唐富波 白曉東 胡 森
(1.解放軍總醫(yī)院第一附屬醫(yī)院全軍創(chuàng)傷修復與組織再生重點實驗室暨皮膚損傷修復與組織再生北京市重點實驗室,北京 100048;2. 武警總醫(yī)院燒傷整形科,北京 100039)
綜述
燒傷對血管內(nèi)皮細胞屏障的影響及其保護藥物的研究進展
唐富波1,2白曉東2胡 森1
(1.解放軍總醫(yī)院第一附屬醫(yī)院全軍創(chuàng)傷修復與組織再生重點實驗室暨皮膚損傷修復與組織再生北京市重點實驗室,北京 100048;2. 武警總醫(yī)院燒傷整形科,北京 100039)
血管內(nèi)皮細胞屏障的完整性對于維持體內(nèi)循環(huán)平衡和各臟器生理功能至關(guān)重要。燒傷后,毛細血管擴張、血管通透性增加,體液滲出,引起組織、器官水腫和功能障礙。保護燒傷后血管內(nèi)皮細胞屏障,減輕燒傷后損傷,是長期以來燒傷的研究重點。本文就近年來燒傷對血管內(nèi)皮細胞屏障的影響及機制、血管內(nèi)皮細胞屏障的保護藥物研究進展綜述如下。
1.1血管內(nèi)皮細胞屏障血管內(nèi)皮是由一層緊密連接的內(nèi)皮細胞單層和基膜構(gòu)成的半選擇性通透屏障,控制血液和組織之間的體液、蛋白質(zhì)、電解質(zhì)交換[1]。這一屏障的破壞可以直接引起血管內(nèi)皮通透性增加。血管內(nèi)皮細胞屏障功能與細胞骨架蛋白、細胞間連接、基底膜等關(guān)系密切。
內(nèi)皮細胞骨架蛋白對于維持細胞正常形態(tài)起關(guān)鍵作用。它由微絲、微管、中間絲等成分組成[2]。微絲的主要組成成分是肌動蛋白(actin)、肌球蛋白(myosin)和肌動蛋白結(jié)合蛋白(actin-binding protein),其中以肌動蛋白的量最大[3]。在這些結(jié)構(gòu)中,肌動蛋白對調(diào)節(jié)血管內(nèi)皮細胞屏障功能具有重要作用。各種炎癥介質(zhì)誘導肌球蛋白輕鏈(MLC)的磷酸化和內(nèi)皮細胞骨架蛋白的收縮,導致細胞向心張力增加和細胞間黏附減弱,使細胞間的間隙形成,細胞間通透性增加[4]。
細胞間連接包括緊密連接、縫隙連接、黏附連接等[2]。緊密連接(tight junctions)是細胞屏障的重要組成部分,只存在于內(nèi)皮細胞間,環(huán)繞整個細胞形成閉鎖小帶或閉鎖斑。細胞通透性的調(diào)節(jié)主要通過緊密連接蛋白連接復合物與胞內(nèi)肌動蛋白骨架的相互作用來實現(xiàn)[5]。黏附連接存在于內(nèi)皮細胞間、內(nèi)皮細胞和基底膜之間。黏附連接是由具有鈣依賴的血管內(nèi)皮鈣黏著蛋白(VE-cadherin, VE-cad)和胞漿內(nèi)的黏附蛋白形成的特異性復合體[6]?;啄さ闹饕煞譃槟z原蛋白、纖維連接蛋白、層黏連蛋白等,大分子物質(zhì)通過基底膜進出血管[7]。內(nèi)皮細胞與基底膜間的黏附由整合素及相關(guān)蛋白介導,形成附著斑。整合素的胞外N末端與細胞外基質(zhì)(extracellular matrix,ECM)相連,胞內(nèi)C末端通過尾蛋白、α輔肌動蛋白等與骨架蛋白連接[3]。
1.2燒傷對血管內(nèi)皮細胞屏障的影響及機制燒傷后,機體受到嚴重的致傷因子打擊,產(chǎn)生強烈持久的應激反應,同時組織的缺血缺氧、再灌注損傷、燒傷毒素、內(nèi)毒素、炎性介質(zhì)、內(nèi)環(huán)境紊亂、免疫損傷等多種因素的作用,導致血管內(nèi)皮細胞的破壞、內(nèi)皮細胞間隙增寬等,引起血管內(nèi)皮細胞屏障的破壞。近年來研究發(fā)現(xiàn),一些信號途徑或分子參與燒傷后血管內(nèi)皮細胞屏障功能障礙的過程。
1.2.1肌球蛋白輕鏈激酶(MLCK)與肌球蛋白輕鏈(MLC)途徑MLCK的磷酸化調(diào)節(jié)內(nèi)皮細胞通透性,MLCK 通過磷酸化MLC的第18位絲氨酸和第19位蘇氨酸激活肌球蛋白重鏈頭部ATP 酶,產(chǎn)生的能量引起內(nèi)皮細胞肌動蛋白與肌球蛋白Ⅱ相互作用,使細胞收縮,細胞間隙形成,通透性增加[8]。MLCK在腸道內(nèi)皮屏障功能調(diào)節(jié)中起著重要作用。MLCK的磷酸化引起肌動蛋白絲與腸上皮細胞緊密連接相關(guān)蛋白和肌動蛋白纖維的破壞,導致緊密連接中斷,從而影響內(nèi)皮細胞屏障通透性[9]。MLCK的激活也導致其他關(guān)鍵緊密連接蛋白如咬合蛋白(occludin)和帶狀閉合蛋白-1(ZO-1)等的降解,從而影響內(nèi)皮細胞通透性[10]。Tinsley等[11]的實驗顯示,燒傷血清刺激肺微血管內(nèi)皮能誘導MLC的磷酸化,并伴隨血管內(nèi)皮通透性增高;同時,MLCK抑制劑可減少MLC磷酸化,能降低燒傷血清誘導的內(nèi)皮細胞通透性增高。Reynoso等[12]在小鼠燙傷實驗中發(fā)現(xiàn),與含MLCK-210基因的燙傷小鼠比較,敲除MLCK-210基因的燙傷小鼠血管通透性顯著降低,其生存率也得到明顯改善。Guo等[13]敲除小鼠的非肌肌球蛋白輕鏈(nonmuscle myosin light chain kinase,nmMLCK)后進行燒傷實驗,發(fā)現(xiàn)其中性粒細胞黏附受到抑制,腸旁滲漏明顯減少,燒傷后的腸道血管內(nèi)皮細胞屏障功能得到了保護。
1.2.2p38/MAPK途徑絲裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)是一類絲氨酸/蘇氨酸蛋白激酶,作為高度保守的真核細胞內(nèi)信號轉(zhuǎn)導通路,可以被廣泛的細胞外信號或刺激所激活[14]。MAPK包括細胞外信號調(diào)節(jié)激酶、p38激酶和c-Jun氨基末端激酶3種成員[15]。研究表明,p38激酶是燒傷后引起炎癥反應和細胞凋亡的重要途徑。p38激酶參與燒傷后血管內(nèi)皮細胞應力纖維形成和ZO-1的解離和內(nèi)化,抑制p38激酶能逆轉(zhuǎn)燒傷后內(nèi)皮細胞屏障功能紊亂[3]。
1.2.3其他信號通路Toll樣受體(Toll-like receptors,TLR)與燒傷后血管內(nèi)皮細胞屏障功能障礙有關(guān)。TLR是機體免疫反應的重要因子,其中TLR-4主要識別革蘭陰性菌的內(nèi)毒素(LPS)。Murphy等[16]的研究表明,燒傷后大鼠TLR-4表達增強,在LPS的誘導下死亡率增高。Breslin等[17]在實驗中,使野生型小鼠和TLR-4基因缺失型小鼠接受25%TBSA燙傷,野生型小鼠血管通透性和白細胞黏附數(shù)量明顯高于TLR-4基因缺失型小鼠,表明TLR-4在非膿毒癥的燒傷炎癥條件下,對于微血管通透性及白細胞黏附起重要調(diào)節(jié)作用。Peterson等[18]觀察到,TLR-4基因缺失小鼠在燙傷后較正常小鼠燙傷后腸道通透性減弱,滲透性降低,腸屏障功能破壞減少,說明腸屏障的損傷具有TLR-4依賴性。Krzyzaniak等[19]在燒傷實驗中將敲除TLR-4基因的小鼠與正常基因組的小鼠進行比較,證實了燒傷介導的小鼠急性肺損傷是一個TLR-4依賴性過程,燒傷后缺乏TLR-4基因的小鼠肺血管通透性和肺損傷明顯輕于燒傷后的正常對照小鼠。
近年來的研究也證實,Rho蛋白是內(nèi)皮細胞屏障功能的重要調(diào)節(jié)因子。Rho蛋白通過影響細胞內(nèi)以肌球蛋白為主的收縮成分和內(nèi)皮間連接的功能,調(diào)節(jié)內(nèi)皮細胞屏障的通透性[20]。Zheng等[21]研究發(fā)現(xiàn),Rho特異性抑制劑能夠抑制燒傷后細胞骨架蛋白的破壞,降低內(nèi)皮通透性,保護內(nèi)皮細胞屏障功能。
Tinsley等[22]的研究表明,蛋白激酶C(PKC)參與了燒傷后肺血管內(nèi)皮細胞黏附連接(AJ)的重組和血管內(nèi)皮細胞屏障的功能調(diào)節(jié)。燒傷血清刺激血管內(nèi)皮細胞,導致VE-鈣黏蛋白或β-連環(huán)蛋白的絲氨酸磷酸化,從而使細胞間隙增寬,內(nèi)皮通透性增加。
隨著對燒傷血管內(nèi)皮細胞屏障研究的逐步深入,研究發(fā)現(xiàn),某些藥物對上述通路具有直接或間接的作用,可以減少血管通透性,保護血管內(nèi)皮細胞屏障功能。
2.1MLCK/MLC途徑藥物MLC磷酸化導致血管內(nèi)皮細胞收縮和細胞間隙增寬,通透性增加,使血管內(nèi)皮細胞屏障遭到破壞。減少MLC磷酸化,可以減輕內(nèi)皮細胞屏障的損傷。Costantini等[23]發(fā)現(xiàn),己酮可可堿可以通過抑制大鼠燒傷后MLCK水平的增高,減少MLC的磷酸化,從而降低燒傷引起的腸道微血管內(nèi)皮通透性增加,對腸道血管內(nèi)皮細胞屏障具有一定的保護作用。Zahs等[24]在小鼠燒傷后給予MLCK抑制劑PIK(peptide inhibitor of myosin light chain kinase),可以減少腸道炎癥細胞浸潤,減少腸旁滲漏,保護腸道微血管內(nèi)皮細胞屏障功能。Chen等[25]在實驗中給予燒傷小鼠MLCK特異性抑制劑ML-9,結(jié)果減輕了燒傷后腸道通透性的增加和腸黏膜損傷,減少了緊密連接蛋白的降解,降低了MLC磷酸化,保護了腸道血管內(nèi)皮細胞屏障功能。Cao[26]等發(fā)現(xiàn),小檗堿通過抑制低氧誘導因子-1α(HIF-1α),減少了MLCK介導的MLC磷酸化,對腸上皮屏障功起到了一定的保護作用。Luo等[27]發(fā)現(xiàn),組蛋白去乙?;敢种苿┍焖徕c可以抑制HIF-1α,減少血管內(nèi)皮生長因子(VEGF)和MLCK的表達,減少MLC磷酸化水平和緊密連接間帶狀閉合蛋白ZO-1的降解,保護燒傷后動物模型腸道血管內(nèi)皮細胞屏障功能。
2.2p38/MAPK途徑藥物p38/MAPK作為影響內(nèi)皮細胞屏障的另一重要途徑,也是研究保護燒傷血管內(nèi)皮細胞屏障的一大熱點。使用p38MAPK抑制劑SB202190的燒傷小鼠與不使用SB202190的燒傷小鼠比較,肺水腫形成和肺微血管損傷可以顯著減輕[28]。Costantini等[29]給燒傷小鼠腹腔注射p38MAPK抑制劑SB203580,從而減少了腸道微血管內(nèi)皮細胞通透性,保護了腸屏障功能。他們還證明,使用己酮可可堿可以抑制燒傷小鼠的p38MAPK磷酸化,維持腸屏障的穩(wěn)定性,并可減輕肺血管通透性,減輕急性肺損傷[30]。
2.3其他保護藥物對體外培養(yǎng)的燒傷早期內(nèi)皮細胞使用Rho蛋白特異性抑制劑Y-27632后,可以使F肌動蛋白的分布逐漸恢復到正常水平,減輕細胞間隙的形成,保護血管內(nèi)皮細胞屏障功能。對游離的燒傷皮膚微血管使用Y-27632,血管內(nèi)皮通透性明顯降低,也起到保護血管內(nèi)皮細胞屏障功能的作用[20]。使用Rho激酶抑制劑法舒地爾(fasudil)可以降低失血性休克動物模型內(nèi)皮細胞和白細胞的相互作用,減少白細胞浸潤,減少血管炎癥反應,保護血管內(nèi)皮細胞屏障功能[31]。Tinsley等[22]在燒傷實驗中使用蛋白激酶C特異性抑制劑雙吲哚基順丁烯二酰亞胺(bisindolylmaleimide),可以抑制燒傷后血管內(nèi)皮細胞VE-鈣黏蛋白和β-連環(huán)蛋白的絲氨酸磷酸化水平,保護血管內(nèi)皮通透性。
機體在燒傷后受到嚴重致傷因子打擊,產(chǎn)生強烈應激反應,高溫、缺血缺氧、毒素、各種炎癥因子等使血管內(nèi)皮通透性增高,血管內(nèi)皮細胞屏障破壞,引起體液外滲、組織水腫,造成機體循環(huán)血量下降,形成低血容量性休克,各臟器缺血、灌注不足,最終造成多器官功能障礙。因此,保護血管內(nèi)皮細胞屏障功能,對于防治燒傷休克和維持臟器功能、提高燒傷救治的成功率具有重要意義。近年來,研究者們對燒傷后血管內(nèi)皮細胞屏障功能障礙的分子機制進行了深入研究,發(fā)現(xiàn)了許多血管內(nèi)皮細胞屏障功能調(diào)節(jié)的作用靶點,為實驗研究提供十分廣闊的研究空間。研究調(diào)節(jié)血管內(nèi)皮細胞屏障功能的藥物,可以保護血管內(nèi)皮細胞屏障,為不同條件下燒傷救治提供更多的選擇和思路。
[1]Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability[J]. Thromb Haemost, 2013, 109(3)∶ 407-415.
[2]Dejana E. Endothelial cell-cell junctions∶ happy together[J]. Nat Rev Mol Cell Biol, 2004, 5(4)∶ 261-270.
[3]張家平, 黃躍生, 汪仕良. 燒傷后早期血管通透性增高研究進展[J]. 中華燒傷雜志, 2010, 26(5)∶ 343-346.
[4]Shen Q, Wu MH, Yuan SY. Endothelial contractile cytoskeleton and microvascular permeability[J]. Cell Health Cytoskelet, 2009,7(1)∶ 43-50.
[5]Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions[J]. Trends Cell Biol, 2010, 20(3)∶ 142-149.
[6]張慶芝, 閔銳. 血管內(nèi)皮通透性調(diào)節(jié)機制新進展[J]. 中國微循環(huán), 2009, 13(6)∶585-588.
[7]Yurchenco PD, Patton BL. Developmental and pathogenic mechanisms of basement membrane assembly[J]. Curr Pharm Des, 2009, 15(12)∶ 1277-1294.
[8]吳潔, 張偉金, 黃巧冰. 肌球蛋白輕鏈激酶介導內(nèi)皮細胞屏障功能變化的研究進展[J]. 中國病理生理雜志, 2015, 31(3)∶ 572-576.
[9]Costantini TW, Loomis WH, Putnam JG, Kroll L, Eliceiri BP, Baird A, Bansal V, Coimbra R. Pentoxifylline modulates intestinal tight junction signaling after burn injury∶ effects on myosin light chain kinase[J]. J Trauma, 2009, 66(1)∶ 17-24; discussion 24-25.
[10]Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure[J]. J Cell Sci, 2006, 119(Pt 10)∶ 2095-2106.
[11]Tinsley JH, Teasdale NR, Yuan SY. Myosin light chain phosphorylation and pulmonary endothelial cell hyperpermeability in burns[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286(4)∶ L841-L847.
[12]Reynoso R, Perrin RM, Breslin JW, Daines DA, Watson KD, Watterson DM, Wu MH, Yuan S. A role for long chain myosin light chain kinase (MLCK-210) in microvascular hyperpermeability during severe burns[J]. Shock, 2007, 28(5)∶589-595.
[13]Guo M, Yuan SY, Frederich BJ, Sun C, Shen Q, McLean DL, Wu MH. Role of non-muscle myosin light chain kinase in neutrophil-mediated intestinal barrier dysfunction during thermal injury[J]. Shock, 2012, 38(4)∶ 436-443.
[14]張奇, 白曉東, 付小兵. p38MAPK信號通路研究進展[J]. 感染、炎癥、修復, 2005, 6(2)∶121-123.
[15]Goldsmith CS, Bell-Pedersen D. Diverse roles for MAPK signaling in circadian clocks[J]. Adv Genet, 2013, 84∶ 1-39.
[16]Murphy TJ, Paterson HM, Kriynovich S, Zang Y, Kurt-Jones EA, Mannick JA, Lederer JA. Linking the "two-hit" response following injury to enhanced TLR4 reactivity[J]. J Leukoc Biol, 2005, 77(1)∶ 16-23.
[17]Breslin JW, Wu MH, Guo M, Reynoso R, Yuan SY. Toll-like receptor 4 contributes to microvascular inflammation and barrier dysfunction in thermal injury[J]. Shock, 2008, 29(3)∶349-355.
[18]Peterson CY, Costantini TW, Loomis WH, Putnam JG, Wolf P, Bansal V, Eliceiri BP, Baird A, Coimbra R. Toll-like receptor-4 mediates intestinal barrier breakdown after thermal injury[J]. Surg Infect (Larchmt), 2010, 11(2)∶ 137-144.
[19]Krzyzaniak M, Cheadle G, Peterson C, Loomis W, Putnam J, Wolf P, Baird A, Eliceiri B, Bansal V, Coimbra R. Burn-induced acute lung injury requires a functional Toll-like receptor 4[J]. Shock, 2011, 36(1)∶ 24-29.
[20]黃巧冰. 內(nèi)皮細胞屏障與燒傷后血管通透性的關(guān)系及機制[J].中華燒傷雜志,2007,23(5)∶ 324-326.
[21]Zheng HZ, Zhao KS, Zhou BY, Huang QB. Role of Rho kinase and actin filament in the increased vascular permeability of skin venules in rats after scalding[J]. Burns, 2003, 29(8)∶ 820-827.
[22]Tinsley JH, Breslin JW, Teasdale NR, Yuan SY. PKC-dependent, burn-induced adherens junction reorganization and barrier dysfunction in pulmonary microvascular endothelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(2)∶ L217-L223.
[23]Costantini TW, Loomis WH, Putnam JG, Kroll L, Eliceiri BP, Baird A, Bansal V, Coimbra R. Pentoxifylline modulates intestinal tight junction signaling after burn injury∶ effects on myosin light chain kinase[J]. J Trauma, 2009, 66(1)∶ 17-24; discussion 24-25.
[24]Zahs A, Bird MD, Ramirez L, Turner JR, Choudhry MA, Kovacs EJ. Inhibition of long myosin light-chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(6)∶ G705-G712.
[25]Chen C, Wang P, Su Q, Wang S, Wang F. Myosin light chain kinase mediates intestinal barrier disruption following burn injury[J]. PLoS One, 2012, 7(4)∶ e34946.
[26]Cao M, Wang P, Sun C, He W, Wang F. Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling pathway[J]. PLoS One, 2013, 8(5)∶ e61944.
[27]Luo HM, Du MH, Lin ZL, Zhang L, Ma L, Wang H, Yu W, Lv Y, Lu JY, Pi YL, Hu S, Sheng ZY. Valproic acid treatment inhibits hypoxia-inducible factor 1alpha accumulation and protects against burn-induced gut barrier dysfunction in a rodent model[J]. PLoS One, 2013, 8(10)∶ e77523.
[28]Ipaktchi K, Mattar A, Niederbichler AD, Hoesel LM, Vollmannshauser S, Hemmila MR, Su GL, Remick DG, Wang SC, Arbabi S. Attenuating burn wound inflammatory signaling reduces systemic inflammation and acute lung injury[J]. J Immunol, 2006, 177(11)∶ 8065-8071.
[29]Costantini TW, Peterson CY, Kroll L, Loomis WH, Eliceiri BP, Baird A, Bansal V, Coimbra R. Role of p38 MAPK in burninduced intestinal barrier breakdown[J]. J Surg Res, 2009, 156(1)∶ 64-69.
[30]Costantini TW, Peterson CY, Kroll L, Loomis WH, Putnam JG, Wolf P, Eliceiri BP, Baird A, Bansal V, Coimbra R. Burns, inflammation, and intestinal injury∶ protective effects of an antiinflammatory resuscitation strategy[J]. J Trauma, 2009, 67(6)∶1162-1168.
[31]Wang QM, Stalker TJ, Gong Y, Rikitake Y, Scalia R, Liao JK. Inhibition of Rho-kinase attenuates endothelial-leukocyte interaction during ischemia-reperfusion injury[J]. Vasc Med, 2012, 17(6)∶ 379-385.
10. 3969/j. issn. 1672-8521. 2015. 04. 013
國家自然科學基金面上項目(81471872);國家發(fā)改委衛(wèi)星示范專項[發(fā)改辦高技(2013)2140號]
胡森,研究員(E-mail∶bs0425@163.com)
2015-07-10)