• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Significance of Different Microalgal Species for Growth of Moon Jellyfish Ephyrae, Aurelia sp.1

    2015-03-15 01:43:50ZHENGShanSUNXiaoxiaWANGYantaoandSUNSong
    Journal of Ocean University of China 2015年5期

    ZHENG Shan, SUN Xiaoxia, WANG Yantao, and SUN Song

    1) Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    3) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Significance of Different Microalgal Species for Growth of Moon Jellyfish Ephyrae, Aurelia sp.1

    ZHENG Shan1),2),3), SUN Xiaoxia1),*, WANG Yantao1),2),3), and SUN Song1),2)

    1) Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    3) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    The scyphozoan Aurelia aurita (Linnaeus) sp. l., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp.1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus Artemia nauplii for 12 - 24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no significant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.

    Aurelia sp.1; ephyrae; phytoplankton; growth

    1 Introduction

    Jellyfish blooms are increasing in many coastal waters worldwide, and cause detrimental effects on human enterprises (Purcell et al., 2007; Condon et al., 2012; McNamara et al., 2013). Carnivorous jellyfish are both competitors and predators of fish (reviewed by Purcell, 1985; Arai, 1988; Purcell and Arai, 2001), thus the increase of jellyfish populations may be a potential threat for sustainable fisheries (Uye, 2008; Pauly et al., 2009). Aurelia aurita, which is one of the most common species in East Asian coastal waters, has resulted in problems in operation of power plants and in commercial fisheries (Han and Uye, 2010).

    A. aurita has a complex life cycle from benthic asexual stage (polyp) to planktonic sexual stage (medusa). Polyps reproduce asexually by budding and producing podocysts to form colonies of millions of individuals. Moreover, individual polyps can metamorphose into strobilae, which release great numbers of ephyrae during strobilation.Hence, numerous ephyrae mature into adult medusae, even cause jellyfish outbreak.

    As a predator, A. aurita has been extensively studied both in the field and in the laboratory (see B?mstedt et al., 1994 and references therein).It is shown in the literature that ambient conditions and food supply are correlated with spatial and temporal variations for both the polyp and the medusa stages (Hernroth and Gr?ndahl, 1985; Schneider and Behrends, 1994; Olesen, 1995; Nielsen et al., 1997; Purcell et al., 1999; Mills, 2001; Malej et al., 2007). Water temperature affects both feeding and growth by regulating the metabolism in basic physiological activities (Olensen, 1995). Food availability controls the growth; consequently, the average size of A. aurita varies along with the variation in food supply (Schneider and Behrends, 1994). It is likely that the suitable food conditions during the period of scyphistoma growth and strobilation give away to poor food conditions during the period of medusa growth and development (B?mstedt et al., 2001).

    A. aurita, usually starting its planktonic life in spring, grows from a 2-mm-diameter ephyra to an adult medusa of more than 25 cm diameter (Lucas, 1996). Technically, ephyrae make contributions to jellyfish blooming fromtwo aspects: considerable survival and rapid growth. Food availability is of significant importance for newly released ephyrae, as suitable food can ensure the rapid growth of ephyrae and avoid the risk of being preyed. As far as we know, most published reports on feeding and utilization for growth have focused on the developed medusa, and simply a few papers referred to the ephyra stage. Yet it is supposed that there should be differences between ephyrae and mature medusae in prey selection and utilization. Olesen et al. (1994) reported that A. aurita ephyrae preyed upon abundant rotifers. Sullivan et al. (1997) observed the gut contents of A. aurita ephyrae sampled from field as well as laboratory and reported the high diversity and selection of prey. B?mstedt et al. (1997) showed that sufficient Artemia nauplii play a significant role in the growth of A. aurita ephyrae. M?ller and Riisg?rd (2007) assessed feeding and growth of A. aurita ephyrae with Artemia sp., Balanus sp., Brachionus sp. and Rathkea octopunctata. However, all the food types in the research mentioned are restricted to the animal food. Few literatures have been published on the feeding and utilization of microalgae by A. aurita ephyrae.

    Ephyrae are released by polyps in spring, which is the same time when phytoplankton blooms. Phytoplankton blooms, especially dinoflagelates blooms, have increased over the past several decades in spring in the East China Sea (Zhou et al., 2008). Southward (1955) suggested A. aurita fed on phytoplankton. Kerstan (1977) found many species of diatoms in the gut of A. aurita ephyrae. B?mstedt et al. (2001) showed that A. aurita ephyrae feed on one specific microalgal species. Zheng et al. (2012) reported that Aurelia sp.1 ephyrae can prey on diatom Skeletonema costatum (Greville) Cleve and dinoflagellate Prorocentrum donghaiense Lu, and presented quantitative data on predation rate. Huang et al. (2014) have described that the concentration of Alexandrium catenella can influence the behavior and growth of Aurelia sp. ephyrea. If the availabity of phytoplankton is high, ephyrae gowth might be enhanced, which is crucial to jellyfish blooms. Therefore, our purpose was to evaluate whether different microalgal species could be used by newly released Aurelia sp.1 ephyrae.

    2 Materials and Methods

    2.1 Source and Culturing Conditions

    We used non-fed ephyrae that were recently strobilated from the laboratory culture of Aurelia sp.1 polyps in the Institute of Oceanology (Chinese Academy of Sciences). The polyps were incubated at 20℃ in filtered seawater with a salinity of 32. They were fed with Artemia sp. nauplii twice a week and the seawater was weekly changed. To stimulate strobilation, the polyps were incubated while temperature was lowered from 20℃ to 13℃, and then increased to 15℃. During the strobilation, Artemia sp. nauplii were not provided for the polyps and ephyrae. Once the ephyrae were released, the healthy ones of the same size were used in the experiments.

    The ephyrae were cultured with six treatments: (1) none, (2) Skeletonema costatum (Greville) Cleve (diatom), (3) Prorocentrum donghaiense Lu (autotrophic dinoflagellate), (4) Noctiluca scintillans (Macartney) Kofoid & Swezy (heterotrophic dinoflagellate), (5) Platymonas subcordiformis (Chlorophyta), and (6) Artemia sp. nauplii (as positive control). The phytoplankton was obtained from the Key Laboratory of Marine Ecology & Environmental Sciences (Chinese Academy of Sciences). The phytoplankton used in experiments was of exponential growth phase. S. costatum and P. donghaiense were cultured in f/2 medium (Guillard and Ryther, 1962), and a 14 h light: 10 h dark cycle with 2000 lux light intensity at 20℃. P. subcordiformis was cultured in SE medium in the same temperature and light condition. N. scintillans was taken from samples collected by vertical plankton hauls in the Jiaozhou Bay. Artemia sp. nauplii used were all acquired from a daily batch of new hatched eggs.

    2.2 Experimental Protocol

    Each treatment consisted of three replicated glass beakers with 1.0 L filtered (0.45 μm pore size) seawater and five ephyrae. The filtered seawater was at a salinity of 32.We renewed the seawater in all beakers every day and added all types of food in a given amount (Table 1). The concentrations of food were close to the maxima occurring naturally in the field (Zhou et al., 2008), and were similar in terms of carbon content, corresponding to the about 1mg C m-3(according to previous results in the laboratory) that was added to the experimental beakers. Food items were gently distributed by equal and slow bubbling in all beakers. All the treatments were kept in the dark in an incubator with the temperature of 18℃; moreover, a storage tank was kept to make sure that the experimental water adjusted to the set temperature. The choice of temperature was based on the results of B?mstedt et al. (1999, 2001) and the need to facilitate the most possible food source.

    These experiment treatments lasted for 12 - 24 d. The ephyrae were gently pipetted from the glass beakers into Petri dishes and measured, then put back after the beakers were renewed with water and food.

    Table 1 Concentration of different food used in the experiment

    Food abundance in all treatments was high enough to eliminate any effect caused by the insufficient food supply.

    2.3 Statistical Analysis

    The diameters (between opposite lappet tips) of ephyrae were measured under a dissection microscope with an ocular graticule every 3 d. To evaluate the variations of individual body size, we calculated the growth rate (% d-1) by using the formula of B?mstedt et al. (1997):

    % growth d-1=ln[(D2/D1)3]/(t2– t1)×100 %,

    where D1and D2are the mean diameters (mm) from each group at t1and t2(d), respectively.

    One-way ANOVA tests were used to test for significant differences among the effects of the different species on the average growth rates over the entire experiments. A post hoc test (Tukey HSD test) was used to identify the differences among the phytoplankton species. The program SPSS 16.0 was used in the statistical calculations.

    3 Results

    The experiment treatments lasted for 24 d except for two cases. The reason why the treatments were eliminated by day 12 was the maturity of ephyrae fed on Artemia nauplii and the mortality of ephyrae cultured with P. donghaiense.

    3.1 Survival

    Fig.1 shows that there were clear differences among the food treatments in the survival of ephyrae. The variations in survival of ephyrae of microalgal species were obvious. During the experiments with ephyrae fed on nothing, N. scintillans, Artemia sp. nauplii and P. subcordiformis maintained high survival (86.7% - 100%). As for ephyrae cultured with S. costatum, the survival slowly declined to 93.3% by day 21, and then sharply dropped to less than 50%. The survival of ephyrae fed with P. donghaiense showed a marked decline which started from day 9 and ended up with 46.7% by day 12.

    Fig.1 Variations of different microalgal species in survival of Aurelia sp.1 ephyrae.

    3.2 Variations of Diameters and Growth Rates

    In all treatments of the experiment, the initial average size of ephyrae was (3.67 ±0.03) mm in diameter. The variations of ephyrae diameter in all treatments were shown in Fig.2. Through the experiment, the average growth rates for different days, calculated by the formula mentioned above, are shown in Table 2. The growth of ephyrae varied in the three different ways mentioned below. Results of One-way ANOVA testing the effect of food type on the average growth rate (% d-1) over the first 12 d are shown in Table 2. A post hoc test (Tukey’S HSD-test) showed that the growth rate diverged significantly for Artemia nauplii compared to other food types (Table 3). In addition, there was no significant difference between the growth rates for S. costatum and P. donghaiense, and no significant difference was found in the growth rates between N. scintillans and P. subcordiformis.

    Fig.2 Effects of different microalgal species on the growth of Aurelia sp.1 ephyrae, n=3 in each treatment.

    Table 2 Results of One-way ANOVA testing the effect of food type on the average growth rate (% d-1) over the first 12 d

    Table 3 Results of post hoc tests (Tukey HSD test) on the average growth rate (% d-1) over the first 12 d in all treatments

    1) Increasing. Ephyrae fed with Artemia nauplii showed the strongest growth and grew up to medusa by day 12 with a rate of about 25.85% overall, growing from (3.68 ± 0.02) mm to (10.35 ±1.42) mm.

    2) Decreasing. Ephyrae fed with nothing, S. costatum and P. donghaiense showed a slow decline in growth rate in the entire period. Ephyrae, suffering from starvation, shrank from (3.69 ± 0.41) mm to (2.74 ± 0.71) mm at a rate of about -3.74% over 24 d. Similarly, the ephyrae fed with S. costatum decreased at a rate of -6.89% in growth rate, with a decline from (3.61 ± 0.29) mm to (2.08 ± 0.54) mm in diameter. Ephyrae fed with P.donghaiense decreased at a rate of -4.81% in growth rate, with a decline from (3.65 ± 0.37) mm to (3.01 ± 0.90) mm in diameter.

    3) Increasing and then decreasing. Ephyrae fed with N. scintillans grew from (3.69 ± 0.21) mm to (4.31 ± 0.59) mm at a rate of about 3.89% in the first 12 d, and then shrank to (3.09 ± 0.39) mm at a growth rate of -8.34% in the next 12 d. Similarly, ephyrae fed with P. subcordiformis grew from (3.68 ± 0.02) mm to (4.90 ± 0.46) mm at a rate of about 7.19% in the first 12 d, and then shrank to (3.74 ± 0.52) mm at a growth rate of -6.78% in the next 12 d.

    4 Discussion

    Generally, results in our experiment showed that newly-released ephyrae can take some species of microalgae for growth in the earliest development stage. In our results, chain diatom S. costatum and autotrophic dinoflagellate P. donghaiense did not support the growth of ephyrae, while dinoflagellate N. scintillans and chlorophyta P. subcordiformis could support the growth for the ephyrae in the earliest phase. However, none of these microalgae species can support ephyrae to mature. There might be two reasons: (1) Swimming ability of phytoplankton could affect the feeding behavior of ephyrae. (2) Food quality of different species of phytoplankton might be important for the growth of ephyrae.

    Firstly, diatom S. costatum cannot support the growth of ephyrae. Sullivan et al. (1997) suggested that the swimming speed and size of prey were of great importance and determined the actual ingestion rate. S. costatum is incapable of swimming and the chains of cells usually fall downwards. On the contrary, three other species of phytoplankton in our experiment are capable of swimming and thus have the higher probability of being captured. Although species of diatom were found in the gut of A. aurita medusa and ephyrae both in the fields (Kerstan, 1977) and in the laboratory (B?mstedt, 1990; Zheng et al., 2012), it might be the result of indiscriminate feeding by A. aurita medusa and ephyrae in the seawater. As coelenterates are unable to disrupting cell walls of phytoplankton mechanically (Pitt et al., 2009b), S. costatum is likely to be hard to be used by ephyrae. Furthermore, it has been showed that diatoms lack in few specific fatty acids and sterols (Jonasdottir et al., 1995; Klein Breteler et al., 1999), which are essential for development, growth and reproduction of zooplankton. As all above, S. costatum is not a sufficient food source and cannot support ephyrae to grow.

    Secondly, P. donghaiense do harm to the A. aurita ephyrae. Compared with other treatment, the survival of ephyrae fed with P. donghaiense rapidly declined in 12 d. Although P. donghaiense is confirmed as non-toxic species, the abundant exudation of cells is sticky when the cells density is high. Therefore, the normal activities of ephyrae might be inhibited to death. Wang et al. (2003) found that P. donghaiense at a density of 10×104cell mL-1resulted in a strong inhibition of the swimming of rotifers, even death.

    Finally, although the ephyrae served with dinoflagellate N. scintillans and chlorophyta P. subcordiformis could grow in the earliest phrase, they were not able to be as mature as those fed on Artemia sp. nauplii. It is obvious that ephyrae benefit more from animal food than from phytoplankton food. It was suggested that ephyrae of Chrysaora quinquecirrha grew much better on ctenophores as food than on rotifers (Olesen et al., 1996). Likewise, Bamstedt (1997) illustrated the priority of ctenophores for the growth of Cyanea capillata ephyrae to Artemia nauplii and copepods. In addition, Bamstedt et al. (2001) compared the effect of one species of phytoplankton to that of four animal foods on the growth of A. aurita ephyrae, and showed that animal supported development better than phytoplankton did. Our observation islikely to be the first report on the effects of different microalgae on growth of ephyrae.

    In conclusion, our results show that newly-released ephyrae can take some species of microalgae for growth in the earliest development stage. Chain diatom S. costatum and autotrophic dinoflagellate could not support the growth of ephyrae, while heterotrophic dinoflagellate N. scintillans and chlorophyta P. subcordiformis could in the earliest phase. However, none of ephyrae only fed with phytoplankton as food could mature to medusae.

    Acknowledgements

    We thank Professor Yan Tian for providing culture strains of Skeletonema costatum, Prorocentrum donghaiense and Platymonas subcordiformis. We also thank Professor Ian R Jenkinson for the assistance with English writing. This research was supported by the National Basic Research Program of China (973 Program) (No. 2011 CB403603), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA0503 0401) and the National Natural Science Founda- tion of Shandong Province, China (No. ZR2012DQ005).

    Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology, 66 (9): 1913-1927.

    B?mstedt, U., 1990. Trophodynamics of the scyphomedusae Aurelia aurita. Predationrate in relation to abundance, size and type of prey organism. Journal of Plankton Research, 12 (1): 215-229.

    B?mstedt, U., Ishii, H., and Martinussen, M. B., 1997. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? Sarsia, 82: 269-273.

    B?mstedt, U., Wild, B., and Martinussen, M., 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa) Marine Biology, 139 (4): 641-650.

    Condon, R. H., Graham, W. M., Duarte, C. M., Pitt, K. A., Lucas, C. H., Haddock, S. H. D., Sutherland, K. R., Robinson, K. L., Dawson, M. N., Decker, M. B., Mills, C. E., Purcell, J. E., Malej, A., Mianzan, H., Uye, S. I., Gelcich, S., and Madin, L. P., 2012. Questioning the rise of gelatinous zooplankton in the World’s oceans. Bioscience, 62 (2): 160-169.

    Guillard, R. R. L., and Ryther, J. H., 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8 (2): 229-239.

    Han, C. H., and Uye, S., 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Benthos Research, 5 (3): 98-105.

    Hernroth, L., and Gr?ndahl, F., 1985. On the biology of Aurelia aurita (L.): 2. Major factors regulating the occurrence of ephyrae and young medusae in the Gullmar fjord, western Sweden. Bulletin of Marine Science, 37 (2): 567-576.

    Huang, X. G., Zeng, Y., Huang, B. Q., and Li, S. X., 2014. Effect of Alexandrium catenella (Dinophyta) concentration on the behavior and growth of Aurelia sp. ephyrae. Journal of Plankton Research, 36 (2): 591-595.

    Ianora, A., Poulet, S. A., and Miralto, A., 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology, 121 (3): 533-539.

    Ishii, H., 2001. The influence of environmental changes upon the coastal plankton ecosystems, with special reference to mass occurrence of jellyfish. Bulletin of Plankton Society of Japan, 48: 55-61 (in Japanese with English abstract).

    Jonasdottir, S. H., Fields, D., and Pantoja, S., 1995. Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston. Marine Ecology Progress Series, 119: 87-98.

    Kerstan, M., 1977. Untersuchungen zur Nahrungs?kologie von Aurelia aurita Lam. Diplomarbeit, Universit?t Kiel, Kiel, 1-95.

    Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S., and Kraay, G. W., 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: Role of essential lipids. Marine Biology, 135 (1): 191-198.

    López-Sandoval, D. C., Rodríguez-Ramos, T., Cerme?o, P., and Mara?ón, E., 2013. Exudation of organic carbon by marine phytoplankton: Dependence on taxon and cell size. Marine Ecology Progress Series, 477: 53-60.

    Lucas, C. H., 1996. Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. Journal of Plankton Research, 18 (6): 987-1007.

    McNamara, M. E., Lonsdale, D. J., and Cerrato, R. M., 2013. Top-down control of mesozooplankton by adult Mnemiopsis leidyi influences microplankton abundance and composition enhancing prey conditions for larval ctenophores. Estuarine, Coastal and Shelf Science, 133: 2-10.

    Malej, A., Turk, V., and Lu?i?, D., 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology, 151: 827-841.

    Miller, R. J., 1970. Distribution and energetics of an estuarine population of the ctenophore, Mnemiopsis leidyi. Ph.D thesis, North Carolina State University, Raleigh, 1-44.

    Mills, C. E., 2001. Jellyfish blooms: Are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451: 55-68.

    M?ller, L. F., and Riisg?rd, H. U., 2007. Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Marine Ecology Progress Series, 346: 167-177.

    Nielsen, A. S., Pedersen, A. W., and Riisg?rd, H. U., 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia, 82 (4): 297-305.

    Olesen, N. J., 1995. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Marine Ecology Progress Series, 124: 63-72.

    Olesen, N. J., Frandsen, K., and Riisg?rd, H. U., 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series, 105: 9-18.

    Olesen, N. J., Purcell, J. E., and Stoecker, D. K., 1996. Feeding and growth by ephyrae of scyphomedusae Chrysaora quinquecirrha. Marine Ecology Progress Series, 137: 149-159.

    Pauly, D., Graham, W., Libralato, S., Morissette, L., and Palomares, M. L., 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia, 616: 67-85.

    Pitt, K. A., Welsh, D. T., and Condon, R. H., 2009a. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cyclingand plankton production. Hydrobiologia, 616: 133-149.

    Pitt, K. A., Connolly, R. M., and Meziane, T. 2009b. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: A review.Hydrobiologia, 616: 119-132.

    Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series, 348: 183-196.

    Purcell, J. E., and Arai, M. N., 2001. Interactions of pelagic cnidarians and ctenophores with fishes: A review. Hydrobiologia, 451: 27-44.

    Purcell, J. E., White, J. R., Nemazie, D. A., and Wright, D. A., 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series, 180: 187-196.

    Schneider, G., and Behrends, G., 1994. Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic. ICES Journal of Marine Science, 51 (4): 359-367.

    Southward, A. J., 1955. Observations on the ciliary currents of the jellyfish Aurelia aurita L. Journal of the Marine Biological Association of the United Kingdom, 34: 201-216.

    Stoecker, D. K., Michaels, A. E., and Davis, L. H., 1987. Grazing by the jellyfish Aurelia aurita on microzooplankton. Journal of Plankton Research, 9: 901-915

    Sullivan, B. K., Suchman, C. L., and Costello, J. H., 1997. Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Marine Biology, 130: 213-222.

    Toyokawa, M., Furota, T., and Terazaki, M., 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biology and Ecology, 47: 48-58.

    Uye, S., 2008. Blooms of the giant jellyfish Nemopilema nomurai: A threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Research, 3 (Suppl): 125-131.

    Wang, L., Yan, T., Tan, Z. and Zhou, M., 2003. Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population. Chinese Journal of Applied Ecology, 14 (7): 1151-1155 (in Chinese with English abstract).

    Zheng, S., Sun, X., and Sun, S., 2012. The grazing of Aurelia sp.1 on Skeletonema costatum and Prorocentrum donghaiense. Oceanologia et Limnologia Sinica, 43 (3): 445-450 (in Chinese with English abstract).

    (Edited by Ji Dechun)

    (Received October 9, 2014; revised April 14, 2015; accepted April 22, 2015)

    J. Ocean Univ. China (Oceanic and Coastal Sea Research)

    DOI 10.1007/s11802-015-2775-x

    ISSN 1672-5182, 2015 14 (5): 823-828

    http://www.ouc.edu.cn/xbywb/

    E-mail:xbywb@ouc.edu.cn

    * Corresponding author. Tel: 0086-532-82898599

    E-mail: xsun@qdio.ac.cn

    欧美精品人与动牲交sv欧美| 一级,二级,三级黄色视频| 老汉色av国产亚洲站长工具| 亚洲人成网站在线观看播放| 亚洲图色成人| 国产深夜福利视频在线观看| 免费看av在线观看网站| 欧美精品亚洲一区二区| 在线 av 中文字幕| 啦啦啦啦在线视频资源| 男人舔女人的私密视频| 久久狼人影院| 欧美在线黄色| 国产又爽黄色视频| 波野结衣二区三区在线| 黄色一级大片看看| 欧美在线一区亚洲| 日韩人妻精品一区2区三区| 久久久久久久久久久免费av| 欧美最新免费一区二区三区| av网站免费在线观看视频| av福利片在线| 一边亲一边摸免费视频| 免费观看性生交大片5| 亚洲精品日本国产第一区| 水蜜桃什么品种好| 热re99久久国产66热| 亚洲婷婷狠狠爱综合网| 99久国产av精品国产电影| 亚洲一区中文字幕在线| 无限看片的www在线观看| 久久精品久久久久久久性| 国产免费又黄又爽又色| 国产精品.久久久| 久久精品亚洲av国产电影网| 国产男女内射视频| av电影中文网址| 亚洲专区中文字幕在线 | 日韩中文字幕视频在线看片| 极品人妻少妇av视频| 又大又黄又爽视频免费| 最黄视频免费看| 女人精品久久久久毛片| 日韩av免费高清视频| 91老司机精品| 咕卡用的链子| 日日啪夜夜爽| 欧美xxⅹ黑人| 黑人猛操日本美女一级片| 女性被躁到高潮视频| 18禁观看日本| 人体艺术视频欧美日本| 久久久久视频综合| 欧美日韩精品网址| 欧美在线黄色| 国产成人午夜福利电影在线观看| 久久热在线av| 欧美久久黑人一区二区| 9色porny在线观看| 一区二区三区四区激情视频| 国产成人a∨麻豆精品| 欧美乱码精品一区二区三区| 久久久久久免费高清国产稀缺| 宅男免费午夜| 哪个播放器可以免费观看大片| 青青草视频在线视频观看| 激情视频va一区二区三区| 黄片小视频在线播放| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 男人爽女人下面视频在线观看| 巨乳人妻的诱惑在线观看| 制服丝袜香蕉在线| 激情五月婷婷亚洲| 亚洲欧美日韩另类电影网站| 亚洲,欧美精品.| av在线观看视频网站免费| 制服人妻中文乱码| 在线亚洲精品国产二区图片欧美| 一级毛片黄色毛片免费观看视频| 激情五月婷婷亚洲| 妹子高潮喷水视频| 日韩欧美一区视频在线观看| 欧美激情 高清一区二区三区| 亚洲精品一二三| 久久狼人影院| 午夜福利,免费看| av有码第一页| 你懂的网址亚洲精品在线观看| 日韩一本色道免费dvd| 91aial.com中文字幕在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品国产一区二区三区四区第35| 久久av网站| 色94色欧美一区二区| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 成人国产av品久久久| 丁香六月天网| 久热这里只有精品99| 十八禁高潮呻吟视频| 18禁动态无遮挡网站| 国产亚洲一区二区精品| 丝袜在线中文字幕| 久久国产精品男人的天堂亚洲| 男女无遮挡免费网站观看| 18禁国产床啪视频网站| 日本91视频免费播放| 国产精品久久久人人做人人爽| 免费观看人在逋| 十分钟在线观看高清视频www| 热re99久久国产66热| 伊人久久国产一区二区| 天天添夜夜摸| 日韩精品有码人妻一区| av国产精品久久久久影院| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| kizo精华| 最黄视频免费看| av国产久精品久网站免费入址| 亚洲第一av免费看| 1024视频免费在线观看| 9色porny在线观看| 狠狠精品人妻久久久久久综合| 老司机影院毛片| 国产成人免费观看mmmm| a级毛片黄视频| 少妇被粗大的猛进出69影院| 视频区图区小说| 欧美乱码精品一区二区三区| 免费在线观看完整版高清| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 日本91视频免费播放| 亚洲av欧美aⅴ国产| 久久久精品94久久精品| 久久久精品区二区三区| 国产精品.久久久| 各种免费的搞黄视频| 欧美日韩精品网址| 久久av网站| 亚洲欧洲国产日韩| av电影中文网址| 欧美黑人精品巨大| 又大又爽又粗| 夜夜骑夜夜射夜夜干| avwww免费| 国产黄色免费在线视频| av在线播放精品| 亚洲少妇的诱惑av| 满18在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 啦啦啦视频在线资源免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美亚洲 丝袜 人妻 在线| 少妇猛男粗大的猛烈进出视频| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 少妇的丰满在线观看| 最近的中文字幕免费完整| 亚洲久久久国产精品| 午夜老司机福利片| 亚洲自偷自拍图片 自拍| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 亚洲成国产人片在线观看| 丰满迷人的少妇在线观看| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 纵有疾风起免费观看全集完整版| 国产精品免费大片| 精品国产国语对白av| 亚洲精品在线美女| 午夜影院在线不卡| 一区二区三区精品91| 久久久久久久久免费视频了| 亚洲五月色婷婷综合| 亚洲国产精品国产精品| 侵犯人妻中文字幕一二三四区| 一级爰片在线观看| 午夜福利在线免费观看网站| 日韩伦理黄色片| 午夜日韩欧美国产| 黑人巨大精品欧美一区二区蜜桃| 精品国产超薄肉色丝袜足j| 91精品三级在线观看| av网站免费在线观看视频| 久久久久人妻精品一区果冻| 97精品久久久久久久久久精品| 亚洲欧美色中文字幕在线| 精品人妻熟女毛片av久久网站| 大香蕉久久成人网| 91老司机精品| 免费看av在线观看网站| kizo精华| 十八禁人妻一区二区| 国产视频首页在线观看| 美女视频免费永久观看网站| 亚洲精品美女久久av网站| 欧美人与性动交α欧美精品济南到| 男女国产视频网站| 久久精品亚洲熟妇少妇任你| 精品亚洲乱码少妇综合久久| 国产不卡av网站在线观看| 久久99一区二区三区| 少妇人妻久久综合中文| 中国国产av一级| 一边摸一边抽搐一进一出视频| 国产乱人偷精品视频| 赤兔流量卡办理| 午夜福利网站1000一区二区三区| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 最近手机中文字幕大全| 中文字幕亚洲精品专区| 国产爽快片一区二区三区| 少妇被粗大的猛进出69影院| 丝袜美腿诱惑在线| 男人操女人黄网站| av一本久久久久| 夜夜骑夜夜射夜夜干| 亚洲精品国产区一区二| 在线观看人妻少妇| 精品少妇黑人巨大在线播放| 日本黄色日本黄色录像| 欧美精品人与动牲交sv欧美| 精品国产一区二区久久| 激情五月婷婷亚洲| 亚洲成人一二三区av| 久久精品熟女亚洲av麻豆精品| 黄片小视频在线播放| 亚洲欧美精品自产自拍| 日本色播在线视频| 桃花免费在线播放| 亚洲精品国产色婷婷电影| 欧美乱码精品一区二区三区| 国产 精品1| 老汉色∧v一级毛片| 男人添女人高潮全过程视频| 亚洲中文av在线| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| 中文字幕色久视频| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区久久| 97人妻天天添夜夜摸| 国产爽快片一区二区三区| 免费看不卡的av| 一本一本久久a久久精品综合妖精| 波野结衣二区三区在线| 9色porny在线观看| 欧美 亚洲 国产 日韩一| 飞空精品影院首页| 九九爱精品视频在线观看| videos熟女内射| 久久婷婷青草| 精品人妻熟女毛片av久久网站| 免费高清在线观看日韩| 大话2 男鬼变身卡| 欧美日韩成人在线一区二区| 国产熟女午夜一区二区三区| 中文字幕色久视频| 精品一区二区三区av网在线观看 | 国产成人午夜福利电影在线观看| 亚洲成人国产一区在线观看 | 亚洲第一av免费看| 久久狼人影院| 岛国毛片在线播放| 日韩一本色道免费dvd| 久久性视频一级片| 美女主播在线视频| 国产国语露脸激情在线看| 多毛熟女@视频| 亚洲成人手机| 如何舔出高潮| h视频一区二区三区| 亚洲成色77777| 青草久久国产| 高清av免费在线| 久久韩国三级中文字幕| 老司机影院成人| 999久久久国产精品视频| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 极品人妻少妇av视频| 欧美日韩视频高清一区二区三区二| 一本大道久久a久久精品| 亚洲国产欧美日韩在线播放| avwww免费| 精品酒店卫生间| 日韩人妻精品一区2区三区| 性少妇av在线| 丁香六月欧美| 女的被弄到高潮叫床怎么办| 成年动漫av网址| 欧美日韩亚洲综合一区二区三区_| 亚洲熟女精品中文字幕| 国产片内射在线| 亚洲欧美一区二区三区久久| 飞空精品影院首页| 成人午夜精彩视频在线观看| 免费观看av网站的网址| 国产熟女午夜一区二区三区| 国产视频首页在线观看| 高清欧美精品videossex| 丝袜喷水一区| 欧美在线一区亚洲| 免费在线观看黄色视频的| 久久影院123| 亚洲精品成人av观看孕妇| 久久精品aⅴ一区二区三区四区| 免费观看人在逋| 日韩制服骚丝袜av| 热re99久久国产66热| 久久久久久久大尺度免费视频| 国产精品国产av在线观看| 国产av码专区亚洲av| 免费不卡黄色视频| 亚洲 欧美一区二区三区| 国产亚洲av高清不卡| 国产精品香港三级国产av潘金莲 | 国产成人精品在线电影| 国产黄频视频在线观看| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影 | 久久国产亚洲av麻豆专区| 一级黄片播放器| 国产野战对白在线观看| 亚洲第一区二区三区不卡| 色吧在线观看| 啦啦啦视频在线资源免费观看| 性色av一级| 日韩一区二区视频免费看| 久久精品国产亚洲av高清一级| 菩萨蛮人人尽说江南好唐韦庄| 91精品国产国语对白视频| 另类精品久久| 午夜福利,免费看| 国产黄频视频在线观看| 久久久久精品国产欧美久久久 | 久久久久网色| 亚洲美女搞黄在线观看| 国产成人精品福利久久| av免费观看日本| 色视频在线一区二区三区| 激情视频va一区二区三区| 精品视频人人做人人爽| 欧美xxⅹ黑人| 十分钟在线观看高清视频www| 久久 成人 亚洲| 亚洲国产欧美日韩在线播放| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 精品午夜福利在线看| 亚洲国产最新在线播放| 十八禁高潮呻吟视频| 亚洲男人天堂网一区| 免费高清在线观看视频在线观看| 国产一区二区 视频在线| 色视频在线一区二区三区| 人人澡人人妻人| 高清黄色对白视频在线免费看| 久久久国产精品麻豆| 18禁国产床啪视频网站| 欧美老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 人人妻人人爽人人添夜夜欢视频| 黄色视频不卡| 在线精品无人区一区二区三| 看十八女毛片水多多多| 午夜福利在线免费观看网站| 91精品三级在线观看| 看十八女毛片水多多多| videosex国产| 99精国产麻豆久久婷婷| 久久久久久久久久久免费av| 99精国产麻豆久久婷婷| 免费女性裸体啪啪无遮挡网站| 亚洲七黄色美女视频| 国产精品 国内视频| 91国产中文字幕| 亚洲欧美成人综合另类久久久| 国产男人的电影天堂91| 一级a爱视频在线免费观看| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 亚洲综合精品二区| 午夜福利视频在线观看免费| 国产成人精品福利久久| 免费观看人在逋| 在线看a的网站| 国产女主播在线喷水免费视频网站| 久久性视频一级片| 哪个播放器可以免费观看大片| 大香蕉久久成人网| 亚洲欧美成人综合另类久久久| 十分钟在线观看高清视频www| 丰满迷人的少妇在线观看| 美女中出高潮动态图| 国产 一区精品| 午夜91福利影院| 国产亚洲av片在线观看秒播厂| 99精国产麻豆久久婷婷| 自拍欧美九色日韩亚洲蝌蚪91| 老司机影院成人| 美女中出高潮动态图| 只有这里有精品99| 天堂8中文在线网| 女人被躁到高潮嗷嗷叫费观| 色网站视频免费| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 国产精品久久久人人做人人爽| 大香蕉久久成人网| 丁香六月欧美| 欧美精品高潮呻吟av久久| 亚洲精品aⅴ在线观看| av天堂久久9| 中文字幕亚洲精品专区| 香蕉丝袜av| 亚洲成国产人片在线观看| 国产老妇伦熟女老妇高清| 1024香蕉在线观看| 亚洲美女黄色视频免费看| 亚洲精品av麻豆狂野| 亚洲伊人色综图| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 一级毛片 在线播放| 亚洲一区中文字幕在线| 免费看不卡的av| 少妇人妻 视频| 亚洲精品日本国产第一区| 免费看不卡的av| 国产精品成人在线| 91老司机精品| 精品亚洲成a人片在线观看| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 国产在线一区二区三区精| 亚洲精品自拍成人| 一二三四中文在线观看免费高清| 亚洲专区中文字幕在线 | 久久韩国三级中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 18在线观看网站| 丁香六月欧美| 在线观看免费视频网站a站| 99香蕉大伊视频| 国产精品久久久久成人av| 国产精品久久久人人做人人爽| 日本av免费视频播放| 在现免费观看毛片| 国产精品二区激情视频| 七月丁香在线播放| 狂野欧美激情性bbbbbb| 国产一区二区激情短视频 | 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 好男人视频免费观看在线| 亚洲欧美色中文字幕在线| 色精品久久人妻99蜜桃| 毛片一级片免费看久久久久| 欧美国产精品一级二级三级| 亚洲精品日本国产第一区| 欧美日韩亚洲高清精品| 午夜福利,免费看| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 亚洲精品视频女| 久久精品久久精品一区二区三区| 日本欧美视频一区| 亚洲熟女精品中文字幕| 五月天丁香电影| 捣出白浆h1v1| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区| 成年人免费黄色播放视频| 亚洲精品国产一区二区精华液| 狠狠精品人妻久久久久久综合| 久久天躁狠狠躁夜夜2o2o | 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 别揉我奶头~嗯~啊~动态视频 | 日韩av在线免费看完整版不卡| 中文字幕高清在线视频| av视频免费观看在线观看| 99热网站在线观看| 免费看av在线观看网站| 交换朋友夫妻互换小说| 9191精品国产免费久久| 在线精品无人区一区二区三| 中国三级夫妇交换| 中文乱码字字幕精品一区二区三区| 午夜福利视频精品| 中文字幕制服av| 国产精品国产三级专区第一集| 日韩免费高清中文字幕av| 欧美黄色片欧美黄色片| 日日撸夜夜添| 婷婷成人精品国产| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 久久av网站| 国产男女内射视频| 高清在线视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 午夜激情av网站| 欧美xxⅹ黑人| 99九九在线精品视频| 老汉色av国产亚洲站长工具| 日韩av免费高清视频| 丁香六月天网| 又大又黄又爽视频免费| 日韩中文字幕欧美一区二区 | 国产有黄有色有爽视频| 91精品国产国语对白视频| 两个人免费观看高清视频| 成人国产麻豆网| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 一级毛片 在线播放| 自线自在国产av| 久久精品亚洲av国产电影网| 777久久人妻少妇嫩草av网站| 一级毛片黄色毛片免费观看视频| 青青草视频在线视频观看| 久久精品aⅴ一区二区三区四区| 大码成人一级视频| 一个人免费看片子| 哪个播放器可以免费观看大片| 国产日韩欧美视频二区| 国产精品 国内视频| 在线 av 中文字幕| 在线天堂最新版资源| 国产免费视频播放在线视频| 国产av一区二区精品久久| 亚洲综合色网址| 国产野战对白在线观看| 精品久久久久久电影网| 国产成人欧美| 免费高清在线观看视频在线观看| 欧美日韩精品网址| 大话2 男鬼变身卡| netflix在线观看网站| 美女高潮到喷水免费观看| 国产成人av激情在线播放| kizo精华| 久久午夜综合久久蜜桃| 日韩一区二区视频免费看| 国产男人的电影天堂91| 精品亚洲乱码少妇综合久久| 亚洲欧洲国产日韩| 国产精品蜜桃在线观看| 大香蕉久久成人网| 青春草国产在线视频| 丝袜人妻中文字幕| 曰老女人黄片| 天天操日日干夜夜撸| 老司机影院成人| 免费观看av网站的网址| av电影中文网址| 在线天堂最新版资源| 午夜福利影视在线免费观看| 欧美激情高清一区二区三区 | 18禁国产床啪视频网站| 午夜久久久在线观看| 久久狼人影院| 亚洲综合色网址| 男女无遮挡免费网站观看| 国产片内射在线| 亚洲精品美女久久久久99蜜臀 | av网站在线播放免费| 美女午夜性视频免费| 精品午夜福利在线看| 欧美在线黄色| 一级片'在线观看视频| 亚洲国产看品久久| 久久久久国产一级毛片高清牌| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 少妇精品久久久久久久| 精品午夜福利在线看| 男女无遮挡免费网站观看| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| av天堂久久9| 久久人人97超碰香蕉20202| 一区在线观看完整版| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 人人妻人人澡人人看| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄| 亚洲图色成人| 日韩中文字幕视频在线看片| 日本欧美视频一区| 色综合欧美亚洲国产小说|