• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氫氧發(fā)動機模型真空羽流場試驗和仿真研究

    2015-03-20 08:23:50馬樹微賀碧蛟蔡國飆
    航天器環(huán)境工程 2015年2期
    關(guān)鍵詞:氫氧北京航空航天大學(xué)宇航

    馬樹微,吳 靖,賀碧蛟,蔡國飆

    (北京航空航天大學(xué) 宇航學(xué)院,北京100191)

    0 Introduction

    The exhaust flows of high-altitude engines assembled on launch vehicles would expand freely and produce a plume in the vacuum environment. In many cases, the plume backflow would probably impinge on the upper-stage to generate contamination, aerodynamic force and thermal effects. These undesirable effects may debase the capability of the vehicle or even lead to the flight mission failure. Therefore, the effects of the plume must be taken into account in a design.

    There are two main approaches for the plume researches, the numerical simulation and the experiment. In the early 1960s, G.A. Bird proposed the DSMC method[1-3], which directly simulates the physical phenomena that can be described by the Boltzmann equations. It has since been successfully applied to a wide range of high-altitude vacuum plume problems[4-10]. The experimental investigation includes the space flight and ground simulation experiments. The experimental data acquired from the space flight is actual and reliable but the data that can be obtained is limited and the cost is very expensive. On the other hand, the cost of the ground simulation experiments performed in a vacuum system is much lower and much larger amount of data can be acquired than what can be done by the space flight experiments.

    Experimental investigation in a ground vacuum system is a reliable and convenient method to assess the effect of the plume. Nevertheless, limited by the pumping capability due to the technological availability and the investment of vacuum systems, the ground experiments are mainly performed by employing cold gas expansions or neutral flows of resistojets with a low flow rate to maintain the high vacuum level[11-17]. It is impossible for an actual rocket engine to exhaust and maintain the vacuum in any current ground vacuum system.

    In this work, a 60 N scaled model thruster of hydrogen/ oxygen is designed and it exhausts in a vacuum chamber, simulating the second stage engine of the Chinese ‘CZ’ launch vehicle. The pressures of the plume field are measured. Then the experimental results are compared with the numerical simulation results based on the combined CFD and DSMC methods to validate the numerical simulation programs, demonstrating the powerful ability of the numerical approach to estimate the effects of the plume flows.

    1 Experimental investigation

    1.1 The scaled model thruster

    Two rocket engines with a thrust of 9×104N are used on the second stage of the Chinese ‘CZ’ launch vehicle. However, it is absolutely impossible to experimentally investigate the plume of the engines in a ground vacuum system. Therefore a scaled 60 N model thruster of hydrogen/oxygen is designed to produce the flow field of the plume. The model thruster has the same propellant, the same mixing ratio and the shrinked bell-nozzle profile as those of the actual rocket engine. The main technical parameters of the model thruster are listed in Table 1.

    Table 1 Main technical parameters of the scaled model thruster

    The thruser of hydrogen/oxygen that employs the torch igniting method is illustrated in Fig. 1. The compounding gas flow of hydrogen and oxygen with a mixing ratio of 0.9, enters the ignition chamber through a shear coaxial injector. The spark plug powered by a transformer which converts 220 V AC to 15 kV AC is employed to ignite the mixture of the ignition hydrogen and the ignition oxygen. Then the hydrogen-rich gas with temperatrue below 1000 K is generated and sent to the combustion chamber together with the rest flow of the oxygen, called the main oxygen, and burns and exhausts through the bell nozzle. The combustion chamber and the nozzle are manufactured with the material of red copper and mounted in a thermal storage constructure, whose thermal conductivity is exceptionally good, to sustain the high temperature of the combustion gas while the thruster working only for a short time. The injectors and the ignition chamber are manufatured and welded together with 304 stainless steel instead of red copper, because red copper would be annealed in the process of welding. The melting point of 304 stainless steel is about 1700 K, which is much higher than the temperature of the hydrogen-rich gas in the ignition chamber, while the melting point of the spark plug electrodes made of iridium alloy is about 2400 K.

    Fig. 1 Schematic diagram of hydrogen/oxygen thruster

    1.2 Vacuum facility

    The experiment is conducted in the Plume Effect Experimental System (PEES)[18-20]at Beihang University. The PEES, developed in 2011, is the first space-simulation experimental system designed specially to study the vacuum plume and its effects in China. The vacuum chamber is a horizontal cylindrical body of two elliptical head structure with the inner size of 5.2 m in diameter and 12.6 m in length, as illustrated in Fig. 2.

    Fig. 2 The vacuum chamber of PEES, Beihang University

    The present experiment is performed with the plumeabsorption pumps detached and both layers of the heat sinks cooled by liquid nitrogen. The vacuum pressure is monitored with a Pirani gauge and a hot cathode gauge mounted on the chamber wall. The pressure without the thruster exhaust can reach 10-4Pa.

    1.3 Measuring apparatus

    The pressures in front of the sonic nozzles of the ignition hydrogen, the ignition oxygen and the main oxygen are measured with three sputtered thin pressure transducers and their measuring range is 0 4.0 MPa, while that of thetransducer for the combustion chamber pressure is 0 2.0 MPa.The listed manufacturer’s accuracy of every pressure transducer is 0.25% of the full scale (FS). The latter may effectively measure the total pressure of the flows. The ratio of the chamber area to the throat area is 14.5:1. No contact measurement instruments such as the thermal couple are employed to measure the total temperature, which is too high to be measured in this way, however, it could be estimated by a thermal calculation.

    An array consisting of 15 parallel pitot tubes made of 304 stainless steel is employed to determine the pressure field of the plume. The inlets of the tubes are placed in a line with an interval of 20 mm. Each probe has an outside diameter of 5.0 mm and an inside diameter of 3.8 mm, as schematically shown in Fig. 3. The transducers attached to the tubes at symmetric positions with respect to the middle line have the same ranges of measurement with accuracy of 0.25% FS, and the ranges of the middle transducers and both sides ones are 30 kPa, 10 kPa, 5 kPa, 5 kPa, 5 kPa, 5 kPa, 1 kPa, 1 kPa, respectively. The array of pitot tubes is mounted on a traversing mechanism for making measurements at different distances from the outlet of the thruster nozzle.

    Fig. 3 Schematic diagram of pitot tube array with differential pressure transducers

    1.4 Test procedure

    During experiments, the traversing mechanism carrying the pitot tubes array is shifting along the thruster axis direction (X) to determine the pressure distribution in the radial direction (R) at different distances from the nozzle outlet. The measuring range is from 140 mm to 600 mm in the axial direction (X), and 140 mm in the radial direction (R). The relative positions of the thruster and the pitot tube array are optically adjusted before the test to keep the pitot tube array moving along the axis of the thruster.

    The vacuum chamber is initially pumped into a vacuum state without the nozzle exhaust to establish zero settings for the sputtered thin pressure transducer in the combustion chamber and the differential pressure transducers of the pitot tube array. The vacuum pressure as the zero point is lower than 10-4Pa, so the differential pressure read from the sensor could be taken as the actual pressure. A repeated short-time exhausting mode instead of a continuous mode is employed to maintain the dynamic vacuum with exhaust because of its large flow rate. As shown in Fig. 4, the ignition hydrogen pressure, the ignition oxygen pressure, the main oxygen pressure in front of the sonic nozzles and the chamber pressure reach steady states in about 100 ms after the main oxygen enters. Hence, the exhausting time is set as 300 ms to obtain a relatively steady plume field while maintaining the dynamic vacuum pressure. Since the hydrogen could not be absorbed by the liquid nitrogen heat sink, it would take a very long time to reduce the background pressure to the level below 10-4Pa after exhausting. As a compromise, the exhaust begins when the vacuum pressure is lower than 3.0×10-3Pa. The dynamic background pressure is about 3 Pa.

    Fig. 4 Representative pressure curves during an exhaust

    2 Numerical method

    The vacuum plume covers various flow regions, including the continuum, the transition, and the free molecular flow regions. The continuum flow is found in the core area of the plume. The transition flow and the free molecular flow are in the far areas of the plume. Therefore, the vacuum plume could not be described by one mathematical model alone. For the continuum flow, the governing equations are the N-S equations, which are solved by using the traditional Computational Fluid Dynamic (CFD) method. For the free molecular flow, the governing equation is the Boltzmann equation without the collision factor. However, for the transition flow, the governing equation is the full Boltzmann equation. The most widely used method for the solutions of the Boltzmann equation is the Direct Simulation Monte Carlo (DSMC) method. In this paper, a combined CFD-DSMC method is used for the numerical analysis[21]. For the CFD-DSMC method, the physical range for the CFD analysis is extended from the inside of the nozzle out into the free space beyond the point where, because of the rapid gas expansion, the continuum theory is considered valid. A DSMC analysis is performed for the flow region far downstream of the nozzle exit where the flow can no longer be described by the continuum theory. The DSMC analysis uses the boundary condition information from the corresponding CFD analysis at a surface where the continuum theory is applicable.

    In the DSMC calculation, the flow domain is first divided into a number of cells. Then the computational particles are placed into the cells. All particles carry the information of position, velocity, internal energy and weight factor. During each time step, all particles are handled in two loops. The outer loop extends over all grid cells in which all particles move and interact with the boundary surfaces; the inner loop extends over the particles within a cell in which particles collide with each other.

    The DSMC-based PWS (Plume Work Station) software[22], as a general simulation software developed by Beihang University, is employed in the current investigation for the plume effect simulation. The software is modularized, which includes the initial condition module, the boundary condition module, the parameter module and the mesh generation module. With these modules, various kinds of parameters can be transformed into the format adopted by the software, and then the data and the control interface are processed. The uniform data and the control interface provide a man-machine interaction environment. Users can make further modifications and define operation processes on the interface.

    3 Results and discussions

    3.1 Plume field of the scaled model thruster

    The measured pitot pressures are corrected by the flow angles acquired from the DSMC results to reduce the errors caused by parallel tubes. The pressure field of the plume obtained by the DSMC method is converted to the pressures behind the normal shock wave by Eq. (1), for comparisons with the experimental pitot pressures.

    Fig. 5 through Fig. 7 show the pressure distributions along the radial direction (R) at 140 mm, 350 mm, and 600 mm away from the nozzle exit plane, respectively. The upper horizontal axis and the right vertical axis represent the distance normalized by the exit diameter(X / De) and the plume pressure normalized by the chamber total pressurerespectively. The DSMC computational results are found in excellent agreement with the experimental data. The pressure profiles show convex shapes (except the one at 140 mm) and complicated shock waves produced by the bell nozzle are observed. When the distance away from the nozzle exit increases, the maximum pressure at each radial line shifts away from the axis, and the pressures near the axis decrease while the pressures far from the axis increase, resulting in profiles with a tendency to flatten. From the comparisons between the experimental and numerical simulation results of the model thruster, the approach combining CFD and DSMC shows a powerful ability to predict the plume pressures.

    Fig. 5 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 140 mm

    Fig. 6 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 350 mm

    Fig. 7 Comparison between DSMC simulation and measured pitot pressure profiles along R direction at X = 600 mm

    4 Conclusions

    To study the plume flow field of the second stage engines of the Chinese ‘CZ’ launch vehicle, a 60 N model thruster of hydrogen/oxygen with the same propellant, the same mixing ratio and the same shrinked bell-nozzle profile as those of the actual rocket engine is designed and tested in the Plume Effect Experimental System of Beihang University.

    The pressures behind the shock wave along the radial direction at the different distances from 140 mm to 600 mm away from the nozzle exit plane in the plume field are determined by using a pitot tube array. The results show the tendency of the plume produced from a bell-nozzle expanding into the vacuum. The experimental data are compared with the numerical simulation results based on the CFD-DSMC method, and it is shown that the numerical method predicts both the tendency and the values precisely as compared with the experimental results, which demonstrates the powerful ability of the numerical approach to estimate the effects of the plume flows. The characteristics of the pressure field of the model thruster plume are obtained by the present study and can serve as a basis for the plume effect analysis of the archetype engine.

    [1] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963, 6(10): 1518-1519

    [2] Bird G A. Shock-wave structure in a rigid sphere gas[C]//Proceedings of the Fourth International Symposium, Institute for Aerospace Studies. Toronto, 1965: 216

    [3] Bird G A. Molecular gas dynamics[M]. Oxford: Clarendon Press, 1976: 250

    [4] Baerwald R K. Rocket exhaust plume impingement on the Voyager spacecraft, AIAA 78-1090[R], 1978

    [5] Guernsey C S. Effects of translational nonequilibrium on vacuum plume expansions[J]. AIAA Journal, 1982, 20(7): 885-888

    [6] Pham-Van-Diep G, Erwin D, Muntz E P. Nonequilibrium molecular motion in a hypersonic shock wave[J]. Science, 1989, 245: 624-626

    [7] Boyd I D, Penko P F, Carney L M. Efficient Monte Carlo simulation of rarefied flow in a small nozzle, AIAA 90-1693[R], 1990

    [8] Lumpkin F E. A CFD/DSMC analysis of plumes and plume impingement during Shuttle/Mir docking[C]//30thThermophysics Conference. San Diego, 1995

    [9] Kannenberg K C, Boyd I D. Three-dimensional Monte Carlo simulations of plume impingement[J]. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 226-235

    [10] Tseng K, Hu L, Kuo T, et al. Disturbance analysis from plume impingement by using the parallel DSMC Code (PDSC), AIAA 2007-4412[R], 2007

    [11] Lengrand J, Allegre J, Raffin M. Experimental investigation of underexpanded exhaust plumes[J]. AIAA Journal, 1976, 14(5): 692-694

    [12] Bailey A B. Flow-angle measurements in a rarefied nozzle plume[J]. AIAA Journal, 1987, 25(10): 1301-1304

    [13] Boyd I D. Analysis of rotational nonequilibrium in standing shock waves of nitrogen[J]. AIAA Journal, 1990, 28(11): 1997-1999

    [14] Boyd I D, Penko P F, Meissner D L, et al. Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen[J]. AIAA Journal, 1992, 30(10): 2453-2461

    [15] Boyd I D, Beattie D R, Cappelli M A. Numerical and experimental investigations of low-density supersonic jets of hydrogen[J]. Journal of Fluid Mechanics, 1994, 280: 41-67

    [16] Broc A, De Benedictis S, Dilecce G, et al. Experimental and numerical investigation of an O2/NO supersonic free jet expansion[J]. Journal of Fluid Mechanics, 2004, 500: 211-237

    [17] Xiao Z J, Cheng H E, Zhou W M, et al. Pressure investigations of carbon dioxide nozzle plume flow in simulated space environment, AIAA 2007-5188[R], 2007

    [18] Wang W L, Cai G B, Zhou J P. Large-scale vacuum vessel design and finite element analysis[J]. Chinese Journal of Aeronautics, 2012, 25(2): 189-197

    [19] Ling G L, Wang W L, Cai G B, et al. Liquid helium heat sink design for experimental study of engine's plume and vacuum effects[J]. Journal of Aerospace Power, 2011, 26(11): 2630-2635

    [20] Ling G L, Cai G B, Zhang J H. Oil-free vacuum system design based on vacuum plume experiment[J]. Journal of Aerospace Power, 2013, 28(5): 1173-1179

    [21] Tang Z Y, He B J, Cai G B. Investigation on a coupled Navier–Stokes–Direct Simulation Monte Carlo method for the simulation of plume flowfield of a conical nozzle[J]. International Journal for Numerical Methods in Fluids, 2014, 76(2): 95-108

    [22] He B J, Zhang J H, Cai G B. Research on vacuum plume and its effects[J]. Chinese Journal of Aeronautics, 2013, 26(1): 27-36

    猜你喜歡
    氫氧北京航空航天大學(xué)宇航
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    氫氧燃料電池演示實驗的改進
    自制液壓儲氣式氫氧燃料電池
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    《北京航空航天大學(xué)學(xué)報》征稿簡則
    連鑄坯氫氧切割應(yīng)用與碳排放研究
    我的宇航夢
    小主人報(2015年4期)2015-09-14 02:50:29
    我的宇航夢
    小主人報(2015年2期)2015-03-01 12:30:54
    我的宇航夢
    小主人報(2015年3期)2015-02-28 20:41:54
    国产精品二区激情视频| 亚洲色图综合在线观看| 又紧又爽又黄一区二区| 国产xxxxx性猛交| 午夜福利免费观看在线| 日本vs欧美在线观看视频| 欧美中文综合在线视频| 亚洲国产欧美在线一区| 欧美激情极品国产一区二区三区| 叶爱在线成人免费视频播放| 免费人妻精品一区二区三区视频| 99久久精品国产亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品久久午夜乱码| 99九九在线精品视频| 777久久人妻少妇嫩草av网站| 中文字幕亚洲精品专区| 嫩草影视91久久| 久久精品aⅴ一区二区三区四区| 亚洲,欧美精品.| 性高湖久久久久久久久免费观看| 丝袜美腿诱惑在线| 国产精品偷伦视频观看了| 久久精品久久久久久噜噜老黄| 亚洲一卡2卡3卡4卡5卡精品中文| bbb黄色大片| 久久精品久久精品一区二区三区| 久久人人97超碰香蕉20202| 一二三四社区在线视频社区8| 久久天躁狠狠躁夜夜2o2o | 欧美日韩av久久| tube8黄色片| 成在线人永久免费视频| 亚洲成国产人片在线观看| 9191精品国产免费久久| tube8黄色片| 国产免费现黄频在线看| 精品人妻熟女毛片av久久网站| 日韩中文字幕欧美一区二区 | 纵有疾风起免费观看全集完整版| 视频在线观看一区二区三区| 久久精品久久久久久噜噜老黄| 国产男女内射视频| 99久久综合免费| 亚洲精品国产区一区二| 欧美97在线视频| 捣出白浆h1v1| 男的添女的下面高潮视频| 亚洲av男天堂| 亚洲,一卡二卡三卡| 欧美精品啪啪一区二区三区 | 国产片内射在线| 天堂8中文在线网| 50天的宝宝边吃奶边哭怎么回事| 国产成人a∨麻豆精品| 国产片特级美女逼逼视频| 欧美日韩亚洲高清精品| 国产在线观看jvid| 免费在线观看完整版高清| 精品国产一区二区三区久久久樱花| 美女大奶头黄色视频| 精品国产乱码久久久久久小说| 少妇的丰满在线观看| 久久久久久久精品精品| 国产精品久久久久久精品电影小说| 97在线人人人人妻| 免费在线观看完整版高清| a级毛片在线看网站| 丰满人妻熟妇乱又伦精品不卡| 国产精品99久久99久久久不卡| 欧美黑人精品巨大| 91国产中文字幕| 黑人欧美特级aaaaaa片| 在线观看www视频免费| 人妻一区二区av| 一区二区三区精品91| 视频区图区小说| 欧美久久黑人一区二区| 99国产精品99久久久久| 新久久久久国产一级毛片| 人体艺术视频欧美日本| 亚洲国产欧美在线一区| 激情视频va一区二区三区| 免费看不卡的av| 香蕉丝袜av| 日本欧美视频一区| 国产视频一区二区在线看| 妹子高潮喷水视频| 国产精品久久久久久精品古装| 热re99久久精品国产66热6| 丁香六月天网| 亚洲国产精品999| 久久鲁丝午夜福利片| 午夜福利在线免费观看网站| 免费女性裸体啪啪无遮挡网站| 色精品久久人妻99蜜桃| 欧美亚洲 丝袜 人妻 在线| 1024视频免费在线观看| 日本vs欧美在线观看视频| 天堂8中文在线网| 欧美 亚洲 国产 日韩一| 中文字幕亚洲精品专区| 午夜免费男女啪啪视频观看| 国产精品二区激情视频| 最近手机中文字幕大全| 一级黄片播放器| 91成人精品电影| 久久精品aⅴ一区二区三区四区| 五月开心婷婷网| 黄频高清免费视频| 午夜av观看不卡| 亚洲欧洲日产国产| 王馨瑶露胸无遮挡在线观看| 欧美精品啪啪一区二区三区 | 国产成人啪精品午夜网站| 国产免费视频播放在线视频| 久久久久国产精品人妻一区二区| 精品人妻1区二区| 国产在线视频一区二区| 日韩一本色道免费dvd| 日本vs欧美在线观看视频| 精品一区二区三区av网在线观看 | 色网站视频免费| 欧美日韩视频精品一区| 国产精品欧美亚洲77777| 少妇猛男粗大的猛烈进出视频| 九色亚洲精品在线播放| 国产淫语在线视频| 91九色精品人成在线观看| 国产成人a∨麻豆精品| 国产精品熟女久久久久浪| 亚洲三区欧美一区| 女人高潮潮喷娇喘18禁视频| 国产精品久久久人人做人人爽| 精品国产一区二区三区久久久樱花| 后天国语完整版免费观看| 国产男女内射视频| 老司机深夜福利视频在线观看 | 国产亚洲av高清不卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品美女久久av网站| 欧美日韩成人在线一区二区| 美女扒开内裤让男人捅视频| 一区二区三区乱码不卡18| 成年av动漫网址| 99re6热这里在线精品视频| 日本av免费视频播放| 少妇的丰满在线观看| 国产av国产精品国产| 亚洲欧美激情在线| 亚洲第一av免费看| 国产av精品麻豆| 久久性视频一级片| 美女扒开内裤让男人捅视频| 女人被躁到高潮嗷嗷叫费观| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 男女下面插进去视频免费观看| 丰满迷人的少妇在线观看| 成年av动漫网址| 男女免费视频国产| 国产av国产精品国产| 欧美精品高潮呻吟av久久| 久久久亚洲精品成人影院| 国产成人av激情在线播放| 中文字幕制服av| 51午夜福利影视在线观看| 亚洲欧洲日产国产| 日本五十路高清| 天堂中文最新版在线下载| av又黄又爽大尺度在线免费看| 在现免费观看毛片| 国产三级黄色录像| svipshipincom国产片| 蜜桃国产av成人99| 日韩,欧美,国产一区二区三区| 亚洲人成电影免费在线| 国产精品99久久99久久久不卡| 久久鲁丝午夜福利片| 少妇的丰满在线观看| 亚洲中文字幕日韩| 一级毛片黄色毛片免费观看视频| 日日夜夜操网爽| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| 91精品伊人久久大香线蕉| 美女中出高潮动态图| 一区在线观看完整版| 亚洲精品国产av成人精品| 熟女av电影| 日本wwww免费看| 9191精品国产免费久久| 午夜福利视频精品| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 国产视频一区二区在线看| 啦啦啦啦在线视频资源| 五月开心婷婷网| 午夜av观看不卡| 日日爽夜夜爽网站| 午夜两性在线视频| 中文字幕亚洲精品专区| 亚洲男人天堂网一区| 黄频高清免费视频| 国产精品亚洲av一区麻豆| 亚洲国产最新在线播放| 天天躁夜夜躁狠狠躁躁| www.av在线官网国产| 亚洲天堂av无毛| 黄片播放在线免费| 飞空精品影院首页| videosex国产| 精品国产乱码久久久久久小说| 日日夜夜操网爽| 在线亚洲精品国产二区图片欧美| 五月开心婷婷网| 99久久精品国产亚洲精品| 国产在视频线精品| 免费黄频网站在线观看国产| 久久精品久久久久久噜噜老黄| 免费日韩欧美在线观看| 亚洲成人免费av在线播放| 少妇精品久久久久久久| 蜜桃国产av成人99| 18禁国产床啪视频网站| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 亚洲精品中文字幕在线视频| 久久鲁丝午夜福利片| 女警被强在线播放| 亚洲中文日韩欧美视频| 国产爽快片一区二区三区| 捣出白浆h1v1| 亚洲国产欧美一区二区综合| 一本—道久久a久久精品蜜桃钙片| netflix在线观看网站| 免费看av在线观看网站| 日本黄色日本黄色录像| 国产欧美日韩综合在线一区二区| 美女福利国产在线| 三上悠亚av全集在线观看| 19禁男女啪啪无遮挡网站| av网站在线播放免费| 好男人电影高清在线观看| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲av日韩精品久久久久久密 | 亚洲欧美精品综合一区二区三区| 天堂中文最新版在线下载| 久久久久久久精品精品| 亚洲第一青青草原| 丰满人妻熟妇乱又伦精品不卡| 日本五十路高清| 日本av免费视频播放| 精品福利观看| 国产免费福利视频在线观看| av电影中文网址| 十八禁网站网址无遮挡| 久久午夜综合久久蜜桃| 精品人妻在线不人妻| 女警被强在线播放| 黄色怎么调成土黄色| 国产国语露脸激情在线看| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| av又黄又爽大尺度在线免费看| 狠狠精品人妻久久久久久综合| 老鸭窝网址在线观看| 99九九在线精品视频| 老汉色av国产亚洲站长工具| 青青草视频在线视频观看| 日韩电影二区| 少妇的丰满在线观看| 男人舔女人的私密视频| 日本色播在线视频| 欧美日韩黄片免| 日韩一本色道免费dvd| 无限看片的www在线观看| 在线天堂中文资源库| 欧美少妇被猛烈插入视频| 波多野结衣av一区二区av| 女警被强在线播放| 中文字幕亚洲精品专区| 国产熟女午夜一区二区三区| 另类精品久久| 青草久久国产| 日韩 亚洲 欧美在线| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 成在线人永久免费视频| 午夜91福利影院| 婷婷色麻豆天堂久久| 亚洲精品日本国产第一区| 黑丝袜美女国产一区| 久久99热这里只频精品6学生| 考比视频在线观看| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 成人国语在线视频| 精品亚洲成国产av| 色婷婷av一区二区三区视频| 亚洲少妇的诱惑av| 少妇人妻久久综合中文| 女人高潮潮喷娇喘18禁视频| 99久久精品国产亚洲精品| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲国产日韩| 自线自在国产av| 亚洲天堂av无毛| 午夜两性在线视频| 超色免费av| 一级a爱视频在线免费观看| 精品免费久久久久久久清纯 | 久久国产精品大桥未久av| 久久精品久久精品一区二区三区| 日本黄色日本黄色录像| 日日夜夜操网爽| 99国产精品免费福利视频| www.精华液| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 国产极品粉嫩免费观看在线| 国产爽快片一区二区三区| 亚洲人成电影观看| 丁香六月欧美| 老司机亚洲免费影院| 亚洲精品国产av成人精品| 亚洲成人免费av在线播放| 久久免费观看电影| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美中文字幕日韩二区| 国产成人一区二区在线| 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 国产真人三级小视频在线观看| 久久99精品国语久久久| 国产免费视频播放在线视频| 久久精品熟女亚洲av麻豆精品| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲 | 国产精品免费大片| 三上悠亚av全集在线观看| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| 精品一区二区三卡| 婷婷色综合大香蕉| www日本在线高清视频| www.av在线官网国产| 亚洲精品久久午夜乱码| 91精品三级在线观看| 两个人看的免费小视频| 精品人妻熟女毛片av久久网站| 青青草视频在线视频观看| 午夜福利,免费看| 两个人看的免费小视频| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 19禁男女啪啪无遮挡网站| av在线播放精品| 日本黄色日本黄色录像| 99国产精品99久久久久| 精品国产一区二区三区久久久樱花| 精品国产国语对白av| 天天添夜夜摸| 最近手机中文字幕大全| 亚洲一码二码三码区别大吗| 狂野欧美激情性bbbbbb| 亚洲人成电影观看| 国产一级毛片在线| 人人妻人人澡人人看| 成年av动漫网址| 亚洲欧洲国产日韩| 日本91视频免费播放| 国产成人免费观看mmmm| 在线观看一区二区三区激情| 国产男人的电影天堂91| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 久热这里只有精品99| 国产精品免费大片| 亚洲成人国产一区在线观看 | 色94色欧美一区二区| 午夜日韩欧美国产| 狠狠婷婷综合久久久久久88av| 国产在视频线精品| 欧美在线一区亚洲| 亚洲精品成人av观看孕妇| 丝袜人妻中文字幕| 婷婷色av中文字幕| 女警被强在线播放| 无遮挡黄片免费观看| 国产一区亚洲一区在线观看| 一区福利在线观看| 青春草亚洲视频在线观看| 人妻一区二区av| 久久精品久久精品一区二区三区| 老司机影院毛片| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品久久久久5区| 国产精品熟女久久久久浪| 亚洲黑人精品在线| 久久久精品区二区三区| 99精品久久久久人妻精品| 伊人久久大香线蕉亚洲五| 菩萨蛮人人尽说江南好唐韦庄| videos熟女内射| 久久久久视频综合| 亚洲精品久久成人aⅴ小说| 久久久久精品国产欧美久久久 | 国产熟女欧美一区二区| 老司机在亚洲福利影院| 免费人妻精品一区二区三区视频| 三上悠亚av全集在线观看| 精品久久久久久电影网| 久久国产精品男人的天堂亚洲| av网站在线播放免费| 欧美变态另类bdsm刘玥| 亚洲精品久久午夜乱码| 亚洲人成77777在线视频| 午夜福利影视在线免费观看| 老鸭窝网址在线观看| 亚洲熟女毛片儿| 日本午夜av视频| 嫩草影视91久久| 欧美黄色淫秽网站| 午夜福利一区二区在线看| 亚洲国产精品一区三区| 成人免费观看视频高清| 热99国产精品久久久久久7| a级毛片在线看网站| 一区二区三区激情视频| 免费在线观看黄色视频的| 国产日韩欧美亚洲二区| 国产男女内射视频| 国产精品二区激情视频| av国产久精品久网站免费入址| 日本a在线网址| 国产精品99久久99久久久不卡| 久久99精品国语久久久| www.自偷自拍.com| 国产一区亚洲一区在线观看| 1024香蕉在线观看| 真人做人爱边吃奶动态| 亚洲欧美一区二区三区黑人| 国产亚洲av高清不卡| 麻豆国产av国片精品| 人人妻,人人澡人人爽秒播 | 精品亚洲成a人片在线观看| 国产亚洲欧美精品永久| 黄色视频不卡| 午夜免费鲁丝| 久久中文字幕一级| a 毛片基地| 成年人黄色毛片网站| 日韩制服丝袜自拍偷拍| 大码成人一级视频| 久久亚洲国产成人精品v| 成人影院久久| 日本欧美视频一区| 国产成人免费观看mmmm| videos熟女内射| e午夜精品久久久久久久| 女人高潮潮喷娇喘18禁视频| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 午夜日韩欧美国产| 男的添女的下面高潮视频| 妹子高潮喷水视频| 亚洲伊人久久精品综合| 日韩电影二区| 一级毛片女人18水好多 | 丝袜脚勾引网站| 欧美精品一区二区免费开放| 国产日韩欧美亚洲二区| 男女国产视频网站| 五月开心婷婷网| 久久精品亚洲熟妇少妇任你| 91国产中文字幕| 亚洲精品一区蜜桃| 欧美另类一区| videosex国产| 国产精品99久久99久久久不卡| 波多野结衣一区麻豆| 国产野战对白在线观看| 伦理电影免费视频| 性高湖久久久久久久久免费观看| a级毛片黄视频| 国产精品一国产av| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品一区三区| 色网站视频免费| 一二三四在线观看免费中文在| 中文字幕人妻熟女乱码| 搡老岳熟女国产| 黑人欧美特级aaaaaa片| 久久中文字幕一级| 亚洲中文字幕日韩| 亚洲av男天堂| 亚洲第一青青草原| 人妻人人澡人人爽人人| 这个男人来自地球电影免费观看| 99久久人妻综合| 欧美另类一区| 国产成人精品在线电影| 777久久人妻少妇嫩草av网站| 一区在线观看完整版| 国产精品久久久av美女十八| 精品一区二区三区av网在线观看 | 精品一区二区三卡| 亚洲精品久久午夜乱码| 满18在线观看网站| 蜜桃国产av成人99| xxx大片免费视频| 91精品三级在线观看| 高清欧美精品videossex| 超色免费av| 男女午夜视频在线观看| 欧美大码av| 最近中文字幕2019免费版| 亚洲午夜精品一区,二区,三区| 亚洲一卡2卡3卡4卡5卡精品中文| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 国产成人精品无人区| 少妇粗大呻吟视频| 色综合欧美亚洲国产小说| 精品人妻熟女毛片av久久网站| av不卡在线播放| 后天国语完整版免费观看| 搡老岳熟女国产| 一级毛片女人18水好多 | 999精品在线视频| 各种免费的搞黄视频| 男女床上黄色一级片免费看| 一本大道久久a久久精品| 国产精品偷伦视频观看了| 一个人免费看片子| 日本av手机在线免费观看| 免费女性裸体啪啪无遮挡网站| 妹子高潮喷水视频| 中文精品一卡2卡3卡4更新| 亚洲精品美女久久av网站| a级毛片黄视频| 又大又黄又爽视频免费| 精品人妻在线不人妻| 午夜日韩欧美国产| 十八禁人妻一区二区| 日本91视频免费播放| 国产成人av激情在线播放| 亚洲国产精品一区二区三区在线| 亚洲国产成人一精品久久久| 国产成人啪精品午夜网站| 午夜福利免费观看在线| 亚洲欧美激情在线| 久久久久视频综合| 国产欧美亚洲国产| 下体分泌物呈黄色| 极品人妻少妇av视频| 蜜桃在线观看..| 中文字幕精品免费在线观看视频| 亚洲天堂av无毛| av欧美777| 好男人视频免费观看在线| 欧美日韩成人在线一区二区| 亚洲欧美色中文字幕在线| 啦啦啦中文免费视频观看日本| 男的添女的下面高潮视频| 亚洲av在线观看美女高潮| 亚洲国产精品一区三区| 成年美女黄网站色视频大全免费| 国产高清视频在线播放一区 | 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| 亚洲精品美女久久久久99蜜臀 | av福利片在线| 国产精品国产av在线观看| 国产在视频线精品| 婷婷色综合大香蕉| 国产精品久久久人人做人人爽| 人妻人人澡人人爽人人| 一区在线观看完整版| 精品人妻在线不人妻| 精品久久久精品久久久| 亚洲天堂av无毛| 两个人免费观看高清视频| 丁香六月欧美| 亚洲av国产av综合av卡| 欧美精品高潮呻吟av久久| 国产成人免费无遮挡视频| 男女边摸边吃奶| tube8黄色片| 国产成人免费无遮挡视频| 十八禁人妻一区二区| 日韩视频在线欧美| 99久久综合免费| 香蕉国产在线看| 一区二区日韩欧美中文字幕| 亚洲欧美一区二区三区久久| 久久九九热精品免费| 欧美97在线视频| 精品国产国语对白av| 后天国语完整版免费观看| 两个人免费观看高清视频| 亚洲欧美清纯卡通| 日本午夜av视频| 久久天堂一区二区三区四区| 免费日韩欧美在线观看| 国产麻豆69| 在线精品无人区一区二区三| 亚洲精品一卡2卡三卡4卡5卡 | 久久人人爽av亚洲精品天堂| 男的添女的下面高潮视频|