• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ag-Strewn ZnO Flowerlike Microstructures: Simple Synthesis and Versatile Applications

    2015-03-18 03:29:20HANHanNIYonghongSHENGEnhongLIUAimin
    關(guān)鍵詞:花狀安徽師范大學電子顯微鏡

    HAN Han, NI Yong-hong, SHENG En-hong, LIU Ai-min

    (1. College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China; 2. College of Life Science, Anhui Normal University, Wuhu 241000, China)

    ?

    Ag-Strewn ZnO Flowerlike Microstructures: Simple Synthesis and Versatile Applications

    HAN Han1, NI Yong-hong1, SHENG En-hong1, LIU Ai-min2

    (1. College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China; 2. College of Life Science, Anhui Normal University, Wuhu 241000, China)

    In this paper, Ag nanoparticles-strewn ZnO flowerlike microstructures were successfully synthesized via a two-step route. Porous ZnO flowerlike microstructures were firstly prepared by a simple hydrothermal process with subsequent calcination, employing Zn(NO3)2and urea as the starting reactants in the presence of L-Cysteine; Then, Ag nanoparticles-strewn ZnO flowerlike microstructures were obtained through a photoreduction method. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), (high resolution) transmission electron microscopy (HRTEM/TEM), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectra, UV-vis diffuse reflectance spectra (DRS) and photoluminescence spectra (PL). Experiments showed that the Ag nanoparticles-strewn ZnO flowerlike microstructures exhibited versatile applications in some fields including excellent catalytic capacities for the degradation of Rhodamine B (RhB) and methyl orange (MO), highly effective antimicrobial activities toward Escherichia coli and high electrocatalysis performance to hydrogen peroxide.

    Ag-strewn ZnO microstructures; optical properties; versatile applications

    Classification NO:O614.41+1 Document code:A Paper NO:1001-2443(2015)03-0217-11

    Nanocomposites have been drawing remarkable attention because they often exhibit some novel/improved performances besides simultaneously bearing properties of components. For example, noble metal-ZnO hybrid nanostructures were reported to greatly improve the photocatalytic efficiency in the degradation of organic molecules compared to pure ZnO[1-5]. As important representatives of noble metals and semiconductors, Ag and ZnO are concentrated a great deal of research interest. The composite of Ag and ZnO is paid much attention, too. Many methods have been developed for preparation of Ag/ZnO hybrid nanostructures, including hydrothermal/solvothermal route[6,7], electrospinning method[8], biogenic process[9], microemulsion[10], refluxing synthesis[11], and hydrothermal-sonochemical approach[12]. Usually, the as-obtained Ag/ZnO hybrid nanostructures exhibit a few morphologies, such as Ag nanoparticles-strewn ZnO nanorods/nanofibers, Ag nanoparticles-strewn/coated ZnO nanoparticles, Ag nanoparticles-anchored ZnO microspheres, and worm-like Ag/ZnO core-shell heterostructural composites[6-13].

    It was found that both ZnO and Ag exhibited good antibacterial activity[6,14-16]. Meanwhile, some transition-metal oxides and Ag nanostructures were found to be used as electrocatalysts for the detection of H2O2[17,18]. Therefore, it will be significant in the practical application to prepare Ag/ZnO nanocomposites with improved photocatalytic activity, excellent antibacterial ability and outstanding electrocatalytic capacity, simultaneously.

    In the present work, we designed a two-step route to successfully obtain Ag nanoparticles-strewn porous ZnO flowerlike microstructures. 3D hierarchical zinc subcarbonate precursor was firstly synthesized via a facile hydrothermal process using zinc nitrate hexahydrate and urea as the starting reactants in the presence of L-Cysteine; and was further transferred into porous ZnO flowerlike microstructures in air at 300℃ for 2 h. Subsequently, small amounts of Ag nanoparticles were successfully strewn on the surfaces of the porous ZnO flowerlike microstructures through a simple photoreduction method. Experiments demonstrated that the as-obtained Ag/ZnO flowerlike microstructures exhibited excellent visible-light catalytic capacity for the degradation of Rhodamine B (RhB) and methyl orange (MO), highly-effective antimicrobial activities against Escherichia coli and high electrocatalysis performance to H2O2.

    1 Experimental section

    1.1 Materials

    All reagents and chemicals were analytically pure, purchased from the Shanghai Chemical Company and used without further purification. Distilled water was used throughout the experiments.

    1.2 Synthesis of flowerlike zinc subcarbonate precursor and conversion to porous ZnO microstructures

    In a typical experimental procedure, 0.5 mmol Zn(NO3)2·6H2O, 5 mmol urea and 0.1 mmol L-Cysteine were dissolved in 30 mL distilled water under vigorous stirring at room temperature for 30 min. Then, the clear solution was transferred into a 40 mL Teflon-line autoclave, and maintained at 100℃ for 8 h. After cooling down to room temperature naturally, the white zinc subcarbonate precipitate was centrifuged, washed with distilled water and absolute ethanol several times, and dried in vacuum at 60℃ for 10 h. Finally, porous ZnO flowerlike microstructures were obtained by calcining zinc subcarbonate precursor in a tube furnace in air at 300℃ for 2 h.

    1.3 Synthesis of Ag-strewn porous ZnO flowerlike microstructures

    To prepare Ag/ZnO hybrid microstructures with the loaded amount of Ag nanoparticles of 1, 3, 5 and 7%, respectively, a certain amount of AgNO3was firstly dissolved into 20 mL distilled water. Then, under magnetic stirring 20 mg of the as-obtained porous ZnO was dispersed into the above AgNO3solution. After further stirring in the dark for another 5 min, the above mixed system was irradiated by a 450 W Xenon lamp for 10 min. The color of the system changed from yellowish to brown, indicating the formation of Ag/ZnO hybrid microstructures. Also, the color of the system gradually deepened with the increase of the loaded Ag amount. Finally, the dark precipitate was collected by centrifugation, washed with distilled water and absolute ethanol several times, and dried at 60℃.

    1.4 Characterization

    The X-ray powder diffraction (XRD) patterns were carried out on a Shimadzu XRD-6000 X-ray diffractometer equipped with Cu Kα radiation (λ=0.154060 nm), employing a scanning rate of 0.02s-1and 2θ ranges from 10° to 80°. Scanning electron microscopy (SEM) images and energy dispersive spectrometry (EDS) of the products were obtained on Hitachi S-4800 field emission scanning electron microscope, employing the accelerating voltage of 5 kV and 15 kV, respectively. High resolution transmission electron microscopy (HR/TEM) images and selected area electron diffraction patterns were recorded on a JEOL 2010 transmission electron microscope, employing an accelerating voltage of 200 kV. The TG-DTA of the precursor was completed on a differential thermal analyzer (Thermo Electron Company of America, SDT Q600). The FTIR spectra of the products were obtained on an IR Prestige-21 Infrared spectrometer (Shimadzu Corporation). The UV-vis diffuse-reflectance spectra were measured on a UV-vis-near-IR spectrometer. Photoluminescence (PL) spectra were recorded on a FLSP 920 with a Xe lamp at room temperature, employing the excitation wavelength of 330 nm from He-Cd laser.

    1.5 Photocatalytic activity

    To investigate the photocatalytic activities of Ag/ZnO hybrid microstructures, the organic dyes, Rhodamine B (RhB) and methyl orange (MO), were used as the pollution modes, and a 500W Xenon lamp with a cutoff filter at 420 nm as the visible light source. In a typical experiment, 20 mg of catalyst was firstly dispersed into a 50 mL RhB (or MO) solution with a concentration of 10 mg/L under the ultrasonication. Then, the system was continuously stirred in the dark for 30 min to establish an adsorption-desorption equilibrium between the catalyst and the dye. Finally, the system was irradiated under the visible light for desired durations (During irradiation, the system was ceaselessly stirred to maintain a suspension). The concentration change of the dye was monitored with a Metash 6100 UV-vis absorption spectrophotometer (Shanghai).

    1.6 Antibacterial ability

    In order to assess the antibacterial ability of the as-obtained Ag/ZnO hybrid microstructures, the inhibition of Escherichia coli (E. coli, 8099, a Gram negative bacterium) growth was employed as a case. All plates and materials were sterilized in an autoclave before the experiments. Firstly, 0.1mL of the diluted bacteria suspension was uniformly spread on the nutrient agar using a sterile glass rod. Then, they were coated by 0.1mL 10mg/L of the as-obtained products. Finally, the plates were cultured in an incubator at 37℃ for 24 h before the number of colonies on the plates was counted. All experiments were repeated at least three times.

    1.7 Electrochemical Measurements

    Electrochemical responses were performed on a CHI660-A electrochemical workstation (CH Instruments, Chenhua Corp., Shanghai, China) with a three-electrode system consisting of a saturated calomel electrode (SCE) as a reference electrode, a platinum wire as a counter electrode, and a bare or modified glassy carbon electrodes (GCE) as a working electrode, employing a scanning rate of 100 mV/s and a rest time of 2 s. To prepare glassy carbon electrodes modified by the products, 1 mg of the products was dispersed into the twice-distilled water under ultrasound. Then, 5 μL solutions were dropped onto the glassy carbon electrode and dried in air at room temperature.

    2 Results and discussion

    2.1 Characterization of structure and morphology of products

    CO(NH2)2+3H2O→2NH3·H2O+CO2

    (1)

    (2)

    (3)

    Figure 1 (a, c) XRD pattern and EDS analysis of the precursor obtained by the hydrothermal route at 100℃ for 8 h. (b, d) XRD pattern and EDS analysis of the product obtained after calcining the above precursor at 300℃ for 2 h.

    Since ZnCO3and Zn(OH)2have the close solubility, white zinc subcarbonate precipitate can be produced. In the present work, the XRD pattern of the white precipitate prepared at 100℃ for 8 h proved the formation of zinc subcarbonate. As shown in Fig.1a, all diffraction peaks can be indexed as monoclinic Zn5(OH)6(CO3)2by comparison with the standard data of JCPDS card files no.72-1100. However, the (002) peak exhibits stronger diffraction intensity than the (200) one, which is the strongest peak in the standard data. The above fact implies the oriented growth of the precursor. Fig.1c depicts EDS analysis of the precursor. The C, O, Zn and S peaks are visible. The former three elements should be attributed to zinc subcarbonate. The S peak should come from L-Cysteine.

    Figure 2 (a) TG-DTA analyses of the precursor and (b) FTIR spectra of the precursor and ZnO obtained after calcining the precursor.

    SEM observations found that the outlines of the samples before and after calcining at 300℃ for 2 h hardly changed. As shown in Fig.3a, the precursor consisted of abundant flowerlike microspheres, which were constructed by smooth nanosheets (see the inset in Fig.3a). After calcining at 300℃ for 2h, the product still maintained the shape of the precursor. However, after further enlargement the shape differences of two products were distinguishable. Figs.3b and 3c exhibit high-resolution SEM images of the precursor and ZnO. Obviously, the smooth nanosheets had converted into porous nanosheets. TEM observations proved the result of SEM. As shown in Fig.3d, the product obtained after calcining at 300℃ for 2 h still maintained the shape of the precursor. The SAED pattern given in the inset of Fig.3d presented the polycrystalline nature of the final product. The concentric circles could be indexed as the planes of (100), (101), (102), (110), (103) and (112) of hexagonal ZnO in turn (from inside to outside), which is in good agreement with the XRD result. Fig.3e depicts a typical HRTEM image of ZnO nanosheets. The d-spacing between neighbouring planes is measured to be -0.26 nm, which corresponds to the (002) plane of hexagonal ZnO. Moreover, a pore is labelled in Fig.3e, which confirms the porous structure of ZnO nanosheets.

    Figure 3 (a) a low-magnification SEM image and (b) a high resolution SEM image of the precursor prepared under the hydrothermal conditions; (c) a high resolution SEM image, (d) TEM image and (e) HRTEM image of ZnO obtained after calcining the precursor at 300℃ for 2 h. The inset in (a) is a SEM image of single flowerlike precursor; The inset in (d) is a SAED pattern of ZnO.

    Fig.4a depicts the XRD patterns of Ag/ZnO hybrid microstructures with loaded Ag amounts of 1, 3, 5 and 7%, respectively. A weak Ag peak at -38.2° was gradually visible with the increase of Ag amount. The successful loading of Ag on ZnO flowerlike microstructures could be proved by EDS analyses. As shown in Fig.4b, Ag peak could be easily detected in the 3% Ag-loaded product besides strong O and Zn peaks. Fig.4c gives a typical SEM image of Ag/ZnO hybrid microstructures with 7% Ag-loaded amount. Small Ag nanoparticles were successfully strewn on the surface of ZnO nanosheets without aggregation. Further evidence to form Ag nanoparticles-strewn ZnO microstructures came from TEM observations. As shown in Fig.4d, abundant spherical nanoparticles with the sizes of 5-17 nm are distributed on the surfaces of ZnO nanosheets. A HRTEM image of nanospheres is displayed in Fig.4e, from which the clear lattice fringes imply good crystallinity of nanospheres. The d-spacing of neighboring planes is measured to be -0.20 nm, corresponding to the (200) plane of Ag.

    Figure 4 (a) XRD patterns of Ag/ZnO hybrid microstructures with various Ag-loaded amounts; (b) EDS analysis of Ag/ZnO hybrid microstructures with 3% Ag-loaded amount; (c) SEM image, (d) TEM image and (e) HRTEM image of Ag/ZnO hybrid microstructures with 7% Ag-loaded amount.

    2.2 Optical properties

    Fig.5a exhibits the UV-vis diffuse-reflectance spectra (DRS) of ZnO and Ag/ZnO hybrid microstructures. The absorption edges of Ag/ZnO hybrid microstructures present obvious red-shift against that of pure ZnO flowerlike microstructures. The corresponding band gap energies (Eg) are obtained in the light of the formula, αhν=A (hν-Eg)1/2, to be 3.03 (pure ZnO), 2.91 (1% Ag/ZnO), 2.87 (7% Ag/ZnO), 2.83 (5% Ag/ZnO) and 2.78 (3% Ag/ZnO). Where, α, A and hv are the absorption coefficient, the constant and the photon energy, respectively (see Fig.5b). Fig.5c depicts the PL emission spectra of ZnO flowerlike microstructures before and after Ag nanoparticles loading. Under the excitation of 330 nm light pure ZnO flowerlike microstructures showed a strong emission peak centred at -410 nm in the range from 350-550 nm. Compared with Lin’s report[8], the emission peak of ZnO red shifted -40 nm. This should be attributed to their different morphologies. After Ag nanoparticles loading, the intensity of the emission peak dramatically decreased, which should be attributed to the charge transfer from ZnO to Ag[8]. However, the emission intensity did not linearly decrease with the increase of Ag loading amount. Ag/ZnO hybrid microstructures with 3% Ag loading amount exhibited the lowest the emission intensity. Some groups also found the above similar experimental phenomenon and believed that the strong surface plasmon absorption of Ag nanoparticles at -410 nm caused the above phenomenon[8,22].

    Figure 5 (a) UV-vis diffuse-reflectance spectra, (b) plots of (αhν)2 vs (hv) and (c) PL spectra of pure ZnO and Ag/ZnO hybrid microstructures with different Ag-loading contents. The inset in (c) is the excitation spectrum.

    2.3 Photocatalytic activity

    Ag-ZnO+h?e-+h+

    (4)

    (5)

    h++H2O→·OH+H+

    (6)

    h++OH-→·OH

    (7)

    (8)

    2·HO2=H2O2+O2

    (9)

    Figs.6c and 6d depict the absorption spectra of RhB and MO solutions irradiated by the visible light for various durations in the presence of 20 mg 3% Ag/ZnO. RhB and MO solutions could be degraded with the prolonging of the irradiation time. After irradiating for 120 min, the degradation efficiency of RhB and MO reached nearly 100% and 80%, respectively. The color changes of RhB and MO solutions are separately displayed in the insets of Figs.6c and 6d.

    Figure 6 The concentration-time curves of the organic dyes RhB (a) and MO (b) irradiated by the visible light in the presences of various catalysts of 20 mg; the absorption spectra of RhB (c) and MO (d) solutions after irradiated by the visible light for various durations under the presence of 20 mg 3% Ag/ZnO.

    2.4 Antibacterial property

    It was also found that the as-prepared Ag-nanoparticles-strewn ZnO microstructures presented prominent antibacterial performance. Fig.7a shows the histograms of the bacterial colony numbers of E. coli before and after introducing 0.1 mL 10 mg L-1ZnO flowerlike microstructures with various Ag loading contents. After E. coli has been cultured in an incubator at 37℃ for 24 h in the absence of ZnO or Ag/ZnO microstructures, the bacterial colony number was -250. When flowerlike ZnO microstructures were added, the bacterial colony number of E. coli decreased to -180 under the same culturing conditions, indicating that ZnO can restrain the propagation of E. coli. While Ag nanoparticles-strewn ZnO flowerlike microstructures were added into the system, the bacterial colony number further decreased. This proves that Ag/ZnO hybrid microstructures have stronger ability to restrain the propagation of E. coli than pure ZnO flowerlike microstructures. Also, with the increase of Ag nanoparticles loading content from 1% to 7%, the antibacterial capacity of the as-prepared product was further improved. Fig.7b clearly shows the antibacterial efficiencies of ZnO flowerlike microstructures with different Ag nanoparticles contents. Markedly, only 7% Ag nanoparticles contribute -75% antibacterial efficiency, which greatly reduces the use amount of Ag. It is very important for decreasing the cost in the practical application.

    Figure 7 (a) The histograms of the bacterial colony numbers of E. coli in the presences of ZnO flowerlike microstructures with various Ag nanoparticles loading contents and (b) the antibacterial efficiencies of ZnO flowerlike microstructures with various Ag nanoparticles loading contents.

    2.5 Electrochemical Measurements

    Figure 8 (a) CV curves for 0.10 mM H2O2 in phosphate buffer (pH7.0) at bare and modified GCE (scan rate: 100 mV/s); (b) CV curves of 3 % Ag/ZnO/GCE in a series of H2O2 PBS solution; (c) the relation between the current and the concentration of H2O2.

    Fig.8a shows the typical cyclic voltammogram (CV) curves of bare and modified GCE in 0.1 M N2-saturated PBS solution at pH7.0 in the presence of 0.10 mM H2O2. There were no obvious redox peaks observed at the bare GCE. However, all modified electrodes displayed exhibited increased current signal, implying that the as obtained ZnO or ZnO/Ag microstructures could promote the electron transfer between GCE and H2O2molecules. It was found that 3% Ag/ZnO microstructures had the largest current response toward H2O2sensing. Fig.8b shows the typical CV curves of 3% Ag/ZnO/GCE in PBS solutions with different concentrations of H2O2. Obviously, the current increases with the increase of concentration of H2O2, which implies possible application in the quantitative detection of H2O2. Fig.8c depicts the correlation between the current and the concentration of H2O2. A good linear relationship is readily visible. The sensitivity of the 3% Ag/ZnO was calculated to be -159.6 μA/mM.

    3 Conclusion

    In summary, versatile Ag nanoparticles-strewn porous ZnO flowerlike microstructures have been successfully prepared through a two-step route. It was found that the as-obtained Ag/ZnO hybrid microstructures presented outstanding visible-light photocatalytic capacity for the degradation of organic pollutants, highly effective antimicrobial activity toward Escherichia coli and high electrocatalytic ability to H2O2. Experiments showed that the amount of Ag nanoparticles loaded on the surfaces of porous ZnO nanosheets reduced the band gap of ZnO flowerlike microstructures. ZnO flowerlike microstructures with 3% Ag loading content presented the smallest band gap energy, the lowest PL emission peak, the strongest photocatalytic activity for the degradation of RhB and MO under the irradiation of the visible light, and the best electrocatalytic ability for the oxidization of H2O2. Meanwhile, Ag nanoparticles-strewn porous ZnO flowerlike microstructures exhibited stronger ability to restrain the propagation of E. coli than pure ZnO flowerlike microstructures. Also, with the increase of Ag nanoparticles loading content from 1% to 7%, the antibacterial capacity of the as-prepared product was further improved. The present work suggests that the as-obtained Ag/ZnO hybrid microstructures have promising applications as the visible-light photocatalyst, the antibacterial reagent for restraining the propagation of E. coli and the electrochemical sensor for the detection of H2O2.

    [1] LI P, WEI Z, WU T, et al. Au-ZnO hybrid nanopyramids and their photocatalytic properties[J]. J Am Chem Soc, 2011, 133(15):5660-5663.

    [2] HE W, KIM H K, WAMER W G, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity[J]. J Am Chem Soc, 2013,136(2):750-757.

    [3] ZENG H, LIU P, CAI W, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. J Phys Chem C, 2008,112(49):19620-19624.

    [4] YU C, YANG K, XIE Y, et al. Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability[J]. Nanoscale, 2013,5(5):2142-2151.

    [5] ZHENG Y, CHEN C, ZHAN Y, et al. Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property[J]. J Phys Chem C, 2008,112(29):10773-10777.

    [6] LU W, LIU G, GAO S, et al. Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities[J]. Nanotechnology, 2008,19(44):445711-445716.

    [7] ZHENG Y, ZHENG L, ZHAN Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis[J]. Inorg Chem, 2007,46(17):6980-6986.

    [8] LIN D, WU H, ZHANG R, et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J]. Chem Mater, 2009,21(15):3479-3484.

    [9] ANSARI S A, KHAN M M, ANSARI M O, et al. Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO Nanocomposite[J]. J Phys Chem C, 2013,117(30):27023-27030.

    [10] SATTER S S, HOQUE M, RAHMAN M M, et al. An approach towards synthesis and characterization of ZnO@ Ag core@ shell nanoparticles in water-in-oil microemulsion[J]. RSC Adv, 2014,4,20612-20615.

    [11] GHOSH S, GOUDAR V S, PADMALEKHA K G, et al. ZnO/Ag nanohybrid: synthesis, characterization, synergistic antibacterial activity and its mechanism[J]. RSC Adv, 2012,2(3):930-940.

    [12] LIU H R, SHAO G X, ZHAO J F, et al. Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis[J]. J Phys Chem C, 2012,116(30):16182-16190.

    [13] WU Z, XU C, WU Y, et al. ZnO nanorods/Ag nanoparticles heterostructures with tunable Ag contents: A facile solution-phase synthesis and applications in photocatalysis[J]. CrystEngComm, 2013,15(30):5994-6002.

    [14] YAMAMOTO O, NAKAKOSHI K, SASAMOTO T, et al. Adsorption and growth inhibition of bacteria on carbon materials containing zinc oxide[J]. Carbon, 2001,39(11):1643-1651.

    [15] SAWAI J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. J Microbiol Methods, 2003,54(2):177-182.

    [16] SHRIVASTAVA S, BERA T, ROY A, et al. Characterization of enhanced antibacterial effects of novel silver nanoparticles[J]. Nanotechnology, 2007,18(22):225103-225107.

    [17] AZIZI S N, GHASEMI S, KAVIAN S. Synthesis and characterization of NaX nanozeolite using stem sweep as silica source and application of Ag-modified nanozeolite in electrocatalytic reduction of H2O2[J]. Bioelectron, 2014,62:1-7.

    [18] HAN Y, ZHENG J, DONG S. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites[J]. Electrochim Acta, 2013,90:35-43.

    [19] ZHOU X F, HU Z L, FAN Y Q, et al. Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures[J]. J Phys Chem C, 2008, 112(31):11722-11728.

    [20] LIU X, ZHANG J, WANG L, et al. 3D hierarchically porous ZnO structures and their functionalization by Au nanoparticles for gas sensors[J]. J Mater Chem, 2011,21(2):349-356.

    [21] SONG R Q, XU A W, DENG B, et al. From layered basic zinc acetate nanobelts to hierarchical zinc oxide nanostructures and porous zinc oxide nanobelts[J]. Adv Funct Mater, 2007,17(2):296-306.

    [22] HE R, QIAN X, YIN J, et al. Preparation of polychrome silver nanoparticles in different solvents[J]. J Mater Chem, 2002,12(12):3783-3786.

    韓寒,倪永紅,盛恩宏,等.花狀Ag/ZnO微納米結(jié)構(gòu):簡單的合成和多功能應(yīng)用[J].安徽師范大學學報:自然科學版,2015,38(3):217-227.

    花狀Ag/ZnO微納米結(jié)構(gòu):簡單的合成和多功能應(yīng)用

    韓寒1, 倪永紅1, 盛恩宏1, 劉愛民2

    (1.安徽師范大學 化學與材料科學學院,教育部功能性分子固體重點實驗室,安徽分子材料實驗室,安徽省功能性分子固體重點實驗室,安徽 蕪湖 241000;2.安徽師范大學 生命科學學院,安徽 蕪湖 241000)

    設(shè)計了一條兩步路線成功合成了Ag納米粒子點綴的ZnO花狀微結(jié)構(gòu)(Ag/ZnO).首先以六水合硝酸鋅、尿素和L-半胱氨酸為反應(yīng)原料,100°C下水熱反應(yīng)8h,合成出花狀堿式碳酸鋅前驅(qū)體,并經(jīng)空氣中高溫煅燒得到多孔ZnO花狀微結(jié)構(gòu);然后,通過光還原硝酸銀得到了Ag/ZnO花狀微結(jié)構(gòu).所得產(chǎn)物用X-射線衍射儀、掃描電子顯微鏡、透射電子顯微鏡、熱重分析儀、紅外光譜、紫外-可見漫反射光譜和熒光光譜等進行系統(tǒng)的表征.研究顯示,所得的Ag/ZnO花狀微結(jié)構(gòu)在光催化、滅菌和電催化等領(lǐng)域都具有很好的應(yīng)用.

    Ag/ZnO花狀微結(jié)構(gòu);光學性能;多用途

    10.14182/J.cnki.1001-2443.2015.03.002

    Foundation item:National Natural Science Foundation of China (21171005); Key Foundation of Chinese Ministry of Education (210098).

    Received date:2015-03-10

    Author's brief:HAN Han(1990-), Female, Master. Research direction: Micro/nano-materials; Corresponding author: NI Yonghong(1969-), male, Professor, Doctor. Research direction: controlled synthesis, characterization and performances of functional micro/nano-materials.

    猜你喜歡
    花狀安徽師范大學電子顯微鏡
    本刊對稿件組織病理學彩色圖片及電子顯微鏡圖片中標尺的要求
    本刊對稿件組織病理學彩色圖片及電子顯微鏡圖片中標尺的要求
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    《安徽師范大學學報》(人文社會科學版)第47卷總目次
    Hemingway’s Marriage in Cat in the Rain
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    《安徽師范大學學報( 自然科學版) 》2016 年總目次
    透射電子顯微鏡中的掃描探針裝置
    物理實驗(2015年9期)2015-02-28 17:36:47
    三維花狀BiOBr/CNTs復合光催化劑降解羅丹明廢水研究
    三維花狀Fe2(MoO4)3微米球的水熱制備及電化學性能
    最后的刺客免费高清国语| 一级毛片黄色毛片免费观看视频| 最新中文字幕久久久久| 久久精品久久精品一区二区三区| 日本黄色片子视频| 久久亚洲国产成人精品v| 成年人免费黄色播放视频| 边亲边吃奶的免费视频| 日韩制服骚丝袜av| 91精品伊人久久大香线蕉| 亚洲国产色片| 久久婷婷青草| 两个人的视频大全免费| 精品久久国产蜜桃| 精品人妻熟女av久视频| 免费人成在线观看视频色| 欧美日韩综合久久久久久| 91aial.com中文字幕在线观看| 国产精品欧美亚洲77777| av不卡在线播放| 国产在线一区二区三区精| 日本黄色日本黄色录像| 精品久久久久久久久亚洲| 国产日韩一区二区三区精品不卡 | 精品亚洲乱码少妇综合久久| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| 精品少妇久久久久久888优播| 免费黄色在线免费观看| 熟女av电影| 久久久亚洲精品成人影院| 国产精品人妻久久久影院| 亚洲婷婷狠狠爱综合网| 乱码一卡2卡4卡精品| 成人免费观看视频高清| 日韩不卡一区二区三区视频在线| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| 少妇高潮的动态图| 国产国语露脸激情在线看| 午夜免费鲁丝| 精品99又大又爽又粗少妇毛片| 亚洲久久久国产精品| 蜜臀久久99精品久久宅男| 一级毛片电影观看| 老司机亚洲免费影院| 精品亚洲成国产av| 精品国产一区二区三区久久久樱花| 日韩伦理黄色片| 亚洲精品久久午夜乱码| 如何舔出高潮| 五月开心婷婷网| 国产极品粉嫩免费观看在线 | 精品视频人人做人人爽| 边亲边吃奶的免费视频| 伦理电影免费视频| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 在线观看免费日韩欧美大片 | 国产成人精品福利久久| 国产极品粉嫩免费观看在线 | 亚洲人成网站在线观看播放| 纵有疾风起免费观看全集完整版| 精品一区在线观看国产| 蜜桃国产av成人99| 亚洲成色77777| 99热国产这里只有精品6| 国产高清有码在线观看视频| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 精品久久久久久久久av| 亚洲国产色片| 国产精品人妻久久久久久| 亚洲激情五月婷婷啪啪| 日本av手机在线免费观看| 超碰97精品在线观看| 亚洲性久久影院| 日本av免费视频播放| 午夜免费鲁丝| 91成人精品电影| 熟女电影av网| 五月玫瑰六月丁香| 亚洲精品成人av观看孕妇| 欧美激情 高清一区二区三区| 亚洲精品自拍成人| 亚洲国产精品一区三区| 午夜精品国产一区二区电影| 国产高清不卡午夜福利| 精品午夜福利在线看| 99久国产av精品国产电影| 国产色爽女视频免费观看| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 三级国产精品片| 亚洲精品一二三| 欧美日韩成人在线一区二区| 国产免费视频播放在线视频| av在线老鸭窝| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 亚洲精品成人av观看孕妇| 人妻一区二区av| 免费高清在线观看视频在线观看| 97超视频在线观看视频| 精品久久久久久久久av| 老司机亚洲免费影院| 国产日韩欧美在线精品| 十八禁网站网址无遮挡| 日本黄大片高清| 免费观看av网站的网址| 欧美精品一区二区大全| 亚洲av男天堂| 国产精品一区www在线观看| 美女中出高潮动态图| 中文天堂在线官网| 99九九线精品视频在线观看视频| 啦啦啦啦在线视频资源| 九草在线视频观看| 99热网站在线观看| 国产精品熟女久久久久浪| 免费人成在线观看视频色| 男女边摸边吃奶| 在线观看国产h片| 妹子高潮喷水视频| 伦理电影大哥的女人| 人人妻人人澡人人看| 精品少妇内射三级| 亚洲精品久久成人aⅴ小说 | 国产在视频线精品| 久久国产精品男人的天堂亚洲 | 久久人人爽人人爽人人片va| 三级国产精品片| 黄色一级大片看看| 日韩中文字幕视频在线看片| 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 国产一区二区三区综合在线观看 | 激情五月婷婷亚洲| 如何舔出高潮| 边亲边吃奶的免费视频| 免费观看无遮挡的男女| 精品一区二区三卡| 国产一区二区在线观看日韩| 女性被躁到高潮视频| 99久久精品一区二区三区| 国产精品国产三级专区第一集| 黑人欧美特级aaaaaa片| videos熟女内射| 国产免费福利视频在线观看| 黄片播放在线免费| 久热久热在线精品观看| 免费观看av网站的网址| 黄片播放在线免费| 免费少妇av软件| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 久久久国产欧美日韩av| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 黄色视频在线播放观看不卡| 国产成人精品福利久久| 国产亚洲欧美精品永久| 欧美日韩亚洲高清精品| 人妻夜夜爽99麻豆av| 国产亚洲最大av| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| xxx大片免费视频| 少妇人妻精品综合一区二区| 99国产综合亚洲精品| 男女边吃奶边做爰视频| 久久久久久久久久久丰满| 国产有黄有色有爽视频| 最近中文字幕高清免费大全6| 日日啪夜夜爽| 这个男人来自地球电影免费观看 | 伦理电影大哥的女人| 中文欧美无线码| 最黄视频免费看| 视频区图区小说| 国产av国产精品国产| 国产老妇伦熟女老妇高清| 大又大粗又爽又黄少妇毛片口| av有码第一页| 日韩人妻高清精品专区| 观看av在线不卡| 亚州av有码| 亚洲,一卡二卡三卡| 在线 av 中文字幕| 亚洲欧美日韩另类电影网站| 国产爽快片一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 日韩视频在线欧美| 亚洲成色77777| 中文欧美无线码| 亚洲综合色网址| 国产精品久久久久成人av| 午夜免费观看性视频| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 人体艺术视频欧美日本| 亚洲精品久久午夜乱码| 国产av一区二区精品久久| 日韩中字成人| 97精品久久久久久久久久精品| 人妻制服诱惑在线中文字幕| 黑人猛操日本美女一级片| 91精品国产九色| 欧美三级亚洲精品| 91精品伊人久久大香线蕉| 两个人免费观看高清视频| 观看av在线不卡| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 午夜久久久在线观看| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 99久国产av精品国产电影| 伊人久久精品亚洲午夜| 免费久久久久久久精品成人欧美视频 | 午夜福利视频精品| 久久婷婷青草| 亚洲一级一片aⅴ在线观看| 青春草国产在线视频| 色网站视频免费| 亚洲av电影在线观看一区二区三区| 国产日韩欧美亚洲二区| 亚洲色图 男人天堂 中文字幕 | 少妇人妻精品综合一区二区| 亚洲欧美精品自产自拍| 一区二区三区免费毛片| 欧美激情国产日韩精品一区| 激情五月婷婷亚洲| 男人添女人高潮全过程视频| 一级毛片 在线播放| 久久久精品区二区三区| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 日本欧美视频一区| 亚洲国产av影院在线观看| 狂野欧美激情性bbbbbb| 免费观看av网站的网址| 91精品国产国语对白视频| 精品人妻在线不人妻| 国产欧美日韩综合在线一区二区| 性色av一级| 狠狠婷婷综合久久久久久88av| 国产精品女同一区二区软件| 在线观看免费视频网站a站| 亚洲美女视频黄频| 国产精品久久久久久精品古装| 狠狠婷婷综合久久久久久88av| 免费观看性生交大片5| 国产精品麻豆人妻色哟哟久久| 欧美日韩在线观看h| 大香蕉97超碰在线| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 91精品一卡2卡3卡4卡| 精品久久久久久电影网| 99热全是精品| 日韩av不卡免费在线播放| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 亚洲国产精品999| 国产一区亚洲一区在线观看| 中文字幕亚洲精品专区| 久久久亚洲精品成人影院| av电影中文网址| 久久久久国产网址| 国产精品女同一区二区软件| 亚洲丝袜综合中文字幕| 又粗又硬又长又爽又黄的视频| 午夜精品国产一区二区电影| 国产精品成人在线| 国产日韩欧美视频二区| 久久99一区二区三区| 大片免费播放器 马上看| 三级国产精品欧美在线观看| 在线观看美女被高潮喷水网站| 亚洲第一av免费看| 亚洲伊人久久精品综合| 欧美3d第一页| 免费高清在线观看视频在线观看| 亚洲国产色片| 三级国产精品欧美在线观看| 春色校园在线视频观看| 国产精品一区二区在线观看99| 99九九线精品视频在线观看视频| 日韩一区二区视频免费看| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人片av| 亚洲国产精品一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久成人| 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 交换朋友夫妻互换小说| 成年人午夜在线观看视频| 亚洲av二区三区四区| 天堂8中文在线网| 国产日韩欧美在线精品| 日韩中文字幕视频在线看片| 又黄又爽又刺激的免费视频.| 日韩不卡一区二区三区视频在线| 蜜桃国产av成人99| 欧美日韩视频精品一区| 亚洲成人一二三区av| 母亲3免费完整高清在线观看 | 久久久久久久久大av| 欧美亚洲日本最大视频资源| 只有这里有精品99| 少妇 在线观看| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 99精国产麻豆久久婷婷| 能在线免费看毛片的网站| 精品酒店卫生间| 观看美女的网站| 欧美老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 精品久久久噜噜| 菩萨蛮人人尽说江南好唐韦庄| 18禁动态无遮挡网站| 黄片无遮挡物在线观看| 国产乱来视频区| av网站免费在线观看视频| 国产在视频线精品| 久久国产精品大桥未久av| 中文字幕av电影在线播放| 国产精品99久久久久久久久| 黑人猛操日本美女一级片| 国产淫语在线视频| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 成人国语在线视频| 一级爰片在线观看| 日韩三级伦理在线观看| 亚洲国产毛片av蜜桃av| 大码成人一级视频| 亚洲av成人精品一区久久| www.色视频.com| 亚洲不卡免费看| 久久精品久久久久久噜噜老黄| 欧美亚洲日本最大视频资源| 欧美日韩在线观看h| 成年人午夜在线观看视频| 久久av网站| 美女主播在线视频| 色婷婷久久久亚洲欧美| av有码第一页| 亚洲精品乱久久久久久| 久热久热在线精品观看| 日韩一本色道免费dvd| 国产亚洲精品久久久com| 高清视频免费观看一区二区| 九九久久精品国产亚洲av麻豆| a级毛片黄视频| 国产伦理片在线播放av一区| 这个男人来自地球电影免费观看 | 亚洲成人一二三区av| 99精国产麻豆久久婷婷| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| av电影中文网址| 精品一区二区三卡| 男的添女的下面高潮视频| 校园人妻丝袜中文字幕| 国产亚洲精品第一综合不卡 | av免费观看日本| 婷婷色av中文字幕| 69精品国产乱码久久久| 国产欧美日韩一区二区三区在线 | 丝袜喷水一区| 国产一区亚洲一区在线观看| 日韩电影二区| 多毛熟女@视频| 精品一品国产午夜福利视频| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产av成人精品| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 国产免费福利视频在线观看| 亚洲国产色片| 18在线观看网站| 久久99热6这里只有精品| 国产精品成人在线| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 亚洲图色成人| 十分钟在线观看高清视频www| av在线老鸭窝| 国产精品三级大全| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 亚洲经典国产精华液单| 美女cb高潮喷水在线观看| 国产免费福利视频在线观看| 亚洲人与动物交配视频| 欧美精品一区二区免费开放| 特大巨黑吊av在线直播| 亚洲欧美成人综合另类久久久| 欧美成人精品欧美一级黄| 三级国产精品欧美在线观看| 亚洲综合精品二区| 在线看a的网站| 久久韩国三级中文字幕| 色5月婷婷丁香| 成人18禁高潮啪啪吃奶动态图 | 午夜激情久久久久久久| 蜜桃在线观看..| 国产日韩一区二区三区精品不卡 | 亚洲内射少妇av| 国产av一区二区精品久久| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 99九九在线精品视频| 日本-黄色视频高清免费观看| 亚洲国产色片| 日本与韩国留学比较| 另类精品久久| 最新中文字幕久久久久| 国产高清三级在线| 国产精品免费大片| 亚洲性久久影院| 亚洲精品av麻豆狂野| 日韩熟女老妇一区二区性免费视频| 91精品伊人久久大香线蕉| 熟女电影av网| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 婷婷成人精品国产| 国产成人91sexporn| 免费黄频网站在线观看国产| 亚洲欧洲日产国产| 尾随美女入室| 大片免费播放器 马上看| 欧美三级亚洲精品| 少妇人妻精品综合一区二区| 日韩中字成人| 亚洲国产毛片av蜜桃av| 国产视频首页在线观看| 国产熟女欧美一区二区| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 亚洲国产精品一区三区| 亚洲无线观看免费| 亚洲成人手机| 大话2 男鬼变身卡| 99热这里只有是精品在线观看| 欧美日韩视频精品一区| av在线app专区| 五月玫瑰六月丁香| 日日摸夜夜添夜夜添av毛片| 免费观看无遮挡的男女| 日本黄大片高清| 一边摸一边做爽爽视频免费| 午夜av观看不卡| 免费黄网站久久成人精品| 如日韩欧美国产精品一区二区三区 | 亚洲三级黄色毛片| av天堂久久9| 黄色一级大片看看| 热99国产精品久久久久久7| 国产黄色免费在线视频| 18禁观看日本| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 美女内射精品一级片tv| 久久久久久久久久久久大奶| 超碰97精品在线观看| 少妇人妻久久综合中文| 国产淫语在线视频| 黄色怎么调成土黄色| 大陆偷拍与自拍| 国产精品99久久99久久久不卡 | 亚洲国产精品国产精品| 男女边吃奶边做爰视频| 九草在线视频观看| 色婷婷久久久亚洲欧美| 如日韩欧美国产精品一区二区三区 | 女性生殖器流出的白浆| 国产老妇伦熟女老妇高清| av播播在线观看一区| 久久久久久久久久久丰满| 国产精品免费大片| 人妻制服诱惑在线中文字幕| 亚洲四区av| 一区二区三区精品91| 亚洲av在线观看美女高潮| 有码 亚洲区| 国产一区二区三区综合在线观看 | 伊人久久国产一区二区| 免费不卡的大黄色大毛片视频在线观看| 久久毛片免费看一区二区三区| 中文字幕av电影在线播放| 永久网站在线| 999精品在线视频| 日韩大片免费观看网站| 熟女av电影| videossex国产| 22中文网久久字幕| 91精品国产九色| 国产欧美另类精品又又久久亚洲欧美| 久久av网站| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久久久按摩| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 日韩一区二区视频免费看| 国精品久久久久久国模美| 大话2 男鬼变身卡| 亚洲国产欧美日韩在线播放| 亚洲av福利一区| 91精品三级在线观看| 免费观看的影片在线观看| 最新的欧美精品一区二区| 亚洲图色成人| 91久久精品国产一区二区三区| 亚洲经典国产精华液单| 97精品久久久久久久久久精品| 少妇人妻 视频| 久久狼人影院| 日日摸夜夜添夜夜爱| 大话2 男鬼变身卡| 欧美日韩亚洲高清精品| 国产国拍精品亚洲av在线观看| 久久久久久久久久成人| 日本欧美国产在线视频| 91aial.com中文字幕在线观看| 久久久a久久爽久久v久久| 9色porny在线观看| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的| 少妇人妻久久综合中文| 91精品一卡2卡3卡4卡| 人妻人人澡人人爽人人| 国产精品成人在线| 午夜影院在线不卡| 啦啦啦中文免费视频观看日本| 你懂的网址亚洲精品在线观看| av女优亚洲男人天堂| 亚洲精品自拍成人| 青春草国产在线视频| 只有这里有精品99| 97精品久久久久久久久久精品| 母亲3免费完整高清在线观看 | 亚洲精品aⅴ在线观看| 久久人人爽人人片av| 亚洲色图 男人天堂 中文字幕 | 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 国产精品99久久99久久久不卡 | 久久国产精品男人的天堂亚洲 | 亚洲国产成人一精品久久久| 色哟哟·www| av有码第一页| 少妇 在线观看| 美女国产视频在线观看| 在线播放无遮挡| 美女cb高潮喷水在线观看| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区 | 精品一区二区三区视频在线| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 一级毛片我不卡| 国产精品一国产av| 亚洲第一av免费看| 高清不卡的av网站| 美女大奶头黄色视频| 亚洲精品一区蜜桃| 久久久久人妻精品一区果冻| 免费观看av网站的网址| 亚洲av不卡在线观看| 有码 亚洲区| 国产男女超爽视频在线观看| 欧美3d第一页| 亚洲内射少妇av| 夫妻性生交免费视频一级片| 久久久精品区二区三区| 大片电影免费在线观看免费| 岛国毛片在线播放| 免费黄色在线免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲国产日韩一区二区| 51国产日韩欧美| 少妇人妻久久综合中文| 亚洲,欧美,日韩| 简卡轻食公司| 亚洲av.av天堂| 国产在线视频一区二区| 狂野欧美白嫩少妇大欣赏| 99热网站在线观看| 精品人妻熟女毛片av久久网站| 午夜激情av网站| 一级毛片 在线播放| 亚洲精品美女久久av网站| 狂野欧美激情性bbbbbb| 一本—道久久a久久精品蜜桃钙片| 成年人免费黄色播放视频| 97精品久久久久久久久久精品| 亚洲一级一片aⅴ在线观看| 一个人看视频在线观看www免费| 熟女人妻精品中文字幕| 亚洲综合色惰|