• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-pot Cu(I)-catalyzed Multicomponent Click Reaction Mediated by Secondary Amine-functional Polysiloxane

    2015-03-20 01:13:38WANGCaiyunWANGDingZOUJinfengZHANGLijunZHENGZhanjiangYANGKefangXULiwenXUZheng

    WANG Caiyun,WANG Ding,ZOU Jinfeng,ZHANG Lijun,ZHENG Zhanjiang,YANG Kefang,XU Liwen,XU Zheng

    (1.Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education,Hangzhou Normal University,Hangzhou 311121,China;2.Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province,Zhejiang A &F University,Lin'an 311300,China)

    1 Introduction

    In the past decades,it is well known that the secondary and primary amine-functional polysiloxanes are usually used in textile industry because of extraordinary flexibility and superhydrophobility of the siloxane backbone[1-7].Interestingly and recently,the application of amine-functional polysiloxanes in catalysis has been attracted much attention,and it has been showed that the secondary and primary amine-functional polysiloxanes or polysiloxane-supported amines could be used as highly efficient macromolecular organocatalyst or supported ligand,even as an environmentally friend supporter in organocatalysts[8-11].In this context,we have developed a novel chiral amine-functional polysiloxane in 2008 to improve the stereoselectivity in enamine catalysis by the introduction super-hydrophobic long-chain silicone/polysiloxane as support/functional group for a model aldol reaction,in which the direct aldol reaction of cyclic ketones with different aromatic aldehydes catalyzed by polysiloxane derived primary amines was achieved with high yields and excellent enantioselectivities(up to 99%ee)[10].And recently,we have described that commercially available amino-functional polysiloxane was efficient organocatalyst in multicomponent Gewald reaction,α-allylic alkylation of aldehydes,and Knoevenagel condensation[11].The amine-functional polysiloxanes were also suitable nitrogen-containing ligand for metal-based catalysis.We have ever disclosed that both the secondary and primary amine-functional polysiloxanes were good ligand for copper-catalyzed Huisgen reaction of organic azide and alkynes.And the secondary amine-functional polysiloxanes mediated oxidative coupling of Huisgsen reaction of azides and alkynes efficiently,in which it provided the symmetrically 5,5’-coupled bis-triazole as the major product(Scheme 1)[12].These results supported the important role of the amine-functional polysiloxane in copper catalysis.On the basis of previous results in click chemistry[13-14],we continued to utilize the secondary and primary amine-functional polysiloxanes in copper-catalyzed transformations for the preparation of synthetically useful molecules.Herein,we report our new findings on the aminefunctional polysiloxanes accelerated copper-catalyzed multicomponent click coupling reaction of sodium azide,organic halides,and alkynes,in which the different catalytic activity of secondary amine-functional polysiloxane and primary amine-functional polysiloxane would be revealed in this work.

    Scheme 1 The amine-functional polysiloxanes mediated copper-catalyzed Huisgen reaction

    The 1,3-dipolar cycloadditions of azides and alkynes,broadly known as Huisgen cycloadditions,have gained much attention since the pioneering work of introducing copper(I)as catalyst by Medal and Sharpless[15-17].The reaction is widely investigated in the past decade owing to its high yielding,insensitive,mild reaction conditions and suitable for biomolecular ligation or even as a polymerization reaction to synthesis of special polymers[18-25].Notably,most of the reported click reactions are two component reactions(organic azide and alkyne)using Cu(II)source with addition of a reducing agent in large excess.On the other hand,to the best of our knowledge,there is few reports about the three component reactions(in situ generation of azides from alkyl halides and sodium azide)of the click reaction[26-35],and the strategies usually need the heteroginization of the Cu(I)catalyst on inorganic materials such as TD@nSiO2and activated carbon or organic supporter such as(acrylamide-imidazole)copolymer and N-heterocyclic carbene at high temperature or under microwave irradiation[26-42].Thus,it is highly desirable to develop the one-pot three component,easy to handle protocol for the click reaction using copper(I)catalyst under mild conditions.To avoid the use of potential hazards of organic azides,we report herein a simple method for the preparation of 1,2,3-triazoles via amine-functional polysiloxanes accelerated copper-catalyzed multicomponent Huisgen reaction.

    2 Results and Discussion

    In the previous work on the amine-functional polysiloxane accelerated copper-catalyzed Huisgen coupling reaction[12],we have demonstrated an interesting example of divergent catalysis with copper(I)catalyst controlled by amine-functional macromolecular polysiloxanes.The remarkable catalytic ability of the secondary amine-functional polysiloxane(1b)was successfully revealed in the CuCl-mediated Huisgen reactions of organic azides and alkynes,in which the secondary amine-functional polysiloxane led to bistriazoles with good yields while the use of diamine-functional polysiloxane(1a)as ligand led to classic 1,2,3-triazoles via general Huisgen cycloaddition.All these results suggested that the secondary aminefunctional polysiloxane(1b)-changed the mechanism of copper-catalyzed Huisgen coupling reaction.Thus we hypothesized that secondary amine-functional polysiloxane would be useful for the one-pot multicomponent Huisgen coupling reactions.

    Initially,we carried out the one-pot three-component Huisgen coupling reaction of sodium azide and benzyl bromide with phenylacetylene in the presence of various copper salts and amine-functional polysiloxane(1b).We expected the one-pot multicomponent cycloaddition could be carried out in DMF to give the desired product in the presence of copper salt and amine-functional polysiloxane.As shown in Tab.1,the secondary amine-functional polysiloxane(1b)was proved to effective ligand in the CuCl-catalyzed multicomponent cycloaddition in DMF(Entry 1).Surprisingly,other copper salts such as Cu(OAc)2,Cu(OTf)2and CuI,gave inferior activity in this reaction(Entries 2~5).And Cu2O was also not suitable catalyst in the one-pot multicomponent cycloaddition.Interestingly,when the DCM was used instead of DMF,good yield was achieved with the same amine-functional polysiloxane and CuCl in this case(Entry 6,81%yield).Notably,poor yield of the desired product was achieved under solvent-free conditions(Entry 8).And the use of primary amine-functional polysiloxane(1a)resulted in almost no reaction(Entry 9).These data thus show that the catalytic activity of Cu(I)is significantly enhanced in the presence of secondary amine-functional polysiloxane(1b).

    Tab.1 Catalyst screening in the copper-catalyzed three-component Huisgen coupling reaction in the presence of amine-functional polysiloxane

    Intrigued by these results,the reaction was carried out in different solvents.When solvents such as acetonitrile,DCE,MeOH,THF,toluene,and water,the desired product,1,2,3-triazole 4a,was obtained in only moderate yields(30%~67%yield).As shown in Fig.1,the effect of organic solvents evaluated in this work on the copper-catalyzed multicomponent cycloaddition supported the privileged role of DCM in this reaction.Although water was also suitable and green solvent in the amine-functional polysiloxane mediated click reaction,we utilized DCM as better solvent for the next investigation.

    Fig.1 The effect of solvents on the amine-functional polysiloxane-accelerated copper-catalyzed Huisgen reaction of sodium azide and benzyl bromide with phenylacetylene

    As reported in the previous work[43-49],various organic amines,including imidazole and related ligands,have been found to superior accelerating ligands for the copper(I)-catalyzed Huisgen azide-alkyne cycloaddition.Thus we carried out the experiments with various organic amines to investigate the accelerating effect of small molecular amines in this reaction.As shown in Tab.2,commercially available secondary amines,such as diethylamine and dimethylamine,resulted in moderate yields in this reaction(49%and 64%respectively).And many primary amines,such as ethylenediamine,2-dimethylaminoethylamine,cyclohexylamine,3-ethyladamantan-1-amine,led to poorer yields(10% ~28% yield).Although the tertiary amines,such as ethyldiisopropylamine and tributylamine gave promising activity in the CuCl-catalyzed Huisgen azide-alkyne cycloaddition,the corresponding yields were still good enough in comparison to that of secondary amine-functional polysiloxane(1b).Notably,the heterocycle-based organic base,such as pyrrole or imidazole,the CuCl-catalyzed multicomponent cycloaddition was not satisfied in yield of the desired product 4a.Thus under the same reaction conditions except the use of amine-based ligand,the secondary amine-functional polysiloxane(1b)exhibited superior activity the CuCl-catalyzed multicomponent cycloaddition of sodium azide and benzyl bromide with phenylacetylene.Similarly to previous findings on the amine-functional polysiloxane mediated organic transformations[8-14],we suggested the main chain of polysiloxane would be beneficial to stability of activated Cu(I)catalyst that was important for the catalytic cycle of copper-promoted Huisgen cycloaddition of organic azide and alkyne.

    Tab.2 The effect of organic amines on the copper-catalyzed Huisgen coupling reaction

    Based on the interesting result,we investigated the generality of this three-component cylcoaddition of sodium azide,organic halides,and alkynes under the optimized reaction conditions.As shown in Tab.3,various benzyl bromides with simple nonfunctionlized alkynes,together with sodium azide were subjected to the present reaction conditions to evaluate the scope and limitation of the multicomponent cycloaddition reaction.The benzyl bromides bearing electron donating groups including methyl,methoxy andtert-butyl groups,reacted with sodium azide cleanly in the one-pot multicompoenent cycloaddition reaction,providing the desired triazoles in good yields(Entries 1~9).The best yield could be up to 99%.However,benzyl bromides containing the electron withdrawing groups like NO2and fluorine,as well as the bromide substituent,resulted in only low to moderate yields of the corresponding products(Entries 10~14).It is possibly due to the poor yield of benzyl azide in the initial step of nucleophilic addition.Interestingly,when the 1,4-bis(bromomethyl)benzene or 1,3-bis(bromomethyl)benzene was used with 2 equiv of phenylacetylene and Na N3,the desired bistriazole was obtained in promising yield(Entries 18 and 20 respectively).The experimental results in Tab.1 clearly indicates that the secondary amine-functional polysiloxane(1b)is a good macromolecular ligand in the copper(I)-catalyzed multicomponent cycloaddition of organic halides,sodium azide,and alkynes.

    Tab.3 Secondary amine-functional polysiloxane-accelerated CuCl-catalyzed multicomponent cycloaddition reaction

    3 Conclusions

    In summary,we have described an interesting finding that the secondary amine-functional polysiloxane effectively accelerated copper(I)-catalyzed multicomponent cycloaddition of sodium azide,organic halide,and alkynes.With the mediation of secondary amine functional polysiloxane,the one-pot threecomponent click reaction could be performed smoothly under mild conditions to give various 1,2,3-triazoles in moderate to good yields.The ease of preparation of various 1,2,3-triazoles together with the simple conditions and work up,suggest this multicomponent click reaction could have wide potential.

    4 Experimental

    4.1 Materials

    All reagents and solvents were commercially available and used as received unless otherwise stated.Secondary Amine-functional Polysiloxane(AFP,1b)was purchased from Hangzhou Bald Silicone Co.,Ltd.(0.55 mmol/g polysiloxane,Mw~1 900).IR:2 962,2 905,1 412,1 260,1 092,1 020,884,800 cm-1;GPC:Mw:1 900;Mw/Mn=1.94.

    4.2 Methods and equipments

    Flash column chromatography was performed over silica(200~300 mesh).1H-NMR and13C-NMR spectra were recorded at 400 and 100 MHz,respectively on Advance(Brucker)400 MHz Nuclear Magnetic Resonance Spectromer,and were referenced to the internal solvent signals.Thin layer chromatography was performed using silica gel;F254TLC plates and visualized with ultraviolet light.GC/MS spectrometer.Data are reported in the form of(m/z).The product was known and confirmed by GC-MS,and usual spectral methods(1H-NMR,13C-NMR).

    4.3 General Procedure for one-pot multicomponent click reaction

    A catalytic amount of N—H oil(10 mol%)and CuCl(5 mol%)in DCM (3 m L)were stirred at RT for 20 min,and then NaN3(1.0 mmol)and benzyl bromide(1.0 mmol)added at room temperature,the reaction mixture was stirred for 1 h.Subsequently,the Phenylacetylene(1.0 mmol)was added to above solution at room temperature,and the reaction continued to stir for 2 d.Without working up,the crude product was purified by silica gel column chromatography to furnish the desired product and confirmed by GC-MS,NMR.

    4a:1H NMR(400 MHz,CDCl3)δ7.74(d,J=7.9 Hz,2 H),7.62(s,1 H),7.37~7.17(m,7 H),5.47(s,2 H).13C NMR (100 MHz,CDCl3)δ138.20,134.80,130.64,129.15,128.83,128.76,128.17,128.06,125.74,119.66,54.19.GC-MS calculated for C15H13N3,235.11;found 235.1.

    4b:1H NMR(400 MHz,CDCl3)δ7.80~7.68(m,2 H),7.51(s,1 H),7.41~7.08(m,7 H),5.53(s,2H),2.27(s,3H).13C NMR(100 MHz,CDCl3)δ137.11,132.62,131.20,130.57,129.54,129.31,128.91,128.30,126.82,125.84,119.48,52.61,19.10.GC-MS calculated for C16H15N3,249.13;found 249.1.

    4c:1H NMR(400 MHz,CDCl3)δ7.88~7.74(m,2H),7.67(s,1H),7.45~7.02(m,7H),5.53(s,2H),2.35(s,3H).13C NMR(100 MHz,CDCl3)δ148.30,139.16,134.74,130.73,129.66,129.1,128.91,128.27,125.85,125.27,119.62,54.38,21.44.GC-MS calculated for C16H15N3,249.13;found 249.2.

    4d:1H NMR(400 MHz,CDCl3)δ7.80(d,J=7.3 Hz,2H),7.68(s,1 H),7.33(m,4 H),6.94~6.71(m,3 H),5.52(s,2 H),3.78(d,J=0.9 Hz,3 H).13C NMR (100 MHz,CDCl3)δ 160.28,148.31,136.26,130.68,130.32,128.89,128.25,125.81,120.34,119.64,114.35,113.78,55.41,54.26.GC-MS calculated for C16H15N3O,265.12;found 265.0.

    4e:1H NMR(400 MHz,CDCl3)δ7.89~7.10(m,10H),5.52(s,2H),2.36(s,3H).13C NMR(100 MHz,CDCl3)δ148.26,138.84,131.78,130.74,129.92,128.89,128.23,125.82,119.51,54.16,21.27.GC-MS calculated for C16H15N3,249.1;found 249.1.

    4f:1H NMR(400 MHz,CDCl3)δ7.87~7.77(m,2H),7.68(s,1 H),7.46~7.20(m,7 H),5.55(s,2H),1.34(s,9 H).13C NMR (100 MHz,CDCl3)δ152.07,148.24,131.78,130.73,128.90,128.24,128.02,126.19,125.84,119.61,54.08,34.77,31.38.GC-MS calculated for C19H21N3,291.17;found 291.0.

    4g:1H NMR(400 MHz,CDCl3)δ8.21~8.08(m,2H),7.99(s,1H),7.81~7.55(m,5H),7.32~7.20(m,2H),5.86(s,2H),4.17(s,3H).13C NMR(100 MHz,CDCl3)δ160.10,148.23,130.74,129.77,128.81,128.22,126.77,125.81,119.40,114.65,114.07,55.46,53.89.GC-MS calculated for C16H15N3O,265.12;found 265.1.

    4h:1H NMR(400 MHz,CDCl3)δ7.74~7.49(m,7 H),7.42~7.03(m,6 H),5.53(s,2 H).13C NMR(100 MHz,CDCl3)δ133.26,132.13,130.62,129.19,128.84,128.19,127.91,127.37,126.76,125.75,125.35,119.75,54.37.GC-MS calculated for C19H15N3,285.13;found 285.1.

    4i:1H NMR(400 MHz,CDCl3)δ7.88~7.59(m,3H),7.48~7.14(m,3H),6.44(s,3H),5.47(s,2H),3.75(s,6H).13C NMR (100 MHz,CDCl3)δ161.48,148.31,136.92,130.67,128.90,128.25,125.81,119.64,106.21,100.58,55.53,54.38.GC-MS calculated for C17H17N3O2,295.13;found 295.1.

    4j:1H NMR(400 MHz,CDCl3)δ8.20~8.05(m,2 H),7.74(d,J=7.1 Hz,3 H),7.60~7.40(m,2 H),7.40~7.16(m,3H),5.61(s,2H).13C NMR (100 MHz,CDCl3)δ148.69,136.96,133.97,130.35,128.98,128.52,125.85,123.81,122.93,119.85,53.24.GC-MS calculated for C15H12N4O2,280.10;found 280.0.

    4k:1H NMR(400 MHz,CDCl3)δ8.15(d,J=8.7 Hz,2H),7.75(m,3H),7.48~7.17(m,5H),5.63 (s,2H).13C NMR (100 MHz,CDCl3)δ148.30,141.99,130.36,129.11,128.72,125.95,124.49,53.36.GC-MS calculated for C15H12N4O2,280.10;found 280.0.

    4l:1H NMR(400 MHz,CDCl3)δ7.89~7.60(m,3H),7.47~7.19(m,5H),7.06(m,2H),5.52(s,2H).13C NMR (100 MHz,CDCl3)δ164.25,161.78,130.81,130.43,130.05,128.95,128.38,125.85,119.56,116.37,116.15,53.60.GC-MS calculated for C15H12FN3,253.10;found 253.2.

    4m:1H NMR(400 MHz,CDCl3)δ7.93~7.81(m,2 H),7.79(s,1 H),7.58~7.22(m,7 H),5.58(s,2 H).13C NMR (100 MHz,CDCl3)δ148.42,136.97,132.04,131.08,130.80,130.35,128.95,128.44,126.66,125.87,123.21,119.78,53.56.GC-MS calculated for C15H12Br N3,313.02;found 315.1.

    4n:1H NMR(400 MHz,CDCl3)δ7.89~7.72(m,2H),7.67(s,1H),7.59~7.06(m,7H),5.52(s,2H).13C NMR (100 MHz,CDCl3)δ133.87,132.47,130.53,129.77,128.97,128.41,125.87,123.09,119.58,53.66.GC-MS calculated for C15H12Br N3,313.02;found 315.1.

    4o:1H NMR(400 MHz,CDCl3)δ7.78(m,3H),7.44~7.18(m,5H),7.00~6.86(m,2H),5.57(s,2H),3.87(s,3H).13C NMR(100 MHz,CDCl3)δ130.35,128.80,128.02,125.76,121.06,119.88,110.92,55.60,49.22.GC-MS calculated for C16H15N3O,265.12;found 265.0.

    4p:1H NMR(400 MHz,CDCl3)δ7.90~7.71(m,3H),7.48~7.21(m,3H),6.07(m,1H),5.36(t,J=13.6 Hz,2H),5.02(d,J=6.1 Hz,2 H).13C NMR(100 MHz,CDCl3)δ131.47,130.77,128.96,128.28,125.86,120.32,119.51,52.90.GC-MS calculated for C11H11N3,185.10;found 185.1.

    4q:1H NMR(400 MHz,CDCl3)δ7.91(dd,J=5.4,4.2 Hz,1H),7.84~7.77(m,2 H),7.66~7.59(m,2 H),7.48~7.32(m,5 H),7.28~7.10(m,3 H),5.91(s,2H).13C NMR(100 MHz,CDCl3)δ148.17,148.17,148.17,134.12,132.74,175.89,130.55,129.35,128.76,128.71,128.51,128.10,127.50,126.58,125.65,123.05,119.58,52.55.GC-MS calculated for C19H15N3,285.13;found 285.0.

    4r:1H NMR(400 MHz,CDCl3)δ8.78~8.71(m,3H),8.63(s,2H),8.40~8.12(m,8H),6.51(s,2H),5.40(s,2H).13C NMR(100 MHz,CDCl3)δ148.49,139.08,135.58,130.63,129.81,129.57,128.96,128.63,128.37,128.07,125.89,119.67,54.01,32.71.

    4s:1H NMR(400 MHz,CDCl3)δ7.89~7.60(m,3 H),7.47~7.19(m,5 H),7.06(m,2 H),5.52(s,2H).13C NMR (100 MHz,CDCl3)δ164.25,161.78,130.81,130.43,130.05,128.95,128.38,125.85,119.56,116.37,116.15,53.60.GC-MS calculated for C15H12FN3,253.10;found 253.0.

    4t:1H NMR(400 MHz,CDCl3)δ9.26(m,3H),8.99~8.61(m,9 H),7.05(s,2 H),5.96(s,2H).13C NMR(100 MHz,CDCl3)δ148.44,138.63,135.06,130.56,129.92,128.95,128.45,125.87,119.67,53.90,32.63.

    4u:1H NMR(400 MHz,CDCl3)δ7.87(s,1 H),7.83~7.73(m,2 H),7.42~7.15(m,3 H),5.13(s,2H),4.20(q,J=7.1 Hz,2H),1.23(t,J=7.1 Hz,3H).13C NMR(100 MHz,CDCl3)δ166.34,148.19,130.48,128.86,128.26,125.83,121.15,62.42,50.97,14.07.GC-MS calculated for C12H13N3O2,231.10;found 231.1.

    4v:1H NMR(400 MHz,CDCl3)δ7.75(m,3 H),7.57~7.22(m,7 H),5.70(s,2H),2.52(s,3H).13C NMR(100 MHz,CDCl3)δ138.59,134.87,130.55,129.25,129.13,128.70,128.15,126.49,122.92,54.31,21.49.GC-MS calculated for C16H15N3,249.13;found 249.1.

    4w:1H NMR(400 MHz,CDCl3)δ7.68~7.56(m,3 H),7.34~7.16(m,7 H),5.47(s,2 H).13C NMR(100 MHz,CDCl3)δ147.16,134.62,133.89,129.08,128.12,126.99,119.72,54.30.GC-MS calculated for C15H12Cl N3,269.07;found 269.1.

    4x:1H NMR(400 MHz,CDCl3)δ7.77(d,J=8.0 Hz,2 H),7.43(t,J=6.1 Hz,3 H),7.38~7.23(m,5 H),5.62(s,2H),2.71~2.63(m,2 H),1.74~1.59(m,2H),1.38(m,4H),0.95(t,J=6.9 Hz,3 H).13C NMR (100 MHz,CDCl3)δ143.23,134.93,129.25,128.91,128.16,125.75,54.34,35.83,31.58,31.16,22.65,14.13.GC-MS calculated for C20H23N3,305.19;found 305.1.

    4y:1H NMR(400 MHz,CDCl3)δ7.78(d,J=8.0 Hz,2H),7.72(s,1H),7.37(m,5H),7.27(d,J=7.8 Hz,2 H),5.61(s,2 H),2.69~2.61(m,2 H),1.78~1.64(m,2 H),1.00(t,J=7.3 Hz,3 H).13C NMR(100 MHz,CDCl3)δ142.95,134.85,129.19,128.90,128.10,125.71,54.29,37.87,24.51,13.83.GC-MS calculated for C18H19N3,277.16;found 277.1.

    4z:1H NMR(400 MHz,CDCl3)δ7.76(d,J=8.1 Hz,2H),7.68(s,1H),7.47~7.23(m,7 H),5.59(s,2 H),2.70(q,J=7.6 Hz,2 H),1.29(t,J=7.6 Hz,3H).13C NMR(100 MHz,CDCl3)δ144.46,134.91,129.21,128.71,128.38,128.11,125.80,119.34,54.26,28.75,15.57.GC-MS calculated for C17H17N3,263.14;found 263.1.

    4aa:1H NMR(400 MHz,CDCl3)δ7.79~7.64(m,3H),7.36(m,7 H),5.62(s,2H),2.43(s,3H).13C NMR(100 MHz,CDCl3)δ148.40,138.09,134.88,129.58,129.22,128.83,128.15,127.86,125.73,119.28,54.28,21.35.GC-MS calculated for C16H15N3,249.13;found 249.0.

    4bb:1H NMR(400 MHz,CDCl3)δ7.80~7.49(m,3 H),7.44~7.23(m,5 H),6.98~6.81(m,2H),5.53(s,2H),3.81(s,3H).13C NMR(100 MHz,CDCl3)δ159.70,148.16,134.91,129.19,128.78,128.10,127.09,123.41,118.83,114.31,55.38,54.23.GC-MS calculated for C16H15N3O,265.12;found 265.1.

    [1]Skinner M W,Qian C B,Grigoras S,etal.Fundamental aspects of aminoalkyl siloxane softeners by molecular modeling and experimental methods[J].Text Res J,1999,69:935-943.

    [2]Kang T J,Kim M S.Effects of silicone treatments on the dimensional properties of wool fabric[J].Text Res J,2001,71:295-300.

    [3]Ni S C,Kuo P L.Effect of amino and polysiloxane groups on the chemical adsorption of polymers containing thiophosphate at the oil/metal interface under extreme pressure[J].J Polym Sci Ploym Phy,2002,40:1795-1803.

    [4]Kaneko Y,Iyi N,Matsumoto T,etal.Synthesis of ion-exchangeable layered polysiloxane by sol-gel reaction of aminoalkyltrialkoxysilane:a new preparation method for layered polysiloxane materials[J].J Mater Chem,2003,13(9):2058-2060.

    [5]Colilla M,Darder M,Aranda P,etal.Amino-polysiloxane hybrid materials as carbon composite electrodes for potentiometric detection of anions[J].J Mater Chem,2005,15(35/36):3844-3851.

    [6]Colilla M,Salinas A J,Vallet-Regi M.Amino-polysiloxane hybrid materials for bone reconstruction[J].Chem Mater,2006,18(24):5676-5683.

    [7]Xu Y J,Yin H,Zheng H F,etal.Application performance and surface morphologies of amino polysiloxanes with different amino values and amino types[J].J Appl Polym Sci,2011,119(4):2326-2333.

    [8]DeClue M S,Siegel J S.Polysiloxane-bound ligand accelerated catalysis:a modular approach to heterogeneous and homogeneous macromolecular asymmetric dihydroxylation ligands[J].Org Biomol Chem,2004,2(16):2287-2298.

    [9]Grunlan M A,Regan K R,Bergbreiter D E.Liquid/liquid separation of polysiloxane-supported catalysts[J].Chem Commun,2006(16):1715-1717.

    [10]Xu L W,Ju Y D,Li L,etal.Homogeneous silicone modified primary amine-Bronsted acid salt catalyzed aldol reaction:unexpected synergistic effect of polysiloxane with remarkable improvement of efficiency and stereoselectivity[J].Tetrahedron Lett,2008,49(49):7037-7041.

    [11]Zheng Z J,Liu L X,Gao G,etal.Amine-functional polysiloxanes(AFPs)as efficient polymeric organocatalyst for amino catalysis:efficient multicomponent Gewald reaction,α-allylic alkylaion of aldehydes,and Knoevenagel condensation[J].RSC Advances,2012,2(7):2895-2901.

    [12]Zheng Z J,Ye F,Zheng L S,etal.Copper-catalyzed huisgen and oxidative Huisgen coupling reactions controlled by polysiloxane-supported amines(AFPs)for the divergent synthesis of triazoles and bistriazoles[J].Chem Eur J,2012,18(44):14094-14099.

    [13]Wang C Y,Zou J F,Zheng Z J,etal.BINOL-linked 1,2,3-triazoles:an unexpected fluorescent sensor with anion-πinteraction for iodide ions[J].RSC Advances,2014,4(97):54256-54262.

    [14]Song T,Li L,Zhou W,etal.Enantioselective copper-catalyzed azide-alkyne click cycloaddition to desymmetrization of maleimide-based bis(alkynes)[J].Chem Eur J,2014,21(2):554-558.

    [15]Kolb H C,F(xiàn)inn M G,Sharpless K B.Click chemistry:diverse chemical function from a few good reactions[J].Angew Chem Int Ed,2001,40(11):2004-2021.

    [16]Rostovtsev V V,Green L G,F(xiàn)okin V V,etal.A stepwise Huisgen cycloaddition process:copper(I)-catalyzed regioselective“l(fā)igation”of azides and terminal alkynes[J].Angew Chem,2002,114(14):2596-2599.

    [17]Tornoe C W,Christensen C,Meldal M.Peptidotriazoles on solid phase:[1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides[J].J Org Chem,2002,67(9):3057-3064.

    [18]Lutz J F.1,3-Dipolar cycloadditions of azides and alkynes:a universal ligation tool in polymer and materials science[J].Angew Chem Int Ed,2007,46(7):1018-1025.

    [19]Kasteren S I,Kramer H B,Gamblin D P,etal.Site-selective glycosylation of proteins:creating synthetic glycoproteins[J].Nat Protoc,2007,21(2):3185-3194.

    [20]Pedersen D S,Abell A.1,2,3-Triazoles in peptidomimetic chemistry[J].Eur J Org Chem,2011,2011(13):2399-2411.

    [21]Li Y,Cai C Z.Click chemistry-based functionalization on non-oxidized silicon substrates[J].Chem Asian J,2011,6(10):2592-2605.

    [22]Davis A R,Maegerlein J A,Carter K R.Electroluminescent networks via photo“click”chemistry[J].J Am Chem Soc,2011,133(50):20546-20551.

    [23]Strukil V,Margetic D,Igrc M D,etal.Desymmetrisation of aromatic diamines and synthesis of non-symmetrical thiourea derivatives by click-mechanochemistry[J].Chem Commun,2012,48(78):9705-9707.

    [24]Ghorai A,Padmanaban E,Mukhopadhyay C,etal.Design and synthesis of regioisomeric triazole based peptidomimetic macrocycles and their dipole moment controlled self-assembly[J].Chem Commun,2012,48(98):11975-11977.

    [25]Wojcik F,O'Brien A G,Gotze S,etal.Synthesis of carbohydrate-functionalised sequence-defined oligo(amidoamine)s by photochemical thiol-ene coupling in a continuous flow reactor[J].Chem Eur J,2013,19(9):3090-3098.

    [26]Jiang Y Q,Kong D Y,Zhao J L,etal.A simple,efficient thermally promoted protocol for Huisgen-click reaction catalyzed by CuSO4·5H2O in water[J].Tetrahedron Lett,2014,55(15):2410-2414.

    [27]Radatz C S,Liliana L A,Vieira E R,etal.Recoverable Cu/SiO2composite-catalysed click synthesis of 1,2,3-triazoles in water media[J].New J Chem,2014,38(4):1410-1417.

    [28]Mukherjee N,Ahammed S,Bhadra S,etal.Solvent-free one-pot synthesis of 1,2,3-triazole derivatives by the‘click’reaction of alkyl halides or aryl boronic acids,sodium azide and terminal alkynes over a Cu/Al2O3surface under ball-milling[J].Green Chem,2013,15(2):389-397.

    [29]Zarei A,Khazdooz L,Hajipour A R,etal.Microwave-assisted click chemistry synthesis of 1,2,3-triazoles from aryldiazonium silica sulfates in water[J].Synthesis,2012,44(21):3353-3360.

    [30]Quan Z J,Xu Q,Zhang Z,etal.Copper-catalyzed click synthesis of functionalized 1,2,3-triazoles with 3,4-dihydropyrimidinone or amide group via a one-pot four-component reaction[J].Tetrahedron,2013,69(2):881-887.

    [31]Alonso V F,Moglie Y,Radivoy G,etal.Copper-catalysed multicomponent click synthesis of 5-alkynyl 1,2,3-triazoles under ambient conditions[J].Synlett,2012,23(15):2179-2182.

    [32]Albadi J,Keshavarz M,Shirini F,etal.Copper iodide nanoparticles on poly(4-vinyl pyridine):a new and efficient catalyst for multicomponent click synthesis of 1,4-disubstituted-1,2,3-triazoles in water[J].Catal Commun,2012,27:17-20.

    [33]Wang Y,Liu J H,Xia C G.Insights into supported copper(II)-catalyzed azide-alkyne cycloaddition in water[J].Adv Synth Catal,2011,353(9):1534-1542.

    [34]Beneteau V,Olmos A,Boningari T,etal.Zeo-click synthesis:CuI-zeolite-catalyzed one-pot two-step synthesis of triazoles from halides and related compounds[J].Tetarhedron Lett,2010,51(28):3673-3677.

    [35]Appukkuttan P,Dehaen W,F(xiàn)okin V V,etal.A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction[J].Org Lett,2004,6(23):4223-4225.

    [36]Sharghi H,Beyzavi M H,Safavi A,etal.Immobilization of porphyrinatocopper nanoparticles onto activated multi-walled carbon nanotubes and a study of its catalytic activity as an efficient heterogeneous catalyst for a click approach to the three-component synthesis of 1,2,3-triazoles in water[J].Adv Synth Catal,2009,351(14/15):2391-2410.

    [37]Alonso F,Moglie Y,Radivoy G,etal.Click chemistry from organic halides,diazonium salts and anilines in water catalysed by copper nanoparticles on activated carbon[J].Org Biomol Chem,2011,9(18):6385-6395.

    [38]Wang W L,Wu J L,Xia C G,etal.Reusable ammonium salt-tagged NHC-Cu(I)complexes:preparation and catalytic application in the three component click reaction[J].Green Chem,2011,13(12):3440-3445.

    [39]Yamada Y M A,Sarkar S M,Uozumi Y.Amphiphilic self-assembled polymeric copper catalyst to parts per million levels:click chemistry[J].J Am Chem Soc,2012,134(22):9285-9286.

    [40]Zhang C,Huang B,Chen Y,etal.Porous copper catalyzed click reaction in water[J].New J Chem,2013,37(9):2606-2609.

    [41]Purohit V B,Karad S C,Patel K H,etal.Cu(N-heterocyclic carbene)chloride:an efficient catalyst for multicomponent click reaction for the synthesis of 1,2,3-triazoles in water at room temperature[J].RSC Advances,2014,4(86):46002-46007.

    [42]Nasr-Esfahani M,Mohammadpoor-Baltork I,Khosropour A R,etal.Copper immobilized on nanosilica triazine dendrimer(Cu(II)-TD@nSiO2)-catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles and bis-and tris-triazoles via a one-pot multicomponent click reaction[J].J Org Chem,2014,79(3):1437-1443.

    [43]Rodionov V O,Presolski S I,Gardinier S,etal.Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition[J].J Am Chem Soc,2007,129(42):12696-12704.

    [44]Donnelly P S,Zanatta S D,Zammit S C,etal.‘Click’cycloaddition catalysts:copper(I)and copper(II)tris(triazolylmethyl)amine complexes[J].Chem Commun,2008(21):2459-2461.

    [45]Li F W,Hor T S A.Facile synthesis of nitrogen tetradentate ligands and their applications in CuI-catalyzed N-arylation and azide-alkyne cycloaddition[J].Chem Eur J,2009,15(40):10585-10592.

    [46]Wallyn S,Lammens M,O'Reilly R K,etal.Highly active,thermo-responsive polymeric catalytic system for reuse in aqueous and organic Cu AAC reactions[J].J Polym Sci Polym Chem,2011,49(13):2878-2885.

    [47]Michaels H A,Zhu L.Ligand-assisted,copper(II)acetate-accelerated azide-alkyne cycloaddition[J].Chem Asian J,2011,6(10):2825-2834.

    [48]Wang W,Hong S L,Tran A,etal.Sulfated ligands for the copper(I)-catalyzed azide-alkyne cycloaddition[J].Chem Asian J,2011,6(10):2796-2802.

    [49]Connell T U,Schieber C,Silvestri I P,etal.Copper and silver complexes of tris(triazole)amine and tris(benzimidazole)amine ligands:evidence that catalysis of an azide-alkyne cycloaddition(“click”)reaction by a silver tris(triazole)amine complex arises from copper impurities[J].Inorg Chem,2014,53(13):6503-6511.

    少妇高潮的动态图| 最近中文字幕高清免费大全6| 一本色道久久久久久精品综合| 国产高清国产精品国产三级 | 一级爰片在线观看| 大陆偷拍与自拍| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 99热全是精品| 少妇的逼水好多| 国产女主播在线喷水免费视频网站| 少妇人妻久久综合中文| 18禁裸乳无遮挡免费网站照片| 18禁动态无遮挡网站| 久久av网站| 成人亚洲欧美一区二区av| 99精国产麻豆久久婷婷| 在线天堂最新版资源| 亚洲av欧美aⅴ国产| 亚洲美女黄色视频免费看| 亚洲国产av新网站| 伦理电影免费视频| a 毛片基地| videos熟女内射| 国产高清不卡午夜福利| 99久久精品热视频| 亚洲四区av| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99| 亚洲真实伦在线观看| 成人国产av品久久久| 国产欧美亚洲国产| 五月开心婷婷网| 久久国产精品大桥未久av | 边亲边吃奶的免费视频| 亚洲精品自拍成人| 国产精品无大码| 99久久中文字幕三级久久日本| 久久久精品94久久精品| 久久久久久久精品精品| 美女cb高潮喷水在线观看| 日本黄色片子视频| 少妇精品久久久久久久| 久久av网站| 欧美xxⅹ黑人| 久久久午夜欧美精品| 又大又黄又爽视频免费| 国产精品久久久久久av不卡| 丰满人妻一区二区三区视频av| 亚洲美女视频黄频| 日韩三级伦理在线观看| 搡老乐熟女国产| 国产精品久久久久久av不卡| 下体分泌物呈黄色| 91精品国产九色| 亚洲国产成人一精品久久久| 国产色婷婷99| 亚洲在久久综合| 在线天堂最新版资源| 日本与韩国留学比较| 日韩中文字幕视频在线看片 | 18+在线观看网站| 亚洲在久久综合| 寂寞人妻少妇视频99o| av网站免费在线观看视频| 人妻夜夜爽99麻豆av| 三级国产精品欧美在线观看| 在线观看免费日韩欧美大片 | 又黄又爽又刺激的免费视频.| 又黄又爽又刺激的免费视频.| 国产伦理片在线播放av一区| 久久女婷五月综合色啪小说| 日韩av不卡免费在线播放| 少妇被粗大猛烈的视频| 五月玫瑰六月丁香| 天美传媒精品一区二区| 99久久精品国产国产毛片| 久久99热6这里只有精品| 高清毛片免费看| 国产在线男女| 成人亚洲欧美一区二区av| 男人舔奶头视频| 99热网站在线观看| 国产精品爽爽va在线观看网站| 亚洲高清免费不卡视频| 久久久久国产精品人妻一区二区| 久久精品国产亚洲av天美| 国产av一区二区精品久久 | 日韩中文字幕视频在线看片 | 欧美激情极品国产一区二区三区 | 一边亲一边摸免费视频| 国产黄片视频在线免费观看| 国内精品宾馆在线| 男人狂女人下面高潮的视频| 一个人免费看片子| 内射极品少妇av片p| 纵有疾风起免费观看全集完整版| 免费播放大片免费观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 免费观看性生交大片5| 亚洲四区av| 国产精品久久久久久久久免| 日韩电影二区| 亚洲成色77777| 免费人妻精品一区二区三区视频| 爱豆传媒免费全集在线观看| 国产综合精华液| 女性被躁到高潮视频| 亚洲av不卡在线观看| 一级毛片aaaaaa免费看小| 久久女婷五月综合色啪小说| 亚洲真实伦在线观看| 亚洲精品色激情综合| av在线播放精品| 大香蕉97超碰在线| 久久久久久人妻| 久热这里只有精品99| 色网站视频免费| 日本午夜av视频| 国产精品三级大全| 欧美日韩国产mv在线观看视频 | 中文欧美无线码| 免费久久久久久久精品成人欧美视频 | 制服丝袜香蕉在线| 一区二区av电影网| 免费大片18禁| 精品一区二区三区视频在线| 直男gayav资源| 在线精品无人区一区二区三 | 免费黄色在线免费观看| av在线app专区| 九草在线视频观看| 自拍偷自拍亚洲精品老妇| 777米奇影视久久| 18禁在线无遮挡免费观看视频| 日本黄色片子视频| 秋霞伦理黄片| 肉色欧美久久久久久久蜜桃| 26uuu在线亚洲综合色| 免费av中文字幕在线| 国语对白做爰xxxⅹ性视频网站| 成人二区视频| 欧美变态另类bdsm刘玥| 一个人看视频在线观看www免费| av在线蜜桃| 国产精品av视频在线免费观看| 一级二级三级毛片免费看| 国产淫片久久久久久久久| 伊人久久国产一区二区| 亚洲在久久综合| 这个男人来自地球电影免费观看 | 成年av动漫网址| 午夜福利视频精品| 干丝袜人妻中文字幕| 亚洲丝袜综合中文字幕| 全区人妻精品视频| 少妇被粗大猛烈的视频| 偷拍熟女少妇极品色| 人妻少妇偷人精品九色| 高清毛片免费看| 国产高清三级在线| 黄色一级大片看看| av播播在线观看一区| 九色成人免费人妻av| 18禁裸乳无遮挡免费网站照片| 狠狠精品人妻久久久久久综合| 欧美日本视频| 日韩一本色道免费dvd| 日韩av免费高清视频| 国语对白做爰xxxⅹ性视频网站| 午夜精品国产一区二区电影| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说| 国产亚洲91精品色在线| av国产久精品久网站免费入址| 国产精品蜜桃在线观看| 国产精品不卡视频一区二区| 男的添女的下面高潮视频| 国产精品人妻久久久影院| 国语对白做爰xxxⅹ性视频网站| 久久精品国产a三级三级三级| 九草在线视频观看| 免费观看a级毛片全部| 久久综合国产亚洲精品| 最近的中文字幕免费完整| 成人一区二区视频在线观看| 国产有黄有色有爽视频| 日韩制服骚丝袜av| 一二三四中文在线观看免费高清| 妹子高潮喷水视频| 色5月婷婷丁香| 亚洲av国产av综合av卡| 麻豆国产97在线/欧美| 男人爽女人下面视频在线观看| 在线观看一区二区三区激情| 日韩欧美 国产精品| 美女国产视频在线观看| 久久国产亚洲av麻豆专区| 成人二区视频| 亚洲最大成人中文| 婷婷色综合大香蕉| 久久精品久久精品一区二区三区| 亚洲精品中文字幕在线视频 | 伊人久久国产一区二区| 黑丝袜美女国产一区| 久久久久久伊人网av| 午夜老司机福利剧场| 亚洲精品一区蜜桃| 久久鲁丝午夜福利片| 亚洲精品,欧美精品| 91久久精品国产一区二区三区| 国产精品99久久99久久久不卡 | 日韩精品有码人妻一区| 91久久精品国产一区二区成人| 嘟嘟电影网在线观看| 欧美+日韩+精品| av免费观看日本| 国产黄片视频在线免费观看| 男人狂女人下面高潮的视频| 亚洲在久久综合| 哪个播放器可以免费观看大片| 天美传媒精品一区二区| 嘟嘟电影网在线观看| 人妻制服诱惑在线中文字幕| 最黄视频免费看| 亚洲,一卡二卡三卡| 中文字幕亚洲精品专区| 黄色一级大片看看| 日韩精品有码人妻一区| 99久久综合免费| 99久久人妻综合| 国产男女超爽视频在线观看| 国内揄拍国产精品人妻在线| 国产成人免费无遮挡视频| 内地一区二区视频在线| 久久女婷五月综合色啪小说| 久久久成人免费电影| videossex国产| 国产亚洲av片在线观看秒播厂| 最近中文字幕2019免费版| 色吧在线观看| 国产精品熟女久久久久浪| 亚洲国产毛片av蜜桃av| 精品熟女少妇av免费看| 日韩中文字幕视频在线看片 | 国产永久视频网站| 多毛熟女@视频| 国产乱来视频区| 伦精品一区二区三区| 亚洲成人中文字幕在线播放| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 婷婷色综合www| 大又大粗又爽又黄少妇毛片口| 亚洲第一区二区三区不卡| 在线观看三级黄色| 国产精品99久久99久久久不卡 | 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 国产色婷婷99| 亚洲一区二区三区欧美精品| 亚洲国产精品一区三区| 国产v大片淫在线免费观看| 久久久久国产网址| 亚洲伊人久久精品综合| 中文字幕精品免费在线观看视频 | 寂寞人妻少妇视频99o| 色哟哟·www| 三级国产精品片| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频 | 国产一级毛片在线| h日本视频在线播放| 亚洲av男天堂| 男人爽女人下面视频在线观看| 国产av一区二区精品久久 | 卡戴珊不雅视频在线播放| 亚洲精品乱码久久久v下载方式| 日韩在线高清观看一区二区三区| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 亚洲精品一区蜜桃| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| 91精品国产九色| 老司机影院毛片| 高清av免费在线| 久久久久性生活片| 国产成人精品福利久久| 日韩大片免费观看网站| 精品一区二区三区视频在线| 在线播放无遮挡| 精品国产乱码久久久久久小说| 18禁在线无遮挡免费观看视频| 国产成人a区在线观看| 亚洲av日韩在线播放| 日韩三级伦理在线观看| 熟女人妻精品中文字幕| 伦精品一区二区三区| 日韩不卡一区二区三区视频在线| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 日本av手机在线免费观看| 国产人妻一区二区三区在| 美女中出高潮动态图| 久久久亚洲精品成人影院| 观看av在线不卡| 一区二区三区免费毛片| 国产在线一区二区三区精| 熟女电影av网| 免费观看a级毛片全部| 18禁在线播放成人免费| 亚洲欧美日韩无卡精品| 亚洲国产精品一区三区| 成年av动漫网址| 国产精品一区二区性色av| 国产亚洲最大av| 中文字幕制服av| 亚洲av日韩在线播放| 一级二级三级毛片免费看| 老熟女久久久| 午夜福利高清视频| 午夜免费鲁丝| 久久久a久久爽久久v久久| 高清黄色对白视频在线免费看 | 国产伦精品一区二区三区视频9| 夜夜骑夜夜射夜夜干| 免费看不卡的av| 国产一区二区在线观看日韩| 国内精品宾馆在线| 午夜免费男女啪啪视频观看| 亚洲成人中文字幕在线播放| 春色校园在线视频观看| 人人妻人人看人人澡| 日韩中字成人| 六月丁香七月| 久久精品熟女亚洲av麻豆精品| 国产精品成人在线| 久久午夜福利片| 80岁老熟妇乱子伦牲交| 少妇丰满av| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲伊人久久精品综合| 最近2019中文字幕mv第一页| 日韩,欧美,国产一区二区三区| 成人国产av品久久久| 国产视频内射| 精品国产露脸久久av麻豆| 青春草亚洲视频在线观看| 亚洲精品一区蜜桃| 亚洲一区二区三区欧美精品| 亚洲成人手机| 日韩一区二区视频免费看| 少妇丰满av| 欧美精品亚洲一区二区| 久久久欧美国产精品| 久久精品久久久久久噜噜老黄| 老司机影院成人| 99国产精品免费福利视频| 精品午夜福利在线看| 免费看日本二区| 国产免费福利视频在线观看| 黄色怎么调成土黄色| 又黄又爽又刺激的免费视频.| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 精品亚洲成a人片在线观看 | 国产69精品久久久久777片| 美女脱内裤让男人舔精品视频| 国产亚洲最大av| av黄色大香蕉| 黄片无遮挡物在线观看| 99久国产av精品国产电影| 伊人久久精品亚洲午夜| 中文精品一卡2卡3卡4更新| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃| 人人妻人人添人人爽欧美一区卜 | 日韩欧美 国产精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲av中文字字幕乱码综合| www.色视频.com| 日本黄色片子视频| 国产欧美日韩精品一区二区| 日本av免费视频播放| 一本一本综合久久| 日韩,欧美,国产一区二区三区| 亚洲内射少妇av| 国产欧美日韩一区二区三区在线 | 中文字幕人妻熟人妻熟丝袜美| 一区二区三区精品91| 国产精品久久久久成人av| 国产成人精品福利久久| 一级a做视频免费观看| 国产在线一区二区三区精| 一区二区三区精品91| 日本欧美国产在线视频| 九草在线视频观看| 国产亚洲午夜精品一区二区久久| 亚洲图色成人| 久久99蜜桃精品久久| 中文字幕精品免费在线观看视频 | 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| 你懂的网址亚洲精品在线观看| 色视频在线一区二区三区| 人妻 亚洲 视频| 亚洲av成人精品一二三区| 麻豆乱淫一区二区| 1000部很黄的大片| 美女内射精品一级片tv| 欧美人与善性xxx| 99久久精品热视频| 性色av一级| 我的老师免费观看完整版| 大片免费播放器 马上看| 欧美日本视频| 一边亲一边摸免费视频| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| 国精品久久久久久国模美| 亚洲精华国产精华液的使用体验| 精品午夜福利在线看| 99久久人妻综合| 日本av免费视频播放| 最近2019中文字幕mv第一页| 日本免费在线观看一区| 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 国产成人精品婷婷| 尤物成人国产欧美一区二区三区| 免费观看a级毛片全部| 一级黄片播放器| 成人毛片60女人毛片免费| 亚洲,一卡二卡三卡| 久久亚洲国产成人精品v| 精品久久久久久久久av| 丝袜喷水一区| 一区二区av电影网| 亚洲av不卡在线观看| 午夜福利在线在线| 看免费成人av毛片| av一本久久久久| 亚洲人成网站高清观看| 亚洲精品456在线播放app| 一区二区三区乱码不卡18| 亚洲欧美日韩东京热| 亚洲国产精品一区三区| 免费看不卡的av| 亚洲精品国产成人久久av| 国产在线男女| 成人影院久久| 在线播放无遮挡| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 国产精品久久久久久久久免| 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 午夜精品国产一区二区电影| 中文在线观看免费www的网站| 2022亚洲国产成人精品| 一本一本综合久久| 亚洲国产高清在线一区二区三| 大片免费播放器 马上看| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 国产毛片在线视频| 久久ye,这里只有精品| 在线观看免费视频网站a站| 亚洲精品色激情综合| 久久毛片免费看一区二区三区| 欧美一区二区亚洲| .国产精品久久| 国产淫片久久久久久久久| 亚洲美女黄色视频免费看| 亚洲国产精品国产精品| 久久久精品94久久精品| 国产白丝娇喘喷水9色精品| 一本一本综合久久| 亚洲欧美日韩无卡精品| tube8黄色片| 舔av片在线| 成人亚洲精品一区在线观看 | 一级毛片aaaaaa免费看小| 综合色丁香网| 免费观看av网站的网址| 日韩一区二区三区影片| 国产成人91sexporn| 80岁老熟妇乱子伦牲交| 午夜福利视频精品| 国内少妇人妻偷人精品xxx网站| 91精品国产九色| 黑人高潮一二区| 91精品一卡2卡3卡4卡| 18禁在线无遮挡免费观看视频| 国产爱豆传媒在线观看| 女的被弄到高潮叫床怎么办| 黑人高潮一二区| 国产伦在线观看视频一区| 18禁裸乳无遮挡免费网站照片| 男女啪啪激烈高潮av片| 丝瓜视频免费看黄片| 亚洲国产欧美人成| 网址你懂的国产日韩在线| 国产片特级美女逼逼视频| 哪个播放器可以免费观看大片| 又黄又爽又刺激的免费视频.| 一级二级三级毛片免费看| 美女脱内裤让男人舔精品视频| 秋霞在线观看毛片| 亚洲欧美日韩无卡精品| 91精品国产九色| 精品国产乱码久久久久久小说| 欧美3d第一页| 中文欧美无线码| 18禁动态无遮挡网站| 成人国产麻豆网| 国产乱人偷精品视频| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| 日日撸夜夜添| 国产色爽女视频免费观看| 日韩三级伦理在线观看| 夜夜爽夜夜爽视频| 一边亲一边摸免费视频| 久热这里只有精品99| 成人影院久久| 人人妻人人爽人人添夜夜欢视频 | 欧美精品国产亚洲| 99久久精品一区二区三区| 伦理电影免费视频| 亚洲国产精品999| 天堂8中文在线网| 伦理电影大哥的女人| 欧美zozozo另类| av福利片在线观看| 亚洲精品国产av成人精品| 1000部很黄的大片| 最近的中文字幕免费完整| 久久99精品国语久久久| 亚洲精品中文字幕在线视频 | 亚洲激情五月婷婷啪啪| 国产视频内射| 在线观看一区二区三区| 97在线人人人人妻| 日日撸夜夜添| 国产精品一二三区在线看| 国产黄频视频在线观看| 香蕉精品网在线| 亚洲av成人精品一二三区| 涩涩av久久男人的天堂| 大码成人一级视频| 成人午夜精彩视频在线观看| 国产亚洲最大av| 亚洲在久久综合| 亚洲成人手机| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 午夜福利高清视频| 51国产日韩欧美| 亚洲美女黄色视频免费看| 国产91av在线免费观看| 国产一区二区三区av在线| 最近的中文字幕免费完整| 亚洲激情五月婷婷啪啪| 男人狂女人下面高潮的视频| 亚洲精品乱码久久久久久按摩| 国产精品久久久久成人av| 中文天堂在线官网| 日本黄色片子视频| 亚洲欧美成人综合另类久久久| 精品亚洲成国产av| 亚洲国产欧美人成| 欧美+日韩+精品| 嫩草影院入口| 在线看a的网站| 少妇人妻精品综合一区二区| 亚洲精品日韩av片在线观看| 九九爱精品视频在线观看| 亚州av有码| 国产色婷婷99| 亚洲精品国产色婷婷电影| 亚洲性久久影院| 国产黄片视频在线免费观看| 三级经典国产精品| 美女cb高潮喷水在线观看| 久久热精品热| 婷婷色av中文字幕| 亚洲伊人久久精品综合| 欧美一级a爱片免费观看看| 丰满乱子伦码专区| 18+在线观看网站| 免费观看无遮挡的男女| 熟女电影av网| 97精品久久久久久久久久精品| 国产精品偷伦视频观看了| 久久久久久人妻| 欧美精品国产亚洲| 久久av网站| 一区二区三区免费毛片| 91aial.com中文字幕在线观看| 亚洲三级黄色毛片| 毛片一级片免费看久久久久| 亚洲欧美精品专区久久| 秋霞伦理黄片| 夜夜骑夜夜射夜夜干| 少妇丰满av|