision segmentation based on multiple features integration[J]., 2009, 31(2): 112-118.

    李秋華, 杜鹢. 基于多特征整合的雙色紅外小擴展目標精確分割算法[J]. 紅外技術(shù), 2009, 31(2): 112-118.

    [5] Mallats S G. Multifrequency channel decomposition of images and wavelet models[J]., 1989, 37(12): 2091-2110.

    [6] Donoho D L. Denoising by soft-thresholding[J]., 1995, 41(3): 613-627.

    [7] Zhao ruizhen, Song Guoxiang, Wang Hong. Better threshold estimation of wavelet coefficients for improving denoising[J]., 2001, 19(4): 625-628.

    趙瑞珍, 宋國鄉(xiāng), 王紅. 小波系數(shù)閾值估計的改進模型[J]. 西北工業(yè)大學(xué)學(xué)報, 2001, 19(4): 625-628.

    [8] SUN Yu-Qiu, TIAN Jin-wen, LIU Jian. Dual band infrared image fusion detection based on wavelet transform[J]., 2007, 36(2): 240-243.

    孫玉秋, 田金文, 柳健. 基于小波變換的雙色紅外圖像融合檢測方[J]. 紅外與激光工程, 2007, 36(2): 240-243.

    [9] WEI Dao-zhi, HUANG Shu-cai, XIA Xun-hui. Temporal-spatial fusion filtering algorithm for small infrared target detection[J]., 2014, 36(11): 905-908.

    韋道知, 黃樹彩, 夏訓(xùn)輝. 基于時空域融合濾波的小目標檢測算法[J]. 紅外技術(shù), 2014, 36(11): 905-908.

    一種基于小波域的雙色紅外弱小目標檢測算法

    史曉剛,白曉東,李麗娟,韓宇萌

    (中國空空導(dǎo)彈研究院,河南 洛陽 471009)

    針對單波段紅外弱小目標檢測難度大、信息量少的問題,提出一種基于小波域的雙色紅外弱小目標檢測算法。首先運用小波濾波器對雙色圖像進行分解,利用雙色圖像的特征差異提出了不同的閾值確定方法對高頻圖像進行分割,通過采用不同策略的布爾邏輯運算完成高頻分割圖像的融合,最后運用形態(tài)學(xué)運算和多幀累積檢測的方法完成弱小目標的檢測。

    雙色紅外;小波域;弱小目標檢測

    TP391

    A

    1001-8891(2015)12-1027-05

    2015-06-24;

    2015-09-23.

    史曉剛(1982-),男,河南舞陽人,博士研究生,主要從事紅外成像制導(dǎo)方向的研究工作。

    航空科學(xué)基金項目,編號:20110112007。

    猜你喜歡
    紅外技術(shù)于小波雙色
    雙色玫瑰的誕生
    美麗的雙色花
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    昆明北方紅外技術(shù)股份有限公司
    簡析《雙色豐收南瓜》的壺藝韻味
    基于小波去噪的稱重雨量數(shù)據(jù)分析
    一種新的基于小波基的時變信道估計
    基于小波和Hu 矩的颮線雷達回波識別
    听说在线观看完整版免费高清| 国产精品一及| 中文字幕制服av| 亚洲自偷自拍三级| 婷婷色麻豆天堂久久| 国产男女超爽视频在线观看| 亚洲在线观看片| 国产欧美日韩一区二区三区在线 | 一级a做视频免费观看| 久久久精品94久久精品| 男女边吃奶边做爰视频| 只有这里有精品99| 国产精品国产av在线观看| 香蕉精品网在线| 国产乱来视频区| 91在线精品国自产拍蜜月| 在线观看三级黄色| 人妻夜夜爽99麻豆av| 在线观看一区二区三区| 成人国产av品久久久| 成人欧美大片| 干丝袜人妻中文字幕| 久久久久网色| 美女内射精品一级片tv| 精品久久国产蜜桃| 久久久久久伊人网av| 人体艺术视频欧美日本| 午夜免费观看性视频| 日韩 亚洲 欧美在线| 亚洲精品久久午夜乱码| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩精品成人综合77777| 国产精品人妻久久久久久| 少妇人妻久久综合中文| 亚洲精品日韩在线中文字幕| 国内精品美女久久久久久| 亚洲精品一二三| 亚洲在线观看片| 国产 一区 欧美 日韩| 午夜免费男女啪啪视频观看| 国产黄a三级三级三级人| 一区二区av电影网| 大码成人一级视频| 最近最新中文字幕免费大全7| 精品人妻偷拍中文字幕| 大话2 男鬼变身卡| 蜜臀久久99精品久久宅男| 欧美+日韩+精品| 99re6热这里在线精品视频| 免费看不卡的av| 日日摸夜夜添夜夜添av毛片| 男人添女人高潮全过程视频| tube8黄色片| 岛国毛片在线播放| 国产成人91sexporn| 亚洲欧美日韩卡通动漫| 狂野欧美激情性bbbbbb| 亚洲国产色片| 亚洲国产色片| 五月天丁香电影| 一区二区三区乱码不卡18| 亚洲精品国产av成人精品| 天美传媒精品一区二区| av又黄又爽大尺度在线免费看| 久久精品国产自在天天线| 亚洲真实伦在线观看| tube8黄色片| 在线免费观看不下载黄p国产| 午夜老司机福利剧场| 久久精品熟女亚洲av麻豆精品| 亚洲av福利一区| 日韩av免费高清视频| 日本wwww免费看| 少妇人妻久久综合中文| 亚洲欧美日韩无卡精品| av国产免费在线观看| av国产免费在线观看| 97人妻精品一区二区三区麻豆| 交换朋友夫妻互换小说| 女人久久www免费人成看片| 国产成人精品一,二区| 国产av码专区亚洲av| 男女啪啪激烈高潮av片| 日韩人妻高清精品专区| 国产黄片美女视频| 在线播放无遮挡| 日本三级黄在线观看| 久久精品夜色国产| 久久久久精品性色| 大香蕉97超碰在线| 亚洲va在线va天堂va国产| 精品少妇久久久久久888优播| 国产男人的电影天堂91| 亚洲天堂av无毛| 超碰av人人做人人爽久久| 少妇 在线观看| 高清毛片免费看| 成人一区二区视频在线观看| 搞女人的毛片| 91狼人影院| 亚洲av成人精品一区久久| 性色av一级| 人妻系列 视频| 久久精品国产鲁丝片午夜精品| 亚洲国产精品成人久久小说| av女优亚洲男人天堂| 男人狂女人下面高潮的视频| 最近的中文字幕免费完整| 久久久久久久精品精品| 午夜亚洲福利在线播放| 毛片女人毛片| 国产黄色视频一区二区在线观看| 亚洲精品第二区| 亚洲三级黄色毛片| 色综合色国产| 欧美日韩综合久久久久久| 久久久久国产网址| 伦精品一区二区三区| 久久久久久久久久成人| 免费av不卡在线播放| 亚洲欧美精品自产自拍| 日韩一本色道免费dvd| 国内少妇人妻偷人精品xxx网站| 欧美区成人在线视频| 成年版毛片免费区| 国产成人一区二区在线| 国产欧美亚洲国产| 深夜a级毛片| 97超视频在线观看视频| av国产久精品久网站免费入址| 男男h啪啪无遮挡| 高清日韩中文字幕在线| 男人舔奶头视频| 日韩伦理黄色片| 国产精品av视频在线免费观看| 中文精品一卡2卡3卡4更新| 亚洲综合精品二区| 干丝袜人妻中文字幕| 国产一区二区在线观看日韩| 国产黄色免费在线视频| av国产精品久久久久影院| 特大巨黑吊av在线直播| 欧美潮喷喷水| 99久久九九国产精品国产免费| 91午夜精品亚洲一区二区三区| 看非洲黑人一级黄片| 亚洲熟女精品中文字幕| 亚洲国产精品专区欧美| 国产精品精品国产色婷婷| 国产精品熟女久久久久浪| 如何舔出高潮| 人妻制服诱惑在线中文字幕| 精品人妻视频免费看| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 成人美女网站在线观看视频| 免费观看在线日韩| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 欧美丝袜亚洲另类| 嫩草影院入口| 国产老妇伦熟女老妇高清| 久久精品久久久久久久性| av国产久精品久网站免费入址| 国产视频内射| 简卡轻食公司| 成年免费大片在线观看| 一级黄片播放器| 中文字幕久久专区| 亚洲无线观看免费| 久久久久久久久久久免费av| 欧美bdsm另类| 亚洲四区av| 国产日韩欧美亚洲二区| 国产一区有黄有色的免费视频| 成年人午夜在线观看视频| 在现免费观看毛片| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜爱| 一级毛片久久久久久久久女| 91精品伊人久久大香线蕉| 国产精品人妻久久久影院| 国产成人免费观看mmmm| 国产精品久久久久久精品电影| 午夜激情久久久久久久| 乱系列少妇在线播放| 亚洲国产日韩一区二区| 精品国产露脸久久av麻豆| 精品人妻偷拍中文字幕| 日本午夜av视频| 一区二区av电影网| 国产精品精品国产色婷婷| 一级毛片电影观看| 国产黄片视频在线免费观看| 69av精品久久久久久| 少妇熟女欧美另类| 亚洲图色成人| 亚洲国产高清在线一区二区三| 成人亚洲欧美一区二区av| 日本-黄色视频高清免费观看| 亚洲成人精品中文字幕电影| 国产成人免费观看mmmm| 男女国产视频网站| 亚洲高清免费不卡视频| 九九爱精品视频在线观看| 精品久久久久久久人妻蜜臀av| 亚洲在久久综合| 人人妻人人爽人人添夜夜欢视频 | 日日撸夜夜添| 卡戴珊不雅视频在线播放| 国产69精品久久久久777片| 观看免费一级毛片| 久久女婷五月综合色啪小说 | 日韩av不卡免费在线播放| 91aial.com中文字幕在线观看| 亚洲欧洲国产日韩| 国产综合精华液| 最近的中文字幕免费完整| 久热久热在线精品观看| 亚洲在久久综合| 麻豆久久精品国产亚洲av| 亚洲欧美精品专区久久| 蜜臀久久99精品久久宅男| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 日本色播在线视频| 嫩草影院新地址| 少妇 在线观看| 国产一区有黄有色的免费视频| 精品视频人人做人人爽| av专区在线播放| 久久久久久九九精品二区国产| 亚洲欧美精品自产自拍| 大码成人一级视频| 亚洲婷婷狠狠爱综合网| 晚上一个人看的免费电影| 国产成人freesex在线| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| 日本午夜av视频| 久久久久久国产a免费观看| 亚洲四区av| 日本熟妇午夜| 97在线视频观看| 日日摸夜夜添夜夜爱| 久热久热在线精品观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人精品一区二区| 99久久九九国产精品国产免费| 岛国毛片在线播放| freevideosex欧美| 九色成人免费人妻av| 亚洲精品国产av成人精品| 国产色婷婷99| 欧美精品一区二区大全| 国产男女内射视频| 在线免费十八禁| 美女被艹到高潮喷水动态| 内射极品少妇av片p| 午夜福利网站1000一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 久久久久网色| 欧美人与善性xxx| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| av在线观看视频网站免费| 国内精品宾馆在线| 伦理电影大哥的女人| 国产精品人妻久久久影院| 国产视频内射| 女人久久www免费人成看片| 美女国产视频在线观看| 一级毛片我不卡| 自拍偷自拍亚洲精品老妇| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | a级毛片免费高清观看在线播放| 日韩亚洲欧美综合| 久久精品国产a三级三级三级| 精品久久久久久久人妻蜜臀av| 99视频精品全部免费 在线| 最近最新中文字幕免费大全7| 日本猛色少妇xxxxx猛交久久| 欧美成人a在线观看| 久久精品国产亚洲网站| 亚洲人成网站在线播| 国产探花极品一区二区| 国国产精品蜜臀av免费| 夜夜爽夜夜爽视频| 中文字幕av成人在线电影| av在线天堂中文字幕| 国产精品99久久99久久久不卡 | 99精国产麻豆久久婷婷| 精华霜和精华液先用哪个| 日韩成人av中文字幕在线观看| 欧美激情在线99| 99热这里只有是精品在线观看| 免费黄频网站在线观看国产| 国产精品人妻久久久久久| 夫妻性生交免费视频一级片| 亚洲一区二区三区欧美精品 | 欧美xxⅹ黑人| 亚洲欧美清纯卡通| 一级爰片在线观看| 交换朋友夫妻互换小说| 一边亲一边摸免费视频| a级毛片免费高清观看在线播放| 国产精品一区www在线观看| kizo精华| 五月伊人婷婷丁香| 26uuu在线亚洲综合色| 禁无遮挡网站| 亚洲美女搞黄在线观看| 欧美激情久久久久久爽电影| 国内少妇人妻偷人精品xxx网站| 欧美激情在线99| 久久精品久久久久久久性| 国产色爽女视频免费观看| 97超碰精品成人国产| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 国产色婷婷99| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 波多野结衣巨乳人妻| 天天一区二区日本电影三级| 午夜福利在线在线| 听说在线观看完整版免费高清| 国产在线一区二区三区精| 亚洲av日韩在线播放| 舔av片在线| 亚洲精品中文字幕在线视频 | 日本午夜av视频| 亚洲,一卡二卡三卡| 18+在线观看网站| 男女边吃奶边做爰视频| 亚洲在线观看片| 亚洲自拍偷在线| 亚洲高清免费不卡视频| 极品少妇高潮喷水抽搐| 午夜视频国产福利| 夜夜看夜夜爽夜夜摸| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 下体分泌物呈黄色| 看黄色毛片网站| 国内揄拍国产精品人妻在线| 丰满少妇做爰视频| 青春草视频在线免费观看| 身体一侧抽搐| 亚洲国产欧美在线一区| 少妇 在线观看| 99久久九九国产精品国产免费| 看非洲黑人一级黄片| 日韩亚洲欧美综合| 国产探花极品一区二区| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 国产女主播在线喷水免费视频网站| 久久精品久久精品一区二区三区| 欧美 日韩 精品 国产| 十八禁网站网址无遮挡 | 国精品久久久久久国模美| 97精品久久久久久久久久精品| 乱码一卡2卡4卡精品| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 欧美成人一区二区免费高清观看| 国产在线一区二区三区精| 成人黄色视频免费在线看| av在线播放精品| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| 日本爱情动作片www.在线观看| 久久久久性生活片| 国产成人精品久久久久久| 舔av片在线| tube8黄色片| 全区人妻精品视频| 在线观看国产h片| 欧美极品一区二区三区四区| 高清午夜精品一区二区三区| 精品午夜福利在线看| 女人被狂操c到高潮| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| 韩国av在线不卡| 成人综合一区亚洲| 麻豆久久精品国产亚洲av| 有码 亚洲区| 欧美极品一区二区三区四区| 亚洲精品aⅴ在线观看| 免费观看的影片在线观看| 欧美三级亚洲精品| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 久久精品国产亚洲网站| 日本午夜av视频| 午夜激情福利司机影院| 午夜福利网站1000一区二区三区| 18禁在线无遮挡免费观看视频| 天天一区二区日本电影三级| 久久久久久国产a免费观看| 久久精品国产鲁丝片午夜精品| 国产永久视频网站| 国产高清国产精品国产三级 | 国产亚洲精品久久久com| 亚洲欧美日韩东京热| 1000部很黄的大片| 欧美激情在线99| 精品久久久久久久人妻蜜臀av| 男女边摸边吃奶| videos熟女内射| 又爽又黄a免费视频| 久久热精品热| 国产男女内射视频| 精品99又大又爽又粗少妇毛片| freevideosex欧美| 国产黄片视频在线免费观看| 一个人看的www免费观看视频| 欧美成人一区二区免费高清观看| 亚洲,欧美,日韩| 国产精品三级大全| 亚洲国产成人一精品久久久| 日韩在线高清观看一区二区三区| 久久热精品热| 18禁在线播放成人免费| 中文在线观看免费www的网站| 中文天堂在线官网| 嫩草影院入口| 午夜视频国产福利| 又大又黄又爽视频免费| 少妇熟女欧美另类| 波野结衣二区三区在线| 综合色丁香网| 久久亚洲国产成人精品v| 高清日韩中文字幕在线| 久久久久久久亚洲中文字幕| 一级毛片电影观看| 国产一区二区三区综合在线观看 | 国模一区二区三区四区视频| 国产在线一区二区三区精| 国产亚洲5aaaaa淫片| av国产精品久久久久影院| 熟女av电影| 777米奇影视久久| 亚洲av在线观看美女高潮| 久久久亚洲精品成人影院| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 国产精品成人在线| 少妇人妻精品综合一区二区| 五月开心婷婷网| 男男h啪啪无遮挡| 免费观看av网站的网址| 51国产日韩欧美| 国产一区二区在线观看日韩| 69av精品久久久久久| 国产黄片美女视频| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 蜜桃亚洲精品一区二区三区| 91久久精品电影网| 在线免费十八禁| 国产精品久久久久久久电影| 一个人观看的视频www高清免费观看| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 观看美女的网站| 国产色婷婷99| av免费在线看不卡| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 一区二区三区乱码不卡18| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 国产视频内射| 免费看a级黄色片| 国产欧美日韩一区二区三区在线 | 又爽又黄无遮挡网站| 中文字幕av成人在线电影| 久久国内精品自在自线图片| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 一本久久精品| 日本熟妇午夜| 午夜免费鲁丝| 亚洲av中文字字幕乱码综合| 亚州av有码| 美女视频免费永久观看网站| 午夜福利在线在线| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 日本黄色片子视频| 国产成人免费观看mmmm| 国产午夜精品一二区理论片| 久久久久久久午夜电影| 美女被艹到高潮喷水动态| 丰满人妻一区二区三区视频av| 亚洲av在线观看美女高潮| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 国产毛片在线视频| 欧美另类一区| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频 | 亚洲欧美一区二区三区黑人 | 婷婷色av中文字幕| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说 | 观看免费一级毛片| 在线观看国产h片| 欧美最新免费一区二区三区| 最近的中文字幕免费完整| 国产亚洲5aaaaa淫片| 干丝袜人妻中文字幕| 亚洲成人精品中文字幕电影| 国产精品国产三级国产专区5o| 中文天堂在线官网| 国产亚洲av嫩草精品影院| 亚洲成色77777| 丝袜美腿在线中文| 国产黄片美女视频| 欧美日韩国产mv在线观看视频 | 欧美潮喷喷水| 亚洲美女视频黄频| 亚洲不卡免费看| 亚洲熟女精品中文字幕| 好男人在线观看高清免费视频| 精品熟女少妇av免费看| 欧美xxxx黑人xx丫x性爽| 久久久久国产网址| 亚洲aⅴ乱码一区二区在线播放| 国产成人午夜福利电影在线观看| 亚州av有码| 国产色爽女视频免费观看| 九色成人免费人妻av| 免费看不卡的av| 欧美日韩国产mv在线观看视频 | 久久久久久伊人网av| 国产一区有黄有色的免费视频| 爱豆传媒免费全集在线观看| 真实男女啪啪啪动态图| 日本午夜av视频| 日本黄色片子视频| 久久99蜜桃精品久久| 女的被弄到高潮叫床怎么办| 少妇被粗大猛烈的视频| 亚洲av不卡在线观看| 成人黄色视频免费在线看| 久久6这里有精品| 免费av不卡在线播放| 中国三级夫妇交换| 熟女人妻精品中文字幕| av网站免费在线观看视频| av国产精品久久久久影院| 国产又色又爽无遮挡免| 综合色av麻豆| 一个人看视频在线观看www免费| 天天躁日日操中文字幕| 夜夜看夜夜爽夜夜摸| 国产精品伦人一区二区| 国产黄a三级三级三级人| 久久久久久久久久成人| 午夜福利视频精品| 免费av不卡在线播放| 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| av女优亚洲男人天堂| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区| 交换朋友夫妻互换小说| 性色avwww在线观看| 国产爱豆传媒在线观看| 国产视频内射| 国产午夜福利久久久久久| 亚洲一级一片aⅴ在线观看| 精品一区二区三卡| 久久久久久国产a免费观看| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| 国产免费又黄又爽又色| 2018国产大陆天天弄谢| 男女无遮挡免费网站观看| 99久国产av精品国产电影| 国产精品三级大全| 日日撸夜夜添| 18禁动态无遮挡网站| 中文欧美无线码| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 成人一区二区视频在线观看| 男男h啪啪无遮挡| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| av播播在线观看一区| 又爽又黄无遮挡网站| 亚洲内射少妇av| 亚洲成色77777| 国产精品一二三区在线看| 97超视频在线观看视频| 人妻一区二区av| 亚洲精品日本国产第一区|