• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Low-cycle-fatigue Crack Propagation Life for Ship Plate Based on Accumulative Plastic Damage

    2015-03-16 08:14:22DONGQinYANGPingDENGJunlinWANGDn
    船舶力學(xué) 2015年6期

    DONG Qin,YANG Ping,DENG Jun-lin,WANG Dn

    (a.Depts.of Naval Architecture,Ocean and Structural Engineering,School of Transportation;b.Key Laboratory of High Performance Ship Technology of Ministry of Education,Wuhan University of Technology,Wuhan 430063,China)

    0 Introduction

    The fatigue strength of ship’s structure has very important significance on the safety and survivability.Along with the increasing in ship dimensions and more use of high-strength steel in recent years,the stress and deformation of ship structures are so high and large,which result in very prominent problem of low-cycle-fatigue(LCF)damage to large-scale ships.This has become the key issue demanding prompt solution in the development of large-scale ships.

    Research achievements in this area are usually focused on three aspects:the accumulative damage theory,the continuum damage theory and crack propagation theory.Although the damage theory is simple,the internal stress near crack is often improperly ignored.Crack propagation theory concentrates on the relationship between stress intensity factor and crack growth rate,fatigue crack propagation is directly related to the internal stress distribution near the crack.The first proposed formula for crack growth rate was introduced by Paris et al(1961)[1]based on stress intensity factor amplitude,which predicting the fatigue crack growth rate for a variety of metal materials and non-metallic materials with good results.However,Paris formula was an empirical one,lacking the support of fatigue-crack propagation mechanism.In addition,stress intensity factor amplitude is based on linear elastic fracture mechanics,so cannot be described as the main driving force for LCF crack propagation.In 1999,Vasudevan et al[2]proposed Kmaxand△K as driving force for fatigue crack growth and took account the influence of internal stress near the crack.LCF crack propagates mainly in the plastic zone with complex stress in crack-tip.The traditional ways for fatigue-crack growth rate are based on linear elastic mechanics,so it is difficult for them to apply in the situation.To solve this problem,researchers have made a lot of research in recent years,put forward the elastic-plastic parameters of fracture mechanics similar to stress intensity factor to describe LCF crack propagation,such as crack opening displacement(CTOD)(Dover,1973)[3],plastic strain range△ε(Shimada and Furuya,1981)[4],and cyclic J integral range△J(Elhaddad and Dowling,1980)[5].These proposed parameters played a significant role in promoting the research on LCF crack propagation,but the parameters they used had some shortcomings and limitations.Crack opening displacement(CTOD)can be applied to LCF,but lacking rigorous theoretical foundation.Moreover,it is difficult to define,calculate,and measure directly,but has to rely on indirect method and experience.The plastic strain△ε used for LCF bases on the analysis of experiment results,it cannot reflect the physical mechanism of crack propagation.Because the definition of J is not clear in theory,the range△J of cyclic J integral has certain limitations for the application of LCF crack growth.Therefore,researchers set about from LCF crack propagation mechanism;established crack growth rate models suitable for LCF analysis.Fu(2010)[6]developed the LCF growth-rate prediction model based on dislocation theory and crack energy theory.Duran and Castro(2003)[7]investigated crack-propagation calculation method based on accumulative fatigue damage of strain field near the crack.The materials near the crack were divided into continuous adjacent elements,and the strain amplitude was considered as relative to fatigue life directly.By analyzing the strain distribution near the crack,the relationship between strain and fatigue life was calculated by using Coffin-Manson formula.The total damage of material was the superposition of the damage per cycle.When the damage index reaches 1,the relative element ruptures and crack propagates.Similarly,Noroozi et al(2005)[8]put forward the by-element damage analysis idea,and the stress and strain field near crack was calculated through Coffin-Manson formula and SWT(Smith-Waston-Topper)coefficient.There-after the residual stress intensity factor Krwas obtained,the relationship of da/dN-△K was established,and finally the fatigue-crack propagation life was obtained.Chen et al(Chen et al,2012;Huang et al,2011;Chen et al,2012;Shi et al,2014)[9-12]studied the crack growth behavior of structures,allowing for the mean damage of LCF and linear damage accumulation at crack tip plastic zone.

    From previous studies,it has revealed that most overall fractures of ship hulls tend to be the coupling interaction result of LCF and accumulative plasticity(Huang,1996;Chen and Liu,2006)[13-14].The actual ship hull structures under service loading may suffer from fatigue damage,and the accumulative plastic deformation exceed a certain limit,thus cracks may initiate and propagate until structure failure.Therefore,the LCF crack propagation analysis and estimation based on the accumulated incremental plastic damage can predict the fatigue strength of ship hull structures more reasonably and realistically.

    In viewpoint of these,based on the cyclic stress-strain field of a fatigue crack tip,a fatigue damage parameter from the strain amplitude is presented in the paper.By introducing a correction term that contains accumulative plastic strain rate to reflect the influence of accumulative plasticity on fatigue life under asymmetrical cyclic loading,a new LCF crack-growth prediction model is established,which considers the effect of accumulative plasticity inside the plastic zone at the crack tip.

    1 LCF crack growth prediction model allowing for accumulative plasticity

    1.1 Description of cyclic stress-strain field near crack tip

    The stress concentration at crack tip due to high stress may cause material yield around the local zone,therefore the material near crack tip can be divided into elastic zone and plastic zone,as shown in Fig.1.In the plastic zone,the stress field can be subdivided into two zones:the monotonic plastic zone corresponding to the maximum stress intensity factor Kmax,and the cyclic plastic zone corresponding to stress intensity factor amplitude△K.The size of these two zones is(Castro et al,2005)[15]:

    where rcis cyclic plastic zone size,rmis monotonic plastic zone size,σyc′is cyclic yield stress,n′is cyclic hardening exponent,κ=1(for plane stress);.

    Fig.1 Plastic zones at front of crack tip

    Since the material at crack tip is located in different stress zone,the stress field can be expressed by elastic form,plastic form.Generally,the Westergaard stress distribution function(Westergarrd,1939)[16]based on linear elastic fracture mechanics is adopted;the stress-strain field near the crack tip based on the Hutchinson-Rice-Rosengren(HRR)(Schwable,1974)[17]field is adopted.The linear elastic stress field near crack tip under plane stress state is as follows:

    where△K is stress intensity factor amplitude,E is elastic modulus,r is the distance of a node from the crack tip,r0is blunting radius of crack tip,△σeis elastic stress amplitude,△εeis elastic strain amplitude.

    For the plastic stress field near crack tip and in plane-stress state,considering the blunting phenomenon at crack tip during crack propagation,the stress-strain field near the crack tip can be obtained by interpolation method as follows:

    where k′is cyclic hardening coefficient.

    According to Rice’s assumptions,blunting radius r0is equal to half of the crack tip opening displacement(CTOD)and can be expressed as(Schwable,1973)[18]:

    The plastic zone is composed of monotonic plastic zone and cyclic plastic zone.When stress ratio R≥0,then rm≥rc.According to the finite element analysis result,the following assumptions can be made in the paper:

    (1)σ,ε are plastic in cyclic plastic zone.△σ,△ε are elastic and can be determined by Eqs.(2-3).

    (2)σ,ε,△σ,△ε are all plastic outside of monotonic plastic zone,and △σ,△ε can be determined by Eqs.(2-3).

    (3)σ,ε,△σ,△ε are elastic-plastic coexistence between monotonic plastic zone and cyclic plastic zone,and △σ,△ε can be obtained by nonlinear interpolation function.

    1.2 LCF critical damage

    Engineering components subjected to non-zero mean stress asymmetrical cyclic loading would be likely to produce accumulative plastic deformation.The accumulative plastic strain may cause additional damage that will shorten fatigue life.Therefore,estimating the fatigue life of components under asymmetrical cyclic loading should consider both of accumulative plastic damage and fatigue damage,and the interaction between them.In this paper,it is assumed that the total damage in LCF is composed of two parts,namely LCF damage Dfand accumulative plastic damage Dr,so we have:

    where Dfreflects fatigue damage which does not consider accumulative plastic strain,Drreflects additional damage caused by accumulative plastic strain.

    According to linear accumulative damage theory,we have:

    where Nfis failure cyclic number controlled by LCF,Nris failure cyclic number controlled by accumulative plastic strain.

    In order to establish the relationship between stress,strain and fatigue life,Manson-Coffin model can be used to describe uniaxial LCF behavior of components:

    According to the fatigue theory,the fatigue life can be obtained by substituting △εe,△εpinto Eq.(9).Because elastic deformation is small in plastic zone,so the elastic strain can be omitted in the actual calculation,so we have:

    The accumulative plastic strain will cause additional damage.In the stress-control cycle,for the non-zero mean stress asymmetrical cyclic loading,the failure cycle number controlled by accumulative plastic strain can be calculated by prediction model proposed by Xia(Xia et al,1996)[19],which taking account of the influence of accumulative plastic strain.

    where κr, β are material parameters,is accumulative plastic strain rate in the process of steady accumulative plastic-strain development,represent the true plastic strain in the peak and valley cyclic loading,respectively.

    Hence,the fatigue damage parameter allowing for the effect of accumulative plastic strain is:

    The existing researches show that the cracked plate is composed of a series of fatigue units as shown in Fig.2.It is assumed that every cyclic loading causes unit damage.Defining unit damage Di=1/Ni,after n cyclic loadings,the total unit damage is:

    Fig.2 The material unit model at front of crack-tip

    According to the Miner accumulative damage theory,the crack will grow δa when D=1.Therefore,the accumulative damage of the unit near crack tip under cyclic loading can be calculated.

    1.3 The fatigue crack growth prediction model

    According to the fatigue discontinuous phenomenon of fatigue crack propagation,assume that each step of the crack advancement size equals to the plastic zone size along the crack growth direction(Hurley and Evans,2007)[20].Defining the average damage of unit along the crack growth direction in the plastic zone:

    Then the new crack-growth prediction model allowing for the influence of accumulative plastic strain is expressed as:

    From Eq.(15),it is found that the crack growth rate under cyclic loading depends on the size of fatigue propagation zone.The larger size of fatigue propagation zone is,the faster crack-growth rate will be,and vice versa.Hence,the key to enhance the accuracy of prediction model is to determine appropriate fatigue propagation size.

    2 Example calculation and analysis

    In order to verify the feasibility of the crackgrowth prediction model proposed in this paper,the plate with crack made of 304 stainless steel(Chen and Cai,2012)[21]is employed to analyze LCF crack propagation.According to the axis-symmetric characteristics of the rectangular plate,only half of the plate is set up for finite element model.The planestress element PLANE82 of ANSYS is used to improve computational efficiency.Taking into account the singularity at crack tip,quadratic singular element is applied,and refined mesh is used for the crack tip region to ensure simulation accuracy.Stress ratios R=0.1,R=0.2 are applied to the model boundary from the fatigue-crack propagation test conditions.Chacoche constitutive model is used to simulate material and von-Mises yield criterion is applied.The geometry and the finite element model of the plate with crack are shown in Fig.3 and the basic mechanics properties of 304 stainless steel are listed in Tab.1.

    Fig.3 Geometry and finite element model of ship plate with crack

    Tab.1 Material parameters of 304 stainless steel

    2.1 Stress-strain curve of plate with crack under cyclic loading

    Under the asymmetrical stress cyclic loading,Chacoche nonlinear kinematic hardening model is adopted for numerical analysis of the plate with crack by ANSYS.Selecting the node at crack tip,the stress-strain response near crack tip under asymmetrical stress cyclic loading is obtained as shown in Fig.4.

    Fig.4 The stress-strain curve near the crack tip of Chaboche cyclic plastic model

    It can be seen from Fig.4 that the plate with crack generates accumulative plastic strain under asymmetrical stress cyclic loading.In the initial cycle,the accumulative plastic strain grows relatively slow.With the increasing of cyclic number,the accumulative plastic strain rate increases gradually and tends to stable.

    2.2 The relationship between cycle numbers and accumulative plastic strain for plate with crack

    The plate with crack is the same as shown in Fig.3.For the two different stress ratios,the relationships between accumulative plastic strain and recycle numbers are obtained as shown in Fig.5.

    It can be seen from Fig.5,the accumulative plastic strain at crack tip increases gradually with the increasing of cycle numbers under different stress ratio of cyclic loading.The accumulative plastic strain is larger corresponding to greater stress ratio.While,with the increase of cycle numbers,the accumulative plastic strain tends to stable.The finite element results show that stress ratio has significant effect on accumulative plastic strain for plate with crack.

    Fig.5 The relationship between cycle numbers and accumulative plastic strain for ship plate with crack

    2.3 The LCF growth rate of plate with crack

    Combining the mechanical properties and LCF performance parameters of 304 stainless steel obtained by tests,and adopting the LCF crack-growth prediction model by Eq.15,the paper forecasts the crack propagation behavior of the plate with crack.In the mean while,finite element analysis is carried out to predict crack growth rate.The results by the theoretical analysis,finite element method,and experimental tests from the reference are shown in Fig.6.

    Fig.6 The curves of LCF crack growth rate of plate with crack under different stress ratio

    It can be found from Fig.6,the experimental tests are consistent with prediction results,and show smaller dispersion.It indicates the prediction model can well reflect the LCF crack propagation behavior of plate with crack.The LCF crack-growth prediction model proposed in this paper shows certain feasibility and good precision.

    From the study of the paper,it is shown that the finite element method can only predict the former part of crack-growth rate curve.The step-length adopted in the finite element method is proper only for plastic zone around crack tip under monotonic loading condition,which is different from the plastic zone at crack tip under cyclic strain fatigue condition.Therefore,the prediction results from FEM show a difference from experimental result,and the prediction range is limited.This is because of the effects from mesh quality and algorithm,among others.FEM calculations not only give rise to error but also may stop processing when the crack size or the load is too large to lead mesh distortion.Therefore,the FEM cannot correctly predict fatigue crack growth rate for a wide range.While,the theoretical model of the paper relies on the plastic zone at crack tip,adopts the actual cyclic plastic strain,and considers the influence of accumulative plastic strain increment,hence,the new model has higher precision and a wider range of prediction.

    3 Conclusions

    By introducing a correction term that contains accumulative plastic strain rate to reflect the influence of accumulative plasticity on fatigue life under asymmetrical cyclic loading,a new LCF crack-growth prediction model inside the plastic zone at the crack tip is established.A fatigue damage parameter of the strain amplitude is defined based on the cyclic stress-strain field of a fatigue crack tip.The model considers the effect of accumulative plasticity.The conclusions and outlooks can be drawn from the result as follows:

    (1)Based on the cyclic stress-strain field around fatigue crack tip,by introducing the accumulative plastic strain rate,a new LCF crack-growth rate prediction model in plastic zone is obtained.All the parameters in the new model have definite physical meanings without any artificial adapting.

    (2)The predictions of the LCF crack-growth behavior of plate with crack from the new model and FEM are consistent with the experimental results.It is suggested that the LCF crack-growth rate prediction method is feasible to allow for the influence of accumulative plasticity.By contrast,to some extent,the new theoretical model has broader predictability and simplicity than FEM.

    (3)With the increasing of cyclic number,the generated accumulative plastic strain will increase the LCF crack growth rate of plate with crack.Moreover,the larger the accumulative plastic strain is,the greater the crack growth rate will be,which reveals that analyze the LCF crack-growth rate of plate should consider the effect of accumulative plastic strain.

    (4)In order to achieve a more comprehensive and reasonable prediction model,the stress damage may be introduced to increase the accuracy.In addition,the presented model ignores the distribution of the cyclic stress and strain amplitudes along the thickness direction of the plate,which may be dealt with as the three-dimensional fracture problem.Therefore,when it is expanded to the three-dimensional problem,the equivalent fatigue analysis will be very complicated to deal with.

    [1]Paris P C,Gomez M P,Anderson W P.A rational analytic theory of fatigue[J].The Trend in Engineering,1961(13):9-14.

    [2]Sadananda K,Vasudevan A K,Holtz R L,Lee E U.Analysis of overload effects and related phenomena[J].International Journal of Fatigue,1999(21):S233-S246.

    [3]Dover W D.Fatigue crack growth under COD cycling[J].Engineering Fracture Mechanics,1973(50):11-21.

    [4]Shimada H,Furuya Y.Application of crack tip strain loop to fatigue crack propagation[J].Experimental Mechanics,1981(21):423-428.

    [5]Elhaddad M H,Dowling N E,Topper T H.Integral application for short fatigue cracks at notch[J].International Journal of Fracture,1980,16(1):15-30.

    [6]Fu H.Study of the characteristics of fatigue crack propagation based on dislocation theory[D].Changsha:Changsha University of Technology,2010.

    [7]Duran J A R,Castro J T P.Fatigue crack propagation prediction by cyclic plasticity damage accumulation models[J].Fatigue&Fracture of Engineering Materials&Structures,2003(26):137-150.

    [8]Noroozi A H,Glinka G,Lambert S.A two-parameter driving force for fatigue crack growth analysis[J].International Journal of Fatigue,2005,27:1277-1296.

    [9]Chen L,Cai L X.The low cyclic fatigue crack growth prediction model based on material’s low cyclic fatigue properties[J].Engineering Mechanics,2012,29(10):34-39.

    [10]Huang X W,Cai L X,Bao C,Chen L.A new method of numerical simulation for behavior of fatigue crack propagation based on low cycle fatigue damage[J].Engineering Mechanics,2011,28(10):202-208.

    [11]Chen L,Cai L X,Yao D.Prediction model of fatigue crack growth behavior by introducing strain cycle damage[J].Journal of Xi’an Jiaotong University,2012,46(9):114-118.

    [12]Shi K K,Cai L X,Chen L,Wu S C,Bao C.Prediction of fatigue crack growth based on low cycle fatigue properties[J].International Journal of Fatigue,2014(61):220-225.

    [13]Huang Z Q.A new insight of ship’s longitudinal strength criterion[J].China Shipbuilding,1996(3):87-98.

    [14]Chen G,Liu Y H.Numerical theories and engineering methods for structural limit and shakedown analyses[M].Beijing:Science Press,2006.

    [15]Castro J T P,Meggiolaro M A,Miranda A C O.Singular and non-singular approaches for predicting fatigue crack growth behavior[J].International Journal of Fatigue,2005,27:1366-1388.

    [16]Westergarrd H M.Bearing pressures and cracks[J].Journal of Applied Mechanics,1939,6:A49-A53.

    [17]Schwable K H.Comparison of several fatigue crack propagation laws with experimental results[J].Engineering Fracture Mechanics,1974,6(2):325-341.

    [18]Schwable K H.Approximate calculation of fatigue crack growth[J].Journal of Engineering Fracture,1973,9:381-395.

    [19]Xia Z,Kujawski D,Ellyin F.Effect of mean stress and ratcheting strain on fatigue life of steel[J].International Journal of Fatigue,1996,18(5):335-341.

    [20]Hurley P J,Evans W J.A new method for predicting fatigue crack propagation rates[J].Materials Science and Engineering A,2007,466(1/2):265-273.

    [21]Chen L,Cai L X.Research on fatigue crack growth behavior of materials by considering the fatigue damage near the crack tip[J].Journal of Mechanical Engineering,2012,48(20):51-56.

    99久久九九国产精品国产免费| 成年人黄色毛片网站| 亚洲av成人av| 村上凉子中文字幕在线| 人妻夜夜爽99麻豆av| 国产精品乱码一区二三区的特点| 欧美最黄视频在线播放免费| 成人亚洲精品av一区二区| 日本黄色片子视频| 无人区码免费观看不卡| 一边摸一边抽搐一进一小说| 嫩草影院精品99| 国产精品三级大全| 他把我摸到了高潮在线观看| 亚洲国产精品999在线| 成人av一区二区三区在线看| 日本黄色视频三级网站网址| 三级男女做爰猛烈吃奶摸视频| 精品福利观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费男女啪啪视频观看 | 国产毛片a区久久久久| 日韩欧美在线乱码| 国产探花在线观看一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产真实乱freesex| 久久九九热精品免费| 亚洲欧美日韩卡通动漫| 国产精品爽爽va在线观看网站| 亚州av有码| 亚洲综合色惰| 精品午夜福利在线看| 亚洲自偷自拍三级| 97超视频在线观看视频| 亚洲综合色惰| 他把我摸到了高潮在线观看| 他把我摸到了高潮在线观看| 午夜a级毛片| 97人妻精品一区二区三区麻豆| 此物有八面人人有两片| 99久久久亚洲精品蜜臀av| 午夜两性在线视频| 亚洲电影在线观看av| 成人高潮视频无遮挡免费网站| 精品福利观看| 亚洲中文字幕日韩| 一级黄色大片毛片| 欧美不卡视频在线免费观看| 国产乱人伦免费视频| 成人国产综合亚洲| 欧美激情久久久久久爽电影| 亚洲国产精品合色在线| 亚洲色图av天堂| 国语自产精品视频在线第100页| 日韩国内少妇激情av| 一个人看视频在线观看www免费| 伊人久久精品亚洲午夜| 好看av亚洲va欧美ⅴa在| 波多野结衣巨乳人妻| 午夜视频国产福利| 18+在线观看网站| 欧美日韩国产亚洲二区| 亚洲欧美日韩东京热| 伦理电影大哥的女人| 一级黄色大片毛片| 麻豆久久精品国产亚洲av| av福利片在线观看| 又紧又爽又黄一区二区| 夜夜看夜夜爽夜夜摸| 成人特级黄色片久久久久久久| 三级国产精品欧美在线观看| 99久久久亚洲精品蜜臀av| 日韩精品青青久久久久久| 欧美日本亚洲视频在线播放| 国产午夜精品久久久久久一区二区三区 | 国产 一区 欧美 日韩| 男女那种视频在线观看| 美女被艹到高潮喷水动态| 国产av麻豆久久久久久久| 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 每晚都被弄得嗷嗷叫到高潮| 亚洲午夜理论影院| 国产午夜精品论理片| 色5月婷婷丁香| 一个人看视频在线观看www免费| 伦理电影大哥的女人| 又紧又爽又黄一区二区| 国产亚洲精品久久久久久毛片| 国产不卡一卡二| 亚洲专区中文字幕在线| 又粗又爽又猛毛片免费看| 又粗又爽又猛毛片免费看| 久久国产乱子伦精品免费另类| 日韩欧美精品v在线| 91av网一区二区| 久久婷婷人人爽人人干人人爱| 亚洲av免费在线观看| 久久婷婷人人爽人人干人人爱| 久久久久久久久大av| АⅤ资源中文在线天堂| 99热只有精品国产| 国产av不卡久久| 俄罗斯特黄特色一大片| 亚洲精品久久国产高清桃花| 美女cb高潮喷水在线观看| 国产亚洲精品久久久com| av女优亚洲男人天堂| 性欧美人与动物交配| 日本黄色片子视频| 在线看三级毛片| 久久久色成人| 桃色一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 99久久成人亚洲精品观看| 啦啦啦观看免费观看视频高清| 色综合婷婷激情| 伊人久久精品亚洲午夜| 婷婷精品国产亚洲av| 白带黄色成豆腐渣| 亚洲在线自拍视频| 色综合欧美亚洲国产小说| 夜夜爽天天搞| 欧美激情在线99| 亚洲欧美日韩卡通动漫| 男女之事视频高清在线观看| 国产伦人伦偷精品视频| 欧美xxxx黑人xx丫x性爽| 国模一区二区三区四区视频| 久久久国产成人免费| 在线看三级毛片| 校园春色视频在线观看| 久久久久精品国产欧美久久久| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本撒尿小便嘘嘘汇集6| 免费黄网站久久成人精品 | 在线观看av片永久免费下载| 婷婷精品国产亚洲av在线| 91午夜精品亚洲一区二区三区 | 亚洲人成网站在线播放欧美日韩| 欧美+亚洲+日韩+国产| 日本五十路高清| 精品人妻熟女av久视频| 亚洲一区二区三区色噜噜| 精品一区二区三区人妻视频| 我的老师免费观看完整版| av在线观看视频网站免费| 亚洲乱码一区二区免费版| 丰满的人妻完整版| 国产精品三级大全| 啪啪无遮挡十八禁网站| 十八禁人妻一区二区| 欧美成狂野欧美在线观看| 一进一出抽搐动态| 97超级碰碰碰精品色视频在线观看| 99久国产av精品| 观看免费一级毛片| 人妻丰满熟妇av一区二区三区| 看片在线看免费视频| 欧美激情久久久久久爽电影| 国产亚洲精品久久久久久毛片| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久亚洲 | 午夜福利高清视频| 成人三级黄色视频| 国产精品,欧美在线| 国产精品一区二区免费欧美| 色精品久久人妻99蜜桃| 一区二区三区四区激情视频 | 极品教师在线免费播放| 日韩 亚洲 欧美在线| 亚洲人成电影免费在线| 欧美色欧美亚洲另类二区| 性欧美人与动物交配| 一本精品99久久精品77| 久久久久久久久中文| 免费无遮挡裸体视频| 精品国产亚洲在线| 91字幕亚洲| 色综合亚洲欧美另类图片| 国产精品三级大全| 欧美zozozo另类| 精品一区二区三区视频在线| 首页视频小说图片口味搜索| 尤物成人国产欧美一区二区三区| 啦啦啦韩国在线观看视频| 9191精品国产免费久久| 伦理电影大哥的女人| 亚洲精品在线美女| 婷婷精品国产亚洲av在线| 国产91精品成人一区二区三区| 琪琪午夜伦伦电影理论片6080| 精品免费久久久久久久清纯| 国产精品久久视频播放| 别揉我奶头~嗯~啊~动态视频| 精品午夜福利视频在线观看一区| 最近最新中文字幕大全电影3| 国产精品亚洲美女久久久| 中文亚洲av片在线观看爽| 日韩欧美 国产精品| 成人三级黄色视频| 国产精品,欧美在线| 国产精品精品国产色婷婷| 午夜精品在线福利| 亚洲欧美精品综合久久99| 成人美女网站在线观看视频| 色综合婷婷激情| 亚洲经典国产精华液单 | 久久久久九九精品影院| 99热这里只有是精品在线观看 | 他把我摸到了高潮在线观看| 搡老妇女老女人老熟妇| 国产精品嫩草影院av在线观看 | 亚洲精品粉嫩美女一区| 在线观看午夜福利视频| 国产69精品久久久久777片| 啦啦啦观看免费观看视频高清| 亚洲av二区三区四区| 亚洲国产精品999在线| 成人特级av手机在线观看| 中国美女看黄片| 97超级碰碰碰精品色视频在线观看| 天堂影院成人在线观看| 国产伦一二天堂av在线观看| 欧美日韩综合久久久久久 | .国产精品久久| 国产男靠女视频免费网站| 欧美黑人欧美精品刺激| 亚洲黑人精品在线| 在线观看av片永久免费下载| 99国产精品一区二区三区| 人妻夜夜爽99麻豆av| 热99在线观看视频| 美女xxoo啪啪120秒动态图 | 中文字幕高清在线视频| 国产午夜福利久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 搡老妇女老女人老熟妇| 97超级碰碰碰精品色视频在线观看| 真人做人爱边吃奶动态| 亚洲 欧美 日韩 在线 免费| 日韩中字成人| 女人十人毛片免费观看3o分钟| 日韩有码中文字幕| 久久久久精品国产欧美久久久| 国产乱人伦免费视频| 国产高清视频在线播放一区| 88av欧美| 一区二区三区免费毛片| 极品教师在线视频| 欧美绝顶高潮抽搐喷水| 国产av在哪里看| 床上黄色一级片| 午夜免费激情av| 首页视频小说图片口味搜索| 色5月婷婷丁香| av中文乱码字幕在线| 成年女人永久免费观看视频| 亚洲五月婷婷丁香| 内地一区二区视频在线| 亚洲欧美日韩东京热| 国产三级在线视频| 亚洲熟妇熟女久久| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 亚洲中文字幕日韩| 国产欧美日韩一区二区三| 久久天躁狠狠躁夜夜2o2o| 色综合欧美亚洲国产小说| 免费看光身美女| 亚洲美女黄片视频| 18禁在线播放成人免费| 国产视频内射| 国产亚洲精品av在线| 日韩欧美国产一区二区入口| 国产一区二区三区在线臀色熟女| 亚洲一区二区三区色噜噜| 国产精品,欧美在线| 亚洲五月天丁香| 亚洲不卡免费看| 婷婷精品国产亚洲av| 丰满的人妻完整版| 俺也久久电影网| 日韩欧美在线二视频| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 又爽又黄无遮挡网站| 动漫黄色视频在线观看| 噜噜噜噜噜久久久久久91| 国产视频内射| 国产老妇女一区| 有码 亚洲区| 中文字幕免费在线视频6| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 国产野战对白在线观看| 欧美黑人巨大hd| 夜夜躁狠狠躁天天躁| 国产精品影院久久| 嫩草影院新地址| 高清在线国产一区| 成人毛片a级毛片在线播放| 免费大片18禁| 日韩欧美在线二视频| 日本黄大片高清| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| 国内精品美女久久久久久| 露出奶头的视频| 成熟少妇高潮喷水视频| 亚洲中文字幕日韩| 国产精品爽爽va在线观看网站| 国产精品久久久久久久久免 | 精品乱码久久久久久99久播| 国产麻豆成人av免费视频| 伦理电影大哥的女人| 深夜精品福利| 久久草成人影院| 夜夜看夜夜爽夜夜摸| 美女xxoo啪啪120秒动态图 | 免费av毛片视频| x7x7x7水蜜桃| 成人永久免费在线观看视频| av欧美777| 午夜福利视频1000在线观看| 观看美女的网站| 精品久久久久久成人av| 亚洲成人免费电影在线观看| 少妇丰满av| 在现免费观看毛片| 国产伦在线观看视频一区| av欧美777| 1024手机看黄色片| 在线十欧美十亚洲十日本专区| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品在线福利| 看黄色毛片网站| 亚州av有码| 欧美成狂野欧美在线观看| netflix在线观看网站| 亚洲精品色激情综合| 国产成人欧美在线观看| 我的老师免费观看完整版| 亚洲av第一区精品v没综合| 丁香六月欧美| 一a级毛片在线观看| 男女视频在线观看网站免费| 精品一区二区三区av网在线观看| 成人欧美大片| 婷婷精品国产亚洲av| 色在线成人网| 午夜免费激情av| 黄色丝袜av网址大全| 身体一侧抽搐| 91久久精品国产一区二区成人| 成人高潮视频无遮挡免费网站| 欧美成人a在线观看| 十八禁国产超污无遮挡网站| 欧美在线黄色| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 亚洲美女视频黄频| 午夜激情欧美在线| 国产老妇女一区| 欧美性感艳星| 欧美丝袜亚洲另类 | 一级av片app| 久久香蕉精品热| 国产亚洲欧美在线一区二区| 国产精华一区二区三区| 亚洲国产色片| 久久久久久久久久成人| av在线观看视频网站免费| 嫩草影院入口| 91狼人影院| 亚州av有码| 人妻久久中文字幕网| 日韩中文字幕欧美一区二区| 国产欧美日韩精品亚洲av| 免费人成视频x8x8入口观看| 欧美成人免费av一区二区三区| 免费黄网站久久成人精品 | 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻| 国产精品,欧美在线| 国内精品久久久久久久电影| 小说图片视频综合网站| 俄罗斯特黄特色一大片| 九色国产91popny在线| 亚洲美女视频黄频| 首页视频小说图片口味搜索| 欧美区成人在线视频| 亚洲最大成人av| 亚洲人成网站高清观看| 久久久久亚洲av毛片大全| 欧美性猛交╳xxx乱大交人| 天堂网av新在线| 久久久久久久久大av| 欧美日韩福利视频一区二区| 韩国av一区二区三区四区| 3wmmmm亚洲av在线观看| 日韩有码中文字幕| 夜夜看夜夜爽夜夜摸| 国产精品女同一区二区软件 | 国产亚洲精品综合一区在线观看| 国产精品一及| 色视频www国产| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| 一个人看的www免费观看视频| 我要看日韩黄色一级片| 看免费av毛片| 亚洲专区中文字幕在线| 久久久久九九精品影院| 欧美不卡视频在线免费观看| 最近视频中文字幕2019在线8| 国产色爽女视频免费观看| 日韩中字成人| xxxwww97欧美| 内射极品少妇av片p| 亚洲熟妇熟女久久| 观看免费一级毛片| 国产不卡一卡二| 国产中年淑女户外野战色| 动漫黄色视频在线观看| 中亚洲国语对白在线视频| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 精品99又大又爽又粗少妇毛片 | 男女做爰动态图高潮gif福利片| 国产日本99.免费观看| 午夜福利高清视频| 美女cb高潮喷水在线观看| 免费无遮挡裸体视频| 51午夜福利影视在线观看| 脱女人内裤的视频| 九九久久精品国产亚洲av麻豆| 国产精品亚洲av一区麻豆| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 757午夜福利合集在线观看| 露出奶头的视频| 脱女人内裤的视频| 欧美黑人欧美精品刺激| www.熟女人妻精品国产| 国产真实伦视频高清在线观看 | 中文字幕免费在线视频6| 国产真实伦视频高清在线观看 | 国产精品久久久久久久久免 | 国产欧美日韩一区二区三| 国产亚洲欧美98| 亚洲 国产 在线| 欧美色视频一区免费| 亚洲精品在线美女| АⅤ资源中文在线天堂| 他把我摸到了高潮在线观看| 欧美激情在线99| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性猛交黑人性爽| 99热这里只有是精品50| 欧美午夜高清在线| 亚洲男人的天堂狠狠| 亚洲片人在线观看| 特大巨黑吊av在线直播| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 日本三级黄在线观看| 看片在线看免费视频| 国产私拍福利视频在线观看| 美女高潮的动态| 人人妻,人人澡人人爽秒播| 波多野结衣高清无吗| 神马国产精品三级电影在线观看| 一边摸一边抽搐一进一小说| 国产乱人伦免费视频| 久久6这里有精品| 亚洲,欧美,日韩| 最近视频中文字幕2019在线8| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕免费在线视频6| 亚洲avbb在线观看| 日本黄色视频三级网站网址| 亚洲av熟女| 国产成+人综合+亚洲专区| 床上黄色一级片| 真实男女啪啪啪动态图| 久久99热这里只有精品18| 欧美高清性xxxxhd video| www日本黄色视频网| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美精品v在线| 桃色一区二区三区在线观看| av中文乱码字幕在线| 午夜激情福利司机影院| 嫩草影视91久久| 日韩 亚洲 欧美在线| 成人国产一区最新在线观看| 亚洲欧美日韩高清专用| 午夜福利在线观看免费完整高清在 | 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 村上凉子中文字幕在线| aaaaa片日本免费| 村上凉子中文字幕在线| 两人在一起打扑克的视频| av中文乱码字幕在线| 欧美色欧美亚洲另类二区| 村上凉子中文字幕在线| 美女高潮的动态| 一级a爱片免费观看的视频| 国产69精品久久久久777片| 亚洲国产精品999在线| 久久草成人影院| 少妇丰满av| 国产成人啪精品午夜网站| 丰满的人妻完整版| 又爽又黄a免费视频| 亚州av有码| 人妻丰满熟妇av一区二区三区| 有码 亚洲区| 看片在线看免费视频| 乱人视频在线观看| 国产精品不卡视频一区二区 | 熟妇人妻久久中文字幕3abv| 一个人免费在线观看电影| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 波野结衣二区三区在线| 亚洲五月天丁香| 久久精品91蜜桃| 国产欧美日韩一区二区精品| 日韩免费av在线播放| 51国产日韩欧美| 婷婷精品国产亚洲av在线| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 久久精品国产99精品国产亚洲性色| 国产精品98久久久久久宅男小说| 日韩av在线大香蕉| 网址你懂的国产日韩在线| 最后的刺客免费高清国语| 一区二区三区激情视频| 好男人在线观看高清免费视频| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 老司机午夜福利在线观看视频| 久久这里只有精品中国| 欧美国产日韩亚洲一区| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 久久久久久国产a免费观看| 9191精品国产免费久久| 69人妻影院| 国产精品国产高清国产av| 高清毛片免费观看视频网站| 欧美三级亚洲精品| 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 中出人妻视频一区二区| 久久精品久久久久久噜噜老黄 | 一级av片app| 黄色女人牲交| 男女那种视频在线观看| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 欧美成人性av电影在线观看| 九九在线视频观看精品| 欧美色视频一区免费| av中文乱码字幕在线| 婷婷丁香在线五月| 丰满的人妻完整版| 日韩大尺度精品在线看网址| or卡值多少钱| 看黄色毛片网站| 女人十人毛片免费观看3o分钟| 在线观看66精品国产| 一本一本综合久久| 亚洲专区中文字幕在线| 久久草成人影院| 色综合亚洲欧美另类图片| 欧美潮喷喷水| 偷拍熟女少妇极品色| 免费av不卡在线播放| a在线观看视频网站| 国产精品综合久久久久久久免费| xxxwww97欧美| 99久久精品热视频| 久久久精品大字幕| 亚洲最大成人av| 黄色一级大片看看| 久久久色成人| 亚洲乱码一区二区免费版| 国产精品久久电影中文字幕| 亚洲国产欧洲综合997久久,| 在线国产一区二区在线| 国产精品久久久久久人妻精品电影| 国产视频一区二区在线看| 精品人妻熟女av久视频| 久久国产乱子伦精品免费另类| 天堂影院成人在线观看| 精品久久久久久久久av| 少妇熟女aⅴ在线视频| 性色avwww在线观看| 亚洲av成人不卡在线观看播放网| 一级av片app| 亚洲精品色激情综合| 在线国产一区二区在线| 女人十人毛片免费观看3o分钟| 精品国产亚洲在线| 老司机午夜十八禁免费视频| 草草在线视频免费看| 夜夜躁狠狠躁天天躁|