胡青蜜, 胡志華
(上海海事大學(xué) 物流研究中心, 上海 201306)
?
考慮運輸成本與時間競爭的軸輻式網(wǎng)絡(luò)設(shè)計問題
胡青蜜, 胡志華*
(上海海事大學(xué) 物流研究中心, 上海 201306)
針對軸輻式物流網(wǎng)絡(luò)運營中的新運營商與市場中占主導(dǎo)地位的物流聯(lián)盟企業(yè)之間的競爭.首先,從減少OD流運輸成本與運輸時間角度探討了新運營商網(wǎng)絡(luò)設(shè)計與中小規(guī)模運營商網(wǎng)絡(luò)調(diào)整策略,以提高網(wǎng)絡(luò)運營商的顧客市場份額占有量.其次,分析運輸成本、運輸時間與顧客市場份額效用函數(shù)之間的關(guān)系,提出了相應(yīng)的分段、線性與非線性顧客效用函數(shù),并建立了基于不同顧客效用函數(shù)的網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整混合整數(shù)規(guī)劃模型.同時,為了處理計算實驗的復(fù)雜性,將非線性目標(biāo)函數(shù)轉(zhuǎn)化為二階錐規(guī)劃約束求解.最后,通過實驗分析了不同決策偏好權(quán)重、顧客效用函數(shù)、運輸時間與成本對網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整的影響.
物流工程; 軸輻式網(wǎng)絡(luò); 競爭; 二階錐規(guī)劃; 混合整數(shù)規(guī)劃
軸輻式網(wǎng)絡(luò)是一種典型的物流網(wǎng)絡(luò)結(jié)構(gòu),在運輸、電信、郵政、零擔(dān)物流與供應(yīng)鏈管理等領(lǐng)域得到廣泛應(yīng)用[1-4].軸輻式物流網(wǎng)絡(luò)形式多樣,可分為純軸輻式網(wǎng)絡(luò)、復(fù)合軸輻式網(wǎng)絡(luò)、層級軸輻式網(wǎng)絡(luò)和分級軸輻式網(wǎng)絡(luò)[5-6],其中二級軸輻式網(wǎng)絡(luò)是最基本的形式.為了整合物流資源與提高資源利用率,進(jìn)一步形成集中運輸規(guī)模經(jīng)濟優(yōu)勢,不同物流服務(wù)商已建立了軸輻式網(wǎng)絡(luò)聯(lián)盟,并已在物流市場中占有主體地位,這使得未參與聯(lián)盟的中小規(guī)模運營商(已建立物流網(wǎng)絡(luò))與新入市運營商(準(zhǔn)備建立物流網(wǎng)絡(luò))受到顧客市場份額逐漸縮減的挑戰(zhàn).因此,中小規(guī)模運營商與新入市運營商應(yīng)采取何種策略應(yīng)對聯(lián)盟企業(yè)的競爭,以保持或提高其市場份額,成為一個重要的研究課題.
O’Kelly最先對樞紐選址問題進(jìn)行了研究,提出了單分配樞紐中位問題的二次規(guī)劃模型和啟發(fā)式算法,為軸輻式網(wǎng)絡(luò)研究奠定了基礎(chǔ)[7].目前,競合機制下各利益相關(guān)者如何進(jìn)行軸輻式網(wǎng)絡(luò)設(shè)計已得到較深入研究[8-9],但較少有文獻(xiàn)從最小化OD(Origin-Destination)流的運輸成本與運輸時間角度研究新運營商與中小規(guī)模運營商面臨聯(lián)盟企業(yè)競爭時所采取的網(wǎng)絡(luò)設(shè)計與調(diào)整策略.Marianov等開創(chuàng)了競爭性樞紐選址問題研究,通過減少運輸費用來吸引客戶,以服務(wù)顧客總數(shù)量來度量占有的市場份額[10].在此基礎(chǔ)上,Eiselt等拓展了Marianov等建立的顧客效用函數(shù),將運輸時間、運輸成本與吸引度考慮進(jìn)入顧客效用函數(shù),規(guī)劃了一個非線性模型,以獲取市場份額的最大化[11].Meng等將不同利益相關(guān)者的博弈行為融入多式聯(lián)運軸輻式網(wǎng)絡(luò)設(shè)計中,探討了多式聯(lián)運運營商選擇運輸路徑的均衡行為[12].Lin等運用博弈論考慮了寡頭市場中受時限約束的零擔(dān)運輸企業(yè)之間的博弈行為,結(jié)果表明適量的合作與競爭策略會提高所有運營商的利潤[13].Gelareh等探討了競爭環(huán)境中班輪運輸網(wǎng)絡(luò)設(shè)計問題,主要分析了新運營商與占主導(dǎo)地位的網(wǎng)絡(luò)聯(lián)盟企業(yè)之間的競爭,從降低運輸成本與運輸時間角度研究了新運營商的網(wǎng)絡(luò)設(shè)計問題,以應(yīng)對聯(lián)盟企業(yè)的競爭與獲取最大化市場份額,并建立了相應(yīng)顧客效用函數(shù)[14].此外,Drezner等也建立了顧客效用函數(shù),研究了航空樞紐選址問題[15].
然而,以上文獻(xiàn)主要集中于競爭環(huán)境下新運營商的網(wǎng)絡(luò)設(shè)計研究,缺乏對中小規(guī)模運營商所采取的網(wǎng)絡(luò)調(diào)整策略研究.基于此,為了進(jìn)一步擴展競爭環(huán)境下的軸輻式物流網(wǎng)絡(luò)設(shè)計與調(diào)整策略研究,本文將OD流運輸成本與運輸時間融入顧客效用函數(shù)中,建立了基于顧客效用的網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整混合整數(shù)規(guī)劃模型,通過降低運輸時間與運輸成本來吸引顧客,以實現(xiàn)新運營商與中小規(guī)模運營商的市場份額最大化.
為了能夠在聯(lián)盟企業(yè)網(wǎng)絡(luò)覆蓋區(qū)域吸引更多顧客,新運營商可以基于以下策略進(jìn)行網(wǎng)絡(luò)設(shè)計:1)減少OD流運輸時間,使其低于聯(lián)盟企業(yè)的運輸時間;2)減少OD流運輸成本,使其低于聯(lián)盟企業(yè)的運輸成本.而對于已存在的中小規(guī)模運營商而言,為了獲取更多的市場份額可以采取的網(wǎng)絡(luò)調(diào)整策略:1)改派二級集散點到樞紐點的分配關(guān)系;2)調(diào)整樞紐點個數(shù)(關(guān)閉或增加樞紐).
1.1 離散型顧客效用函數(shù)
?i,j,i≠j,
(1)
?i,j,i≠j.
(2)
1.2 連續(xù)型顧客效用函數(shù)
(3)
(4)
(5)
(6)
圖1 顧客效用函數(shù)Fig.1 Customer utility function
2.1 符號定義
1)集合與參數(shù)
2) 決策變量
2.2 模型
以下網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整模型1適用于顧客對小范圍運輸成本與時間的變動不敏感情形;網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整模型2適用于顧客對運輸成本與時間的變動敏感且顧客效用函數(shù)的邊際效用不變情形;網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整模型3適用于顧客對運輸成本與時間的變動敏感且顧客效用函數(shù)的邊際效用遞減情形.
1)網(wǎng)絡(luò)設(shè)計模型1
此模型為新運營商應(yīng)對聯(lián)盟企業(yè)競爭,為了獲取最大化市場份額,考慮顧客效用函數(shù)為分段函數(shù)所建立的網(wǎng)絡(luò)規(guī)劃模型,如式(7)-(23).
Model 1
maxf=f1+f2,
(7)
s. t.
(8)
(9)
∑kxi,k=1,?i,
(10)
xi,k≤xk,k,?i,k,
(11)
∑kxk,k=p,
(12)
∑lXi,j,k,l≤xi,k,?i,j,k,i≠j,
(13)
∑kXi,j,k,l≤xj,l,?i,j,l,i≠j,
(14)
∑k,lXi,j,k,l=1,?i,j,i≠j,
(15)
∑k,lXi,j,k,l=0,?i,j,i=j,
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
2)網(wǎng)絡(luò)設(shè)計模型2
此模型為新運營商考慮顧客效用函數(shù)為線性函數(shù)所建立的網(wǎng)絡(luò)規(guī)劃模型,如式(24)~(31).
Model 2
maxf=f1+f2,
(24)
s. t. 式(10)~(18),
(25)
(26)
(27)
(28)
(29)
(30)
(31)
3)網(wǎng)絡(luò)設(shè)計模型3
此模型為新運營商考慮顧客效用函數(shù)為二次函數(shù)所建立的網(wǎng)絡(luò)規(guī)劃模型,如式(32)~(34).其中式(33)、(34)含義分別同式(25)、(26).
Model 3
maxf=f1+f2,
(32)
s. t. 式(10)~(18),(27)~(31),
(33)
(34)
4)網(wǎng)絡(luò)調(diào)整模型1
此模型為中小規(guī)模運營商應(yīng)對聯(lián)盟企業(yè)競爭,為了獲取最大化市場份額,考慮顧客效用函數(shù)為分段函數(shù)所建立的網(wǎng)絡(luò)調(diào)整模型,如式(35)~(36).其中式(36)為中小規(guī)模運營商對原有樞紐點的重配置約束.
Model 4
maxf=f1+f2,
(35)
s. t. 式(8)~(11),(13)~(23),
(36)
5)網(wǎng)絡(luò)調(diào)整模型2
此模型為中小規(guī)模運營商考慮顧客效用函數(shù)為線性函數(shù)所建立的網(wǎng)絡(luò)調(diào)整模型.定義為Model 5,以式(35)為目標(biāo)函數(shù),式(10)~(11),(13)~(18),(25)~(31)與(36)為約束條件.
6)網(wǎng)絡(luò)調(diào)整模型3
此模型為中小規(guī)模運營商考慮顧客效用函數(shù)為二次函數(shù)所建立的網(wǎng)絡(luò)調(diào)整模型.定義為Model 6,以式(35)為目標(biāo)函數(shù),式(10)~(11),(13)~(18),(27)~(31),(33)~(34)與(36)為約束條件.
2.3 非線性目標(biāo)函數(shù)轉(zhuǎn)換
(37)
(38)
(39)
(40)
(41)
(42)
3.1 實驗設(shè)置
2)實驗步驟:首先,設(shè)定θ=0.6,0.75,0.9,對于每一個θ值,求解不同λ值(λ=0,0.2,0.4,0.6,0.8,1)時各網(wǎng)絡(luò)設(shè)計模型與調(diào)整模型的樞紐位置及二級集散點分配關(guān)系;其次,比較不同顧客效用函數(shù)對網(wǎng)絡(luò)設(shè)計與調(diào)整的影響.
3.2 結(jié)果分析
圖2為聯(lián)盟企業(yè)Ω運營網(wǎng)絡(luò)圖(θ=0.6),圖3為新運營商R求解網(wǎng)絡(luò)設(shè)計模型1時的運營網(wǎng)絡(luò)圖(θ=0.6,λ=0.4),圖4為中小規(guī)模運營商R原有運營網(wǎng)絡(luò)圖(θ=0.6),圖5為中小規(guī)模運營商R求解網(wǎng)絡(luò)調(diào)整模型1時的運營網(wǎng)絡(luò)圖(θ=0.6,λ=0.4).新運營商網(wǎng)絡(luò)設(shè)計對比分析結(jié)果展示在表1,中小規(guī)模運營商網(wǎng)絡(luò)調(diào)整對比分析結(jié)果展示在表2.表1與表2中市場份額量以決策偏好權(quán)重λ=0時求解結(jié)果作為基準(zhǔn),正號表示在此基礎(chǔ)上的增加量,負(fù)號表示其減少量.
圖2 聯(lián)盟企業(yè)Ω運營網(wǎng)絡(luò)圖(θ=0.6)Fig.2 Operation network of alliance operator Ω(θ=0.6)
圖3 新運營商R考慮網(wǎng)絡(luò)設(shè)計模型1時運營網(wǎng)絡(luò)圖(θ=0.6,λ=0.4)Fig.3 Operation network of newcomer service provider R with considering H/S design model 1(θ=0.6,λ=0.4)
圖4 中小規(guī)模運營商R原有運營網(wǎng)絡(luò)圖(θ=0.6)Fig.4 Original operation network of the small and medium-sized operator R(θ=0.6)
圖5 中小規(guī)模運營商R考慮網(wǎng)絡(luò)調(diào)整模型1時運營網(wǎng)絡(luò)圖(θ=0.6,λ=0.4)Fig.5 Operation network of the small and medium-sized operator R with considering H/S adjustment model 1(θ=0.6,λ=0.4)
1)為了應(yīng)對聯(lián)盟企業(yè)的競爭,新運營商通過減少OD流運輸成本與運輸時間設(shè)計網(wǎng)絡(luò),其樞紐位置基本上不同于聯(lián)盟企業(yè)網(wǎng)絡(luò)樞紐位置.如圖2中聯(lián)盟企業(yè)網(wǎng)絡(luò)樞紐位置為8、11、14與19,而圖3中新運營商網(wǎng)絡(luò)樞紐位置為3、7、13與18.
2)為了應(yīng)對聯(lián)盟企業(yè)的競爭,中小規(guī)模運營商通過關(guān)閉樞紐點與改派二級集散點的分配關(guān)系來調(diào)整網(wǎng)絡(luò).通過比較圖4與圖5,得到調(diào)整后的網(wǎng)絡(luò)中二級集散點4、6、9、13、14與17指派關(guān)系發(fā)生改變,而從表2中得到θ=0.9時,樞紐點8關(guān)閉.因此,為了能夠從運輸時間與運輸成本上獲取更大的競爭優(yōu)勢,中小規(guī)模運營商可以適當(dāng)放松樞紐個數(shù)限制(關(guān)閉或增加樞紐點).
表1 新運營商網(wǎng)絡(luò)設(shè)計對比分析結(jié)果
表2 中小規(guī)模運營商網(wǎng)絡(luò)調(diào)整對比分析結(jié)果
3)不同θ與λ值水平下,新運營商網(wǎng)絡(luò)設(shè)計與中小規(guī)模運營商網(wǎng)絡(luò)調(diào)整策略中,網(wǎng)絡(luò)樞紐位置基本不隨顧客效用函數(shù)改變,其變化主要體現(xiàn)為二級集散點指派關(guān)系的改變.原因:考慮的三種顧客效用函數(shù)都是運輸時間或運輸成本的遞減函數(shù),因此只要模型求解效果能夠減少運輸成本與運輸時間,其采用哪一種顧客效用函數(shù)不會很大程度影響網(wǎng)絡(luò)設(shè)計與調(diào)整布局.例如,表1各網(wǎng)絡(luò)設(shè)計模型中,樞紐點出現(xiàn)頻率最高的為3、5、7、10、13與18;而表2各網(wǎng)絡(luò)調(diào)整模型中,樞紐點出現(xiàn)頻率最高的為2、8、16與18.
4)在某一θ值水平下,市場份額獲取量基本上隨λ值的增大而減少(見表1與表2).而在某一λ值水平下,市場份額獲取量基本上也隨θ值的增大而減少.這說明了新運營商與中小規(guī)模運營商在進(jìn)行網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整時,應(yīng)該根據(jù)自有運輸規(guī)模優(yōu)勢選取運輸成本折扣系數(shù)θ,同時也應(yīng)該根據(jù)影響市場份額的因素來評估確定其決策偏好權(quán)重λ值(如顧客對運輸時間的敏感程度大于運輸成本敏感程度等),以使設(shè)計的網(wǎng)絡(luò)獲取市場份額最大化.
5)在同一θ值與λ值水平下,不同的顧客效用函數(shù)導(dǎo)致不同的市場份額獲取量(見表1與表2).原因:首先,受效用函數(shù)特征影響.分段效用函數(shù)呈現(xiàn)分段跳躍式變化,對運輸成本與運輸時間小范圍變化不敏感;線性效用函數(shù)對運輸成本與運輸時間變化敏感,但敏感程度不變;非線性凸效用函數(shù)對運輸成本與運輸時間變化敏感程度逐漸遞減.其次,由于本文計算得到的運輸成本與運輸時間減少量較小,使得非線性凸效用函數(shù)處于不敏感階段,而線性函數(shù)效用值又小于分段函數(shù)效用值(見圖1),從而表現(xiàn)出表1與表2中同一θ值與λ值水平下分段效用函數(shù)的市場份額獲取量最大.即網(wǎng)絡(luò)設(shè)計與調(diào)整模型1的市場份額獲取量最大,設(shè)計與調(diào)整模型2的市場份額次之,設(shè)計與調(diào)整模型3的市場份額獲取量最小.
綜上,當(dāng)顧客對運輸成本變動的敏感程度大于對運輸時間變動的敏感性時,為了實現(xiàn)顧客市場份額最大化,運營商應(yīng)該考慮增大決策偏好權(quán)重λ值;反之相反.不同的顧客效用函數(shù)對市場份額獲取量以及網(wǎng)絡(luò)結(jié)構(gòu)具有不同的影響.具體何種網(wǎng)絡(luò)設(shè)計與調(diào)整模型應(yīng)該被采用,需要物流運營商結(jié)合模型的適用情形與顧客的成本與時間偏好進(jìn)行決策.但具有相似特征的顧客效用函數(shù)(如本文構(gòu)建的3種顧客效用函數(shù))會得到基本相同的樞紐選址.
本文主要研究了競爭環(huán)境下的二級軸輻式物流網(wǎng)絡(luò)設(shè)計與調(diào)整問題.為了應(yīng)對軸輻式物流網(wǎng)絡(luò)聯(lián)盟企業(yè)的競爭,從減少OD流運輸成本與運輸時間角度探討了新運營商網(wǎng)絡(luò)設(shè)計與中小規(guī)模運營商網(wǎng)絡(luò)調(diào)整策略,建立了基于不同顧客市場份額效用函數(shù)的網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整混合整數(shù)規(guī)劃模型,并將非線性目標(biāo)函數(shù)轉(zhuǎn)化為二階錐規(guī)劃約束處理,分析了不同決策偏好權(quán)重、顧客效用函數(shù)、運輸成本與時間對網(wǎng)絡(luò)設(shè)計與網(wǎng)絡(luò)調(diào)整的影響.最后,通過算例驗證了模型的有效性.但是,目前缺少對顧客市場份額效用函數(shù)的建模和量化的相關(guān)研究,因此本文主要是提供了一個研究框架.在后續(xù)的工作中,將針對不同顧客市場份額效用函數(shù)對競爭環(huán)境下軸輻式網(wǎng)絡(luò)設(shè)計的影響和網(wǎng)絡(luò)調(diào)整策略展開進(jìn)一步研究.
[1] Farahani R Z, Hekmatfar M, Arabani A B, et al. Hub location problems: A review of models, classification, solution techniques, and applications [J]. Computers & Industrial Engineering, 2013, 64(4): 1096-1109.
[2] Alumur S A, Kara B Y, Karasan O E. The design of single allocation incomplete hub networks [J]. Transportation Research Part B: Methodological, 2009, 43(10): 936-951.
[3] 姚志剛, 周 偉, 王元慶. “軸—輻”式運輸網(wǎng)絡(luò)的范圍經(jīng)濟問題[J]. 交通運輸系統(tǒng)工程與信息, 2009, 9(1): 24-27.
[4] Cunha C B, Silva M R. A genetic algorithm for the problem of configuring a hub-and-spoke network for a LTL trucking company in Brazil [J]. European Journal of Operational Research, 2007, 179(3): 747-758.
[5] 倪玲霖, 史 峰, 方曉平, 等. 全連通快遞網(wǎng)絡(luò)與軸輻快遞網(wǎng)絡(luò)的比較 [J]. 系統(tǒng)工程, 2009, 27(12): 45-50.
[6] 趙 晉, 霍佳震. 軸輻式服務(wù)網(wǎng)絡(luò)規(guī)劃研究綜述 [J]. 上海管理科學(xué), 2010, 32(6): 89-92.
[7] O’kelly M E. A Quadratic integer program for the location of interacting hub facilities [J]. European Journal of Operational Research, 1987, 32(3): 393-404.
[8] 孫會君, 高自友. 一類有競爭的物流配送中心選址模型 [J]. 交通運輸工程學(xué)報, 2002, 2(4): 54-57.
[9] Lin C-C, Lin D-Y, Young M M. Price planning for time-definite less-than-truckload freight services [J]. Transportation Research Part E: Logistics and Transportation Review, 2009, 45(4): 525-537.
[10] Marianov V, Serra D, ReVelle C. Location of hubs in a competitive environment [J]. European Journal of Operational Research, 1999, 114(2): 363-371.
[11] Eiselt H A, Marianov V. A conditional p-hub location problem with attraction functions [J]. Computers & Operations Research, 2009, 36(12): 3128-3135.
[12] Meng Q, Wang X. Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers [J]. Transportation Research Part B: Methodological, 2011, 45(4): 724-742.
[13] Lin C C, Lee S C. The competition game on hub network design [J]. Transportation Research Part B: Methodological, 2010, 44(4): 618-629.
[14] Gelareh S, Nickel S, Pisinger D. Liner shipping hub network design in a competitive environment [J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 991-1004.
[15] Drezner T, Drezner Z. A note on applying the gravity rule to the airline hub problem [J]. Journal of Regional Science, 2001, 41(1): 67-72.
[16] Alizadeh F, Goldfarb D. Second-order cone programming [J]. Mathematical Programming, 2003, 95(1): 3-51.
Hub-and-spoke network design problem with considering transportation cost and time competition
HU Qingmi, HU Zhihua
(Logistics Research Center, Shanghai Maritime University, Shanghai 201306)
With operating on hub-and-spoke (H/S) logistics network,the competition between a newcomer service provider and an existing dominating alliance operator is addressed in this paper. Firstly, the H/S network design strategies of a newcomer service provider and the H/S network adjustment strategies of the small and medium-sized operator are discussed to improve their customer market share on the view of reducing transportation cost and transportation time of OD (Origin-Destination) flows. Secondly, the relation between transportation cost and transportation time and customer market share utility function is analyzed, and the corresponding step customer utility function, linear customer utility function and nonlinear customer utility function are also proposed. Then, mixed integer programming models about H/S network design and network adjustment are formulated based on the different customer utility functions. Meanwhile, the nonlinear objective function is transferred into second order cone programming constraints to overcome its complexity. Finally, the impacts of the different decision preference weights, customer utility function and transportation cost and time on H/S network design and network adjustment are analyzed through the experimental results.
logistics engineering; hub-and-spoke network; competition; second order cone programming; mixed integer programming
2014-10-22.
國家自然科學(xué)基金項目(71101088;71471109;71390521);教育部博士點基金項目(20113121120002);上海市教委科研創(chuàng)新項目(14YZ100);上海市自然科學(xué)基金項目(12ZR1412800);上海市曙光計劃項目(13SG48);上海海事大學(xué)研究生創(chuàng)新基金資助項目(2013ycx003, wk2013007).
1000-1190(2015)02-0314-08
U492
A
*通訊聯(lián)系人. E-mail: zhhu@shmtu.edu.cn.