• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Trawl Selectivity and Genetic Parameters on Fish Body Length Under Long-Term Trawling

    2015-03-15 01:43:52YUYangSUNPengCUIHeSHENGHuaxiangZHAOFenfangTANGYanliandCHENZelin
    Journal of Ocean University of China 2015年5期

    YU Yang, SUN Peng, CUI He, SHENG Huaxiang ZHAO Fenfang TANG Yanli and CHEN Zelin

    1) College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) Fisheries College, Ocean University of China, Qingdao 266003, P. R. China

    3) Chinese Academy of fishery sciences, Beijing 100141, P. R. China

    Effects of Trawl Selectivity and Genetic Parameters on Fish Body Length Under Long-Term Trawling

    YU Yang1), SUN Peng2),*, CUI He3), SHENG Huaxiang2), ZHAO Fenfang2), TANG Yanli2), and CHEN Zelin2)

    1) College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) Fisheries College, Ocean University of China, Qingdao 266003, P. R. China

    3) Chinese Academy of fishery sciences, Beijing 100141, P. R. China

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    Long-term fishing pressure affects the biological characteristics of exploited fish stocks. The biological characteristics of hairtail (Trichiurus lepturus) in the East China Sea are unable to recover because of long-term trawling. Fishing induces evolutionary effects on the fish’s biological characteristics. Evidence of these changes includes small size at age, a shift to earlier age structure, and early maturation. Natural and artificial selection usually affect the fish’s life history. Selection can induce different chances of reproduction, and individual fish can give a different genetic contribution to the next generation. In this study, analysis of time-dependent probability of significance and test of sensitivity were used to explore the effects of fish exploitation rate, mesh size, and heritability with long-term trawling. Results showed that fishing parameters were important drivers to exploited fish population. However, genetic traits altered by fishing were slow, and the changes in biological characteristics were weaker than those caused by fishing selection. Exploitation rate and mesh size exhibited similar evolutionary trend tendency under long-term fishing. The time-dependent probability of significance trend showed a gradual growth and tended to be stable. Therefore, the direction of fishing-induced evolution and successful management of fish species require considerable attention to contribute to sustainable fisheries in China.

    trawling pressure; fish biological characteristics; fishery management

    1 Introduction

    In recent years, fishing-induced evolution of fish phenotypic traits has received considerable attention (Dieckmann and Heino, 2007; Fenberg and Roy, 2007; Kuparinen and Merila, 2007; Hutchings and Fraser, 2008; Dunlop et al., 2009; Enberg et al., 2009, 2012; Jorgensen et al., 2009; Laugen et al., 2014; Liang et al., 2014). A fish’s life history is usually affected by natural and artificial selection. Selection can induce different probabilities of reproduction, and individual fish can give a different genetic contribution to the next generation (Palkovacs et al., 2012). Genetic differences cause changes in fish biological characteristics, such as size at age, age structure, and growth rate (Hauser et al., 2002; Law, 2007; Liang et al., 2008; Sun et al., 2013). The time scale of natural selection is very long, but that of artificial selection, such as fish breeding and fishing, is shorter. At present, the fisheries management emphasizes on capturing big fish and saving small ones. Many fisheries policies have been made, such as small-size fishing gear, mini-mum ratio of maturation, and minimum capture size or weight (Salas and Gaertner, 2004; Rijnsdorp et al., 2012). These policies are related to changes of biological characteristics, individual miniaturization, and early maturation. If fish minimization cannot be achieved, fisheries resources only increase in biomass rather than recover biological characteristics. Recent studies have shown that fishing gear can affect the evolution of fish population (Jorgensen et al., 2007; Sun et al., 2013, 2015). The causes of fish miniaturization and its life history have been investigated (Vainikka and Hyvarinen, 2012). These investigations aimed to develop a theoretical explication of the cause of the changes in biological characteristics of fish populations. A number of experimental evidences support the idea that fishing may cause evolutionary changes in harvested populations (Conover and Baumann, 2009; Pauli and Heino, 2014).

    Industrial fishing is identified as a cause of life-history changes in many harvested stocks mainly because of high fish mortality and damage in stock structure. Trawling has its special selectivity; it is usually used in commercial fishing in China. In this research, the test of time-dependent probability of significance (TDPS) and sensitivity were used to explore the effects, such as exploitationrate of fish, mesh size, and heritability, of long-term trawling. Trawling model can simulate the changes of traits by long-term fishing and halt trawling. The simulation results of hairtail in the East China Sea have confirmed that body length at a certain age becomes shorter and younger individuals are dominant after fishing. In commercial fishing, exploitation rate and mesh size are the important measure of impact parameter. In this study, the test of TDPS and sensitivity of exploited stock aim specifically to assess the relative importance of each factor. The trawl fishing model can simulate fishing pressure to induce the changes of fish mean body length (Sun et al., 2015). The impacts of exploitation rate, mesh size, and heritability with long-term trawling and without fishing are crucial. The impact of fishing pressure is not a single linear relation; other influences are also considered. Therefore, accurate methods of quantitative and qualitative analyses are required. These methods can confirm whether fishing pressure affects fish stock and determine the significance of the impact. Exploitation rate, mesh size, and heritability are important parameters that can induce the changes of traits in exploited fish stock. The genetic traits altered by fishing are slow; the changes in biological characteristics are weaker than those caused by fishing selection. These results are consistent with the fisheries status in China (Ren et al., 2001; Shen and Heino, 2014). Therefore, the direction of fishing-induced evolution warrants considerable attention in China and successful fish stock management can contribute to sustainable fisheries.

    2 Materials and Methods

    2.1 Trawling Model and Sample

    The trawling model adopted has been described in previous publications and employed for a simulation of trawl selectivity-induced evolution effects (Sun et al., 2013 and 2015). In this study, fish stock samples were used in the simulation, and individual body length was employed as research object. Information of the initial fish stock was based on the 1960 hairtail’s data in the East China Sea with an initial distribution shown in Fig.1. The biological characteristics are established from the previous fish stock with the maximum age of 5 years old. Individual body length at each fishing year and each age data can be obtained from the simulation model conducted between 1960 and 2000 in the East China Sea (Sun et al., 2015). This model is a nonlinear statistical analysis with a random error term for individual body length of the next generation. For the purpose of studying the effects of fishing on group characteristics, a series of experiments was carried out (Sun et al., 2015), such as tests for different exploitation rates (E), heritability for the first generation (h2), and mesh size (Ms). The sample used was the mean body length of the group instead of individual body length to test the effects on a group scale rather than an individual scale. For the effects of E, three contrast tests were conducted with different E set as 20%, 40%, and 60%, and each contrast test had three parallel tests. The same approach was used for h2and Ms, with h2set as 0.3, 0.5, and 0.7 and Ms set as 4.4 cm, 5.4 cm, and 6.4 cm.

    Fig.1 Distribution of body length of the initial hairtail (Trichiurus lepturus) population and selectivity curve of trawl.

    2.2 Data Analysis

    Sufficient evidence showed the effects of E, h2, and Ms on the fish stock with fishing pressure represented with these parameters. Through fishing years, the fish stock data were different from the initial condition. However, whether the influence of the parameters is significant, the sensitivity of these parameters through fishing years must be studied. Therefore, TDPS testing method was adopted to study the significance of the parameters through fishing years. Sensitivity analysis was also performed.

    2.3 TDPS Testing Method

    Fig.2 Mean TDPS of each age with different exploited rate by 40 years fishing (TDPS is time-dependent probability of significance, the value of TDPS is from 0 to 1. 0 represents no impact of sample in fish population, and 1 represents important impact).

    The idea of TDPS came from the conception of oneway ANOVA. The traditional one-way ANOVA method tests whether the influence of the only parameter for the system is significant. For a long-term simulation, the state of the system not only includes the parameters E, h2, or Ms but also the function of simulation time (t). An index is necessary to test the significance of parameters (E, h2,or Ms) for the time-dependent random variable, which is the mean body length of ages. In a one-way ANOVA, a series of contrast tests is conducted for only one parameter with different values. If the influence of this parameter is significant, then the distributions of contrast tests are different, and the probability determines whether the distributions are the same or not. Thus, this probability can be used to measure significance; it is also the unit measure called TDPS in this study. However, for a time-dependent simulation, a special treatment is needed because parameter t always exists. This special treatment is shown in Fig.2. For a fixed time t0, only one parameter with different values exists. At any fixed time, the progress of one-way ANOVA can be used to obtain the TDPS value (Tian, 2013; Andrade et al., 2015).

    2.4 Sensitivity Testing Method

    The TDPS testing method explore whether fishing pressure affects body length at certain ages and whether each factor has different degrees of impact. Fish population may have different sensitivities for different parameters. The TDPS values can be very high, but the sensitivity can be low. Given this reason, the sensitivity testing method was used to examine the sensitivity of exploitation rate, heritability for the first generation, and mesh size.

    Non-dimensional sensitivity analysis (Li et al., 2005) is expressed as follows:

    where S is sensitivity,Lis the fish mean body length, and x is the research variable. The span of i, j, k respresents the kinds of parameters, different ages of fish, and fishing time stepsand k is from 1 to 40.

    3 Result

    Comparing the outcome of this analysis with the ones from previous studies, the results and operation of the fishing model are ideal. The model can achieve accurate simulation by real trawling pressure and induce the changes of mean body length by long-term trawling with different fishing parameters. With the increasing exploitation rate and heritabality, and decreasing mesh size, a more important impact to fish mean body length is evident in previous results (Sun et al., 2013, 2015). The impact cannot recover to the initial condition once trawling stops. Therefore, the fishing parameters and biological characteristics are important influences on the fish stock. The impact of these fishing parameters are not a simple linear progress because the fish stock adapts to the living enviroment. Qualitative and quantitative analyses should be conducted to research into the impact of different factors. The results of these analyses can prove whether the parameters induce sensitivity changes. The impacts of E, Ms, and h2by trawling are significant to each age (see Figs.2–7).

    Fig.3 The changes of TDPS with different exploited rate by 40 years fishing.

    Fig.4 Mean TDPS of each age with different mesh size by 40 years fishing.

    Fig.5 The changes of TDPS with different mesh size by 40 years fishing.

    3.1 Results of TDPS Testing

    As shown in Figs.2 to 7, the impact of E was very significant to fish individuals at ages 1 to 5, and the TDPS value was always 1 (Figs.2–3). Meanwhile, the impact of the Ms and h2was significant to fish individuals at ages 1 to 5, but the impact to younger ones was more significant by fishing. The significance of Ms and heritability tended to be stable under long-term fishing. Particularly, the impact of Ms showed a 5-year cycle in fishing. The tendency, however, was not more significantthan that of heritability (Figs.4–7). This change is consistent with the fish life history, which is a 5-year cycle.

    Fig.6 Mean TDPS of each age with different heritability by 40 years fishing.

    Fig.7 The changes of TDPS with different heritability by 40 years fishing.

    3.2 Results of Sensitivity Testing

    The test results of TDPS of E, Ms, and h2were evident with fishing pressure, and these factors have a very important impact to fish stocks. However, the sensitivity can directly measure the speed of system changes, and the sensitivity analyses of E, Ms, and h2were used to explore the degree of impact of fishing parameters on the changes. The sensitivity values of E and Ms showed the same tendency as those of fishing pressure; the values were gradually increasing and having a stead trend (Figs.8, 9). The sensitivity of each age group exhibited the same tendency. The tendency of the sensitivity of h2was not initially regular, but showed an increasing tendency until it became stable (Fig.10).

    Fig.8 The sensitivity of each age with different expolited rate by 40 years fishing (S is sensitivity).

    Fig.9 The sensitivity of each age with different mesh size by 40 years fishing.

    Fig.10 The sensitivity of each age with different heritability by 40 years fishing.

    4 Discussion

    The trawling model can determine the impact of exploitation rate and mesh size, and the sensitivity tendency was similar to long-term fishing. The changes of sensitivity showed a gradual growth until they become stable. However, the change of heritability sensitivity was different from the exploitation rate and mesh size. The results of this study provide a detailed analysis of fishing parameter, which show influences on biological characteristics by long-term fishing pressure. Although this research method is based on conventional ANOVA, the application is not similar. The analysis used the probability of test to indicate the significance of test variables. Exploitation rate, mesh size, and heritability are important factors that influence the exploited fishing stock based on the results. The changes of TDPS can determine the internal rule and verify which parameter is the most important. A range of statistical methods is available for quantifying changes in environmental impact over time (Parket al., 2011). In this study, the results indicate that fishing and biological factors are important. Some of the parameters can be controlled in fish-captured progress, and many fisheries management methods have policies to control the captured size, total biomass, sex ratio, and so on. However, if the fish stock is exploited in this manner, how can this exploitation change fisheries resources. Many studies indicate that the evolutionary response can be reversed by changing the fishing capacity and size selectivity (Mollet et al., 2007). Size selectivity can induce evolutionary response that cannot be recovered (Law, 2007; Jorgensen et al., 2009). All such academic work agrees that the biological characteristics of exploited fish stock cannot be recovered with the present fishing policy. Size selectivity is not a good method to exploit fish stocks. An example is the Norwegian spring-spawning herring. Rebuilding its stock took 30 years after its collapse in the 1960s (Toresen and Ostvedt, 2000).

    At present, a series of measures to improve management of marine resources in China is available, including the fishing license system, the minimum mesh size regulation, the ‘Double Control’ system, summer fishing moratoria, fishing catch limit regimes, and so on. Under long-term fishing pressure, which measure is good for sustainable fisheries? The results of this study indicate that the exploitation rate and mesh size are important factors to fish stock. Using hairtail in the East China Sea as an example, the data of this fish stock show miniaturization under long-term trawling (Lin et al., 2006; Sun et al., 2015). Thus, minimum mesh size is important to fish stocks; the size depends on the fishing gear as well as fishing area based on Article 30 of the Fisheries Law of the People’s Republic of China (2004). Meanwhile, heritability is also an important influence on fish stock. Sustainable fishing pressure can influence fish stock in short time period, but the impact of heritability is a long-term factor. Heritability can induce the evolution of fish biological characteristics for a long time, but recovery is impossible once fishing pressure stops or fishing factors change. Therefore, whether sustainable minimum mesh size in fishing is good for exploited fish stock or not needs further research. The long-term effect of each factor’s trend can be observed in our study. Previous studies can only obtain the average magnitude of impact from fishing pressure, but it cannot verify the degree of influence of the impact. The present study obtained the trend of the changes as well as the change rule. The changes showed a fluctuation cycle in 5-year fishing, which is consistent with the fish life history that is a 5-year cycle (Figs.8–10). The sensitivity of fishing parameters affected the fish stock; it initially showed an increasing significance in 30-year trawling, and then the trend became stable. This trend is the same as that in real fisheries, minimum mesh size, and fishing catch limit policy. These management policies can initially affect the fish stock significantly, and then the trend becomes stable. Thus, the impact can affect the exploited fish stock in a short time. Whether the effect is good or not and whether it can contribute to sustainable fisheries need further study. The results also indicate that the genetic variation cannot cause regular variation trends by 40-year trawling. Therefore, the impact of genetic variation is an internal mechanism, and long-term changes should be considered.

    Acknowledgements

    We acknowledge the financial support from the National Natural Science Foundation of China (No. 31402 350) and Special Fund for Agro-scientific Research in the Public Interest (No. 201203018).

    Andrade, L. S., Frameschi, I. F., Costa, R. C., Castilho, A. L., and Fransozo, A., 2015. The assemblage composition and structure of swimming crabs (Portunoidea) in continental shelf waters of southeastern Brazil. Continental Shelf Research, 94: 8-16.

    Conover, D. O., and Baumann, H., 2009. The role of experiments in understanding fishery-induced evolution. Evolutionary Applications, 2: 276-290.

    Dieckmann, U., and Heino, M., 2007. Probabilistic maturation reaction norms: Their history, strengths, and limitations. Marine Ecology Progress Series, 335: 253-269.

    Dunlop, E. S., Heino, M., and Dieckmann, U., 2009. Eco-genetic modeling of contemporary life-history evolution. Journal of Applied Ecology, 19: 1815-1834.

    Enberg, K., Jorgensen, C., Dunlop, E. S., Heino, M., and Dieckmann, U., 2009. Implications of fisheries-induced evolution for stock rebuilding and recovery. Evolutionary Applications, 2: 394-414.

    Enberg, K., Jorgensen, C., Dunlop, E. S., Varpe, O., and Boukal, D. S., 2012. Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Marine Ecology, 33: 1-25.

    Fenberg, P. B., and Roy, K., 2007. Ecological and evolutionary consequences of size-selective harvesting: How much do we know? Molecular Ecology, 17: 209-220.

    Hauser, L., Adcock, G. J., Smith, P. J., Ramirez, J. H. B., and Carvalho, G. R., 2002. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proceedings of the National Academy of Sciences of the United States of America, 99: 11742-11747.

    Hutchings, J. A., and Fraser, D. J., 2008.The nature of fisheries and farming-induced evolution. Molecular Ecology, 17: 294-313.

    Jorgensen, C., Enberg, K., and Dunlop, E. S., 2007. Managing evolving fish stocks. Science, 318: 1247-1248.

    Jorgensen, C., Ernande, B., and Fiksen, O., 2009. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evolutionary Applications, 2: 356-370.

    Kuparinen, A., and Merila, J., 2007. Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 22: 652-659.

    Laugen, A., Engelhard, G. H., Whitlock, R., Arlinghaus, R., Dankel, D. J., Dunlop, E. S., Eikeset, A. M., Enberg, K., Jorgensen, C., Matsumura, S., Nussle, S., Urbach, D., Baulier, L., Boukal, D. S., Ernande, B., Johnston, F. D., Mollet, F., Pardoe, H., Therkildsen, N. O., Uusi-Heikkila, S., Vainikka, A., Heino, M., Rijnsdorp, A. D., and Dieckmann, U., 2014. Evolutionary impact assessment: Accounting for evolutionaryconsequences of fishing in an ecosystem approach to fisheries management. Fish and Fisheries, 15: 65-96.

    Law, R., 2007. Fisheries-induced evolution: Present status and future directions. Marine Ecology Progress Series, 335: 271-277.

    Li, S. Y., Zhang, X. W., and Xing, L. N., 2005. The methods of dynamic selecting measures based on sensitivity analysis. Computer Simulation, 22 (3): 120-136 (in Chinese with English abstract).

    Liang, Z. L., Sun, P., Tang, Y., Huang, L., Lu, Q., Liu, C., and Liu, Q., 2008. Numeric simulation on impact of trawl mesh selectivity on biological characters of fish population. Oceanologia et Limnologia Sinica, 39: 487-493 (in Chinese with English abstract).

    Liang, Z. L., Sun, P., Yan, W., Huang, L. Y., and Tang, Y. L. 2014. Significant effects of fishing gear selectivity on fish life history. Journal of Ocean University of China, 13 (3): 467-471.

    Lin, L., Zheng, Y., Cheng, J., Liu, Y., and Ling, J., 2006. A preliminary study on fishery biology of main commercial fishes surveyed from the bottom trawl fisheries in the East China. Marine Science, 30: 21-25 (In Chinese with English abstract).

    Mollet, F. M., Kraak, S. M. B., and Rijinsdorp, A. D., 2007. Fisheries-induced evolutionary changes in maturation reaction norms in North Sea sole Solea solea. Marine Ecology-Progress Series, 351: 189-199.

    Palkovacs, E. P., Kinnison, M. T., Correa, C., Dalton, C. M., and Hendry, A. P., 2012. Fates beyond traits: Ecological consequences of human-induced trait change. Evolutionary Applications, 5: 237-254.

    Park, S., Chu, P. C., and Lee, J. H., 2011. Interannual-tointerdecadal variability of the Yellow Sea Cold Water Mass in 1967-2008: Characteristics and seasonal forcings. Journal of Marine Systems, 87: 177-193.

    Pauli, D., and Heino, M., 2014. What can selection experiments teach us about fisheries-induced evolution? Biological Journal of the Linnean Society, 111: 485-503.

    Ren, Y., Gao, T., Liu, Q., and Xue, Y., 2001. Study on the population structure and reproduction of Pseudosciaena polyactis in southern yellow sea. Transactions of Oceanology and Limnology, 1: 41-46 (in Chinese with English abstract).

    Rijnsdorp, A., Overzee, H., and Poos, J., 2012. Ecological and economic trade-offs in the management of mixed fisheries: A case study of spawning closures in flatfish fisheries. Marine Ecology Progress Series, 447: 179-194.

    Salas, S., and Gaertner, D., 2004. The behavioural dynamics of fishers: management implications. Fish and Fisheries, 5: 153-167.

    Shen, G. M., and Heino, M., 2014. An overview of marine fisheries management in China. Marine Policy, 44: 265-272.

    Sun, P., Liang, Z. L., Huang, L. Y., Tang, Y. L., and He, X., 2013. Relationship between trawl selectivity and fish body size in a simulated population. Chinese Journal of Oceanology and Limnology, 31 (2): 327-333.

    Sun, P., Liang, Z. H., Yu, Y., Tang, Y. L., Zhao, F. F., and Huang, H. L., 2015. Trawl fishing induced evolutionary effects on age structure and size at age of hairtail (Trichiurus lepturus) in East China Sea, China. Journal of Applied Ichthyology, DOI: 10.1111/jai.12774.

    Tian, B., 2013. Single factor analysis variance and its application. Yinshan Academic Journal, 27 (2): 24-27 (in Chinese with English abstract).

    Toresen, R., and Ostvedt, O. J., 2000. Variation in abundance of Norwegian spring-spawning herring (Clupea harengus, Clupeidae) throughout the 20th century and the influence of climatic fluctuationsz. Fish and Fisheries, 1: 231-256.

    Vainikka, A., and Hyvarinen, P., 2012. Ecologically and evolutionary sustainable fishing of the pikeperch Sander lucioperca: Lake Oulujarvi as an example. Fisheries Research, 113: 8-20.

    (Edited by Ji Dechun)

    (Received February 5, 2015; revised May 6, 2015; accepted May 14, 2015)

    J. Ocean Univ. China (Oceanic and Coastal Sea Research)

    DOI 10.1007/s11802-015-2885-5

    ISSN 1672-5182, 2015 14 (5): 835-840

    http://www.ouc.edu.cn/xbywb/

    E-mail:xbywb@ouc.edu.cn

    * Corresponding author. E-mail: sunbird1103@sina.com

    观看免费一级毛片| 91午夜精品亚洲一区二区三区| 欧美日韩精品成人综合77777| 变态另类丝袜制服| 欧美成人一区二区免费高清观看| 久久久久久久久久久丰满| 看黄色毛片网站| 插逼视频在线观看| 国产成人91sexporn| 欧美性猛交╳xxx乱大交人| 国产淫片久久久久久久久| 级片在线观看| 看免费成人av毛片| www日本黄色视频网| 乱人视频在线观看| 久99久视频精品免费| 日本在线视频免费播放| 看免费成人av毛片| 精品国产三级普通话版| 日日干狠狠操夜夜爽| 午夜激情欧美在线| 久久这里有精品视频免费| 欧美区成人在线视频| 黄片wwwwww| 青青草视频在线视频观看| 美女 人体艺术 gogo| 免费观看精品视频网站| 麻豆久久精品国产亚洲av| 亚洲欧洲国产日韩| 欧美性感艳星| 欧美xxxx黑人xx丫x性爽| 亚洲av熟女| 69av精品久久久久久| 夜夜爽天天搞| 在现免费观看毛片| 日本撒尿小便嘘嘘汇集6| 国产精品美女特级片免费视频播放器| 1024手机看黄色片| 日韩强制内射视频| 深爱激情五月婷婷| 美女黄网站色视频| 亚洲av男天堂| 日日撸夜夜添| 国产蜜桃级精品一区二区三区| 日本与韩国留学比较| 日产精品乱码卡一卡2卡三| 成年女人看的毛片在线观看| 国产精品.久久久| 国产精品.久久久| 亚洲经典国产精华液单| 日本成人三级电影网站| 在线观看一区二区三区| 青青草视频在线视频观看| 午夜激情福利司机影院| 国产亚洲5aaaaa淫片| 成年女人永久免费观看视频| 精品一区二区三区视频在线| 亚洲在线自拍视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美人与善性xxx| 91午夜精品亚洲一区二区三区| 国产成人精品婷婷| 久久国内精品自在自线图片| 国产成人a区在线观看| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 毛片一级片免费看久久久久| 91精品国产九色| 国产成人一区二区在线| 欧美+亚洲+日韩+国产| 国产精品一及| 99久国产av精品国产电影| 又爽又黄a免费视频| 看免费成人av毛片| eeuss影院久久| 97在线视频观看| 成人性生交大片免费视频hd| 99精品在免费线老司机午夜| 边亲边吃奶的免费视频| 天堂√8在线中文| 一级毛片我不卡| 直男gayav资源| 白带黄色成豆腐渣| 草草在线视频免费看| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 欧美最新免费一区二区三区| 国产高清激情床上av| 亚洲七黄色美女视频| 国产一级毛片在线| 变态另类成人亚洲欧美熟女| 亚洲国产欧美在线一区| 国产精品一区www在线观看| 黄色欧美视频在线观看| 成人毛片a级毛片在线播放| 日韩欧美三级三区| 能在线免费观看的黄片| 久久久欧美国产精品| 国产精品久久久久久亚洲av鲁大| 校园人妻丝袜中文字幕| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 色噜噜av男人的天堂激情| 青春草亚洲视频在线观看| 免费在线观看成人毛片| 国产免费男女视频| 色噜噜av男人的天堂激情| 最近中文字幕高清免费大全6| 热99re8久久精品国产| 国产成人午夜福利电影在线观看| 日韩欧美精品v在线| 国产精品精品国产色婷婷| 日本黄色片子视频| 国产精品乱码一区二三区的特点| 最新中文字幕久久久久| 成人无遮挡网站| 高清毛片免费看| 看十八女毛片水多多多| 美女黄网站色视频| 亚洲国产色片| 国产精品99久久久久久久久| 日韩精品有码人妻一区| 69av精品久久久久久| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 亚洲av男天堂| 久久久色成人| 在线播放无遮挡| 成人毛片60女人毛片免费| 国产蜜桃级精品一区二区三区| 欧美成人一区二区免费高清观看| 免费观看精品视频网站| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| 日韩欧美国产在线观看| 成年女人看的毛片在线观看| 国产一区二区三区在线臀色熟女| 久久精品国产99精品国产亚洲性色| 内射极品少妇av片p| 美女大奶头视频| 欧美在线一区亚洲| 欧美另类亚洲清纯唯美| 永久网站在线| 成人漫画全彩无遮挡| 欧美3d第一页| 欧美激情国产日韩精品一区| 久久久成人免费电影| 久久久色成人| 久久久久免费精品人妻一区二区| www日本黄色视频网| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 九九在线视频观看精品| a级毛片免费高清观看在线播放| 99热全是精品| 黄色一级大片看看| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 国产欧美日韩精品一区二区| 日韩精品青青久久久久久| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 亚洲国产精品合色在线| 国产一级毛片七仙女欲春2| av国产免费在线观看| 日韩欧美三级三区| 校园人妻丝袜中文字幕| 免费观看的影片在线观看| 少妇人妻精品综合一区二区 | 日本在线视频免费播放| 身体一侧抽搐| 一个人免费在线观看电影| 女的被弄到高潮叫床怎么办| 三级国产精品欧美在线观看| 免费大片18禁| 亚洲图色成人| 1000部很黄的大片| 嫩草影院新地址| 精品久久久久久久久久久久久| 免费观看在线日韩| 欧美一区二区亚洲| 亚洲国产精品久久男人天堂| 日本五十路高清| 最近中文字幕高清免费大全6| 日本三级黄在线观看| 日韩国内少妇激情av| 又爽又黄无遮挡网站| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| 有码 亚洲区| 少妇熟女欧美另类| 日本成人三级电影网站| 狂野欧美激情性xxxx在线观看| 女人被狂操c到高潮| 国产探花极品一区二区| 精品午夜福利在线看| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄 | av卡一久久| 国产高清三级在线| 亚洲激情五月婷婷啪啪| 亚洲七黄色美女视频| 国产乱人偷精品视频| av在线蜜桃| 噜噜噜噜噜久久久久久91| 一级av片app| 国产精品.久久久| av又黄又爽大尺度在线免费看 | 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看 | 国产片特级美女逼逼视频| 成人一区二区视频在线观看| 日韩av不卡免费在线播放| 亚洲av第一区精品v没综合| 99久久成人亚洲精品观看| 1000部很黄的大片| av卡一久久| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 午夜福利视频1000在线观看| 成人欧美大片| 国产蜜桃级精品一区二区三区| 亚洲成人久久爱视频| 少妇熟女aⅴ在线视频| 长腿黑丝高跟| 尤物成人国产欧美一区二区三区| 久久国产乱子免费精品| 日韩 亚洲 欧美在线| 欧美激情久久久久久爽电影| 亚洲国产欧美在线一区| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 非洲黑人性xxxx精品又粗又长| 99视频精品全部免费 在线| 青春草亚洲视频在线观看| 丝袜喷水一区| 哪个播放器可以免费观看大片| 国产老妇伦熟女老妇高清| 国产毛片a区久久久久| 亚洲欧洲日产国产| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观| 亚洲va在线va天堂va国产| 尾随美女入室| 亚洲精品色激情综合| 人妻久久中文字幕网| 99久久久亚洲精品蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 国产精品野战在线观看| 爱豆传媒免费全集在线观看| 男人狂女人下面高潮的视频| 日韩欧美 国产精品| 欧美成人a在线观看| 日日摸夜夜添夜夜添av毛片| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 美女高潮的动态| 国内精品美女久久久久久| 国产黄色小视频在线观看| 啦啦啦韩国在线观看视频| 波多野结衣高清无吗| 97在线视频观看| a级毛色黄片| 亚洲无线观看免费| 淫秽高清视频在线观看| 亚洲av电影不卡..在线观看| 波多野结衣高清无吗| 久久综合国产亚洲精品| 九九爱精品视频在线观看| 日本与韩国留学比较| 六月丁香七月| 欧美潮喷喷水| 国产精品免费一区二区三区在线| 最近手机中文字幕大全| 久久精品久久久久久久性| 18+在线观看网站| 全区人妻精品视频| 国产亚洲5aaaaa淫片| 亚洲最大成人手机在线| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 99riav亚洲国产免费| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在 | 久久久久网色| 国产69精品久久久久777片| 搞女人的毛片| 免费不卡的大黄色大毛片视频在线观看 | 你懂的网址亚洲精品在线观看 | 婷婷精品国产亚洲av| 男女做爰动态图高潮gif福利片| 欧美成人一区二区免费高清观看| 黄色欧美视频在线观看| av国产免费在线观看| 中国美女看黄片| 亚洲成av人片在线播放无| 午夜a级毛片| 18禁裸乳无遮挡免费网站照片| 99久国产av精品| 国产av在哪里看| 最近中文字幕高清免费大全6| 亚洲第一电影网av| 男女下面进入的视频免费午夜| 国模一区二区三区四区视频| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 特大巨黑吊av在线直播| 久久久a久久爽久久v久久| 国产精品久久久久久久电影| 99热网站在线观看| av视频在线观看入口| 99在线视频只有这里精品首页| 尤物成人国产欧美一区二区三区| 国产精品野战在线观看| 91午夜精品亚洲一区二区三区| 亚洲第一区二区三区不卡| 哪个播放器可以免费观看大片| 精品久久国产蜜桃| 能在线免费看毛片的网站| 国产精品美女特级片免费视频播放器| 乱码一卡2卡4卡精品| 联通29元200g的流量卡| 1000部很黄的大片| 在线观看一区二区三区| 欧美一区二区国产精品久久精品| 深爱激情五月婷婷| 欧美色视频一区免费| 天堂网av新在线| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人| 日本熟妇午夜| 少妇的逼好多水| 桃色一区二区三区在线观看| av天堂在线播放| 一边摸一边抽搐一进一小说| 欧美一级a爱片免费观看看| 国产黄片美女视频| 成人毛片a级毛片在线播放| 我的老师免费观看完整版| 悠悠久久av| ponron亚洲| 久久亚洲精品不卡| 国产高清视频在线观看网站| 国国产精品蜜臀av免费| 亚洲七黄色美女视频| 亚洲高清免费不卡视频| 国产v大片淫在线免费观看| 日韩欧美在线乱码| 国产毛片a区久久久久| av天堂中文字幕网| 高清午夜精品一区二区三区 | 日韩欧美 国产精品| 最新中文字幕久久久久| 日本一二三区视频观看| 在线a可以看的网站| 久久久久久久午夜电影| 国产亚洲欧美98| 中国美白少妇内射xxxbb| 成人特级av手机在线观看| 晚上一个人看的免费电影| 九九在线视频观看精品| 欧美在线一区亚洲| 亚洲成av人片在线播放无| 亚洲美女视频黄频| 校园春色视频在线观看| 久久欧美精品欧美久久欧美| 成人无遮挡网站| 在线免费观看不下载黄p国产| 在线天堂最新版资源| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 美女大奶头视频| 国产精品嫩草影院av在线观看| 精品少妇黑人巨大在线播放 | 精华霜和精华液先用哪个| 校园人妻丝袜中文字幕| 热99re8久久精品国产| 久久久久免费精品人妻一区二区| 国产极品天堂在线| 色吧在线观看| 99久国产av精品国产电影| 欧美极品一区二区三区四区| 日韩视频在线欧美| 波野结衣二区三区在线| 国产精品久久电影中文字幕| 国产成人精品久久久久久| 一级毛片久久久久久久久女| 国产在线精品亚洲第一网站| 亚洲自偷自拍三级| 亚洲av不卡在线观看| 天天躁夜夜躁狠狠久久av| 日韩 亚洲 欧美在线| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| 99久久久亚洲精品蜜臀av| 床上黄色一级片| 亚洲欧美精品综合久久99| 国产真实伦视频高清在线观看| 两个人视频免费观看高清| 午夜福利视频1000在线观看| 久久久国产成人免费| 少妇丰满av| 色播亚洲综合网| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 国产片特级美女逼逼视频| 亚洲人成网站在线观看播放| 亚洲精品乱码久久久久久按摩| 一级毛片电影观看 | 日韩 亚洲 欧美在线| 亚洲欧美成人精品一区二区| 亚洲18禁久久av| 精品久久久久久成人av| 高清日韩中文字幕在线| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 国产精品久久电影中文字幕| 人妻夜夜爽99麻豆av| 美女内射精品一级片tv| 91狼人影院| 中文字幕熟女人妻在线| 欧美高清性xxxxhd video| 天天躁夜夜躁狠狠久久av| 日韩高清综合在线| 久久精品91蜜桃| 亚洲无线在线观看| 国产在线精品亚洲第一网站| 黑人高潮一二区| 国产黄色视频一区二区在线观看 | 伦精品一区二区三区| 免费av毛片视频| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放 | 日韩一本色道免费dvd| 一本一本综合久久| 在线观看66精品国产| 欧美日韩乱码在线| 国产精品国产高清国产av| 日韩强制内射视频| 黄色欧美视频在线观看| a级毛片a级免费在线| 观看免费一级毛片| 欧美日韩精品成人综合77777| 在线播放国产精品三级| 精品久久久久久久久亚洲| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品专区久久| 少妇人妻精品综合一区二区 | 超碰av人人做人人爽久久| 成人综合一区亚洲| 久久亚洲精品不卡| 黄色欧美视频在线观看| 国产私拍福利视频在线观看| 听说在线观看完整版免费高清| 日韩欧美国产在线观看| 国产不卡一卡二| 精品人妻一区二区三区麻豆| www日本黄色视频网| 老师上课跳d突然被开到最大视频| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| 少妇丰满av| 免费看av在线观看网站| 成人毛片60女人毛片免费| 夜夜夜夜夜久久久久| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 欧美日本视频| 男女边吃奶边做爰视频| 91精品国产九色| 久久精品国产清高在天天线| 中出人妻视频一区二区| 国产熟女欧美一区二区| 午夜爱爱视频在线播放| 永久网站在线| a级毛色黄片| 99久久久亚洲精品蜜臀av| 给我免费播放毛片高清在线观看| 中文字幕av成人在线电影| 亚洲av免费高清在线观看| av在线观看视频网站免费| 国产淫片久久久久久久久| 国产精品1区2区在线观看.| 久久久色成人| 欧美三级亚洲精品| 日本撒尿小便嘘嘘汇集6| 12—13女人毛片做爰片一| 最近中文字幕高清免费大全6| 在线天堂最新版资源| 亚洲五月天丁香| 内射极品少妇av片p| 最近手机中文字幕大全| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说 | 国产高清视频在线观看网站| 97超碰精品成人国产| 美女黄网站色视频| 十八禁国产超污无遮挡网站| 一级二级三级毛片免费看| 啦啦啦观看免费观看视频高清| 久久99热这里只有精品18| 国产久久久一区二区三区| 美女大奶头视频| 亚洲第一电影网av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近手机中文字幕大全| 日本成人三级电影网站| 两个人视频免费观看高清| av.在线天堂| 99久久无色码亚洲精品果冻| 国产伦一二天堂av在线观看| 一边摸一边抽搐一进一小说| 三级经典国产精品| 91久久精品国产一区二区成人| 日本熟妇午夜| 亚洲自偷自拍三级| 亚洲一区高清亚洲精品| 国产精品嫩草影院av在线观看| 日韩欧美在线乱码| 免费人成在线观看视频色| 黄色配什么色好看| 深夜精品福利| 午夜老司机福利剧场| 一个人看视频在线观看www免费| 国产精品久久久久久精品电影| 国产精品免费一区二区三区在线| 一本久久精品| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 如何舔出高潮| 欧美一区二区精品小视频在线| 五月玫瑰六月丁香| 免费看日本二区| 国产极品精品免费视频能看的| 春色校园在线视频观看| 99久久九九国产精品国产免费| 亚洲av男天堂| 久99久视频精品免费| 久久久欧美国产精品| 日韩欧美精品v在线| 国产精品久久视频播放| 联通29元200g的流量卡| 亚洲真实伦在线观看| 国产精品久久久久久av不卡| 成人永久免费在线观看视频| 性插视频无遮挡在线免费观看| 大香蕉久久网| 色播亚洲综合网| 欧美一区二区精品小视频在线| 一本久久中文字幕| 成人永久免费在线观看视频| 99久久精品国产国产毛片| 免费无遮挡裸体视频| 69人妻影院| ponron亚洲| 国产人妻一区二区三区在| 三级经典国产精品| 国产日本99.免费观看| 深夜a级毛片| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| 欧美不卡视频在线免费观看| 性插视频无遮挡在线免费观看| 伦理电影大哥的女人| 一级黄片播放器| 最好的美女福利视频网| 久久精品夜色国产| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av卡一久久| 亚洲精品日韩在线中文字幕 | 亚洲性久久影院| 日韩欧美精品免费久久| 日本黄色视频三级网站网址| 91在线精品国自产拍蜜月| 三级经典国产精品| 欧美成人一区二区免费高清观看| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看| 一级毛片久久久久久久久女| 岛国毛片在线播放| 久久精品综合一区二区三区| 日韩国内少妇激情av| 哪里可以看免费的av片| 免费av不卡在线播放| 亚洲最大成人手机在线| 亚洲欧洲国产日韩| 国产精品永久免费网站| 91aial.com中文字幕在线观看| 欧美潮喷喷水| or卡值多少钱| 十八禁国产超污无遮挡网站| 亚洲欧洲国产日韩| kizo精华| 成人午夜高清在线视频| 中文字幕av成人在线电影| 干丝袜人妻中文字幕| 亚洲av成人av| 波多野结衣巨乳人妻| 亚洲精品久久国产高清桃花| 亚洲成人久久性| 国内精品宾馆在线| 在线观看一区二区三区| 久久久精品大字幕| 欧美成人a在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成网站在线播| 精品一区二区免费观看| 不卡视频在线观看欧美| 亚洲欧美日韩卡通动漫|