• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Significance of Different Microalgal Species for Growth of Moon Jellyfish Ephyrae, Aurelia sp.1

    2015-03-15 01:43:50ZHENGShanSUNXiaoxiaWANGYantaoandSUNSong
    Journal of Ocean University of China 2015年5期

    ZHENG Shan, SUN Xiaoxia, WANG Yantao, and SUN Song

    1) Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    3) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Significance of Different Microalgal Species for Growth of Moon Jellyfish Ephyrae, Aurelia sp.1

    ZHENG Shan1),2),3), SUN Xiaoxia1),*, WANG Yantao1),2),3), and SUN Song1),2)

    1) Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    3) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    The scyphozoan Aurelia aurita (Linnaeus) sp. l., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp.1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus Artemia nauplii for 12 - 24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no significant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.

    Aurelia sp.1; ephyrae; phytoplankton; growth

    1 Introduction

    Jellyfish blooms are increasing in many coastal waters worldwide, and cause detrimental effects on human enterprises (Purcell et al., 2007; Condon et al., 2012; McNamara et al., 2013). Carnivorous jellyfish are both competitors and predators of fish (reviewed by Purcell, 1985; Arai, 1988; Purcell and Arai, 2001), thus the increase of jellyfish populations may be a potential threat for sustainable fisheries (Uye, 2008; Pauly et al., 2009). Aurelia aurita, which is one of the most common species in East Asian coastal waters, has resulted in problems in operation of power plants and in commercial fisheries (Han and Uye, 2010).

    A. aurita has a complex life cycle from benthic asexual stage (polyp) to planktonic sexual stage (medusa). Polyps reproduce asexually by budding and producing podocysts to form colonies of millions of individuals. Moreover, individual polyps can metamorphose into strobilae, which release great numbers of ephyrae during strobilation.Hence, numerous ephyrae mature into adult medusae, even cause jellyfish outbreak.

    As a predator, A. aurita has been extensively studied both in the field and in the laboratory (see B?mstedt et al., 1994 and references therein).It is shown in the literature that ambient conditions and food supply are correlated with spatial and temporal variations for both the polyp and the medusa stages (Hernroth and Gr?ndahl, 1985; Schneider and Behrends, 1994; Olesen, 1995; Nielsen et al., 1997; Purcell et al., 1999; Mills, 2001; Malej et al., 2007). Water temperature affects both feeding and growth by regulating the metabolism in basic physiological activities (Olensen, 1995). Food availability controls the growth; consequently, the average size of A. aurita varies along with the variation in food supply (Schneider and Behrends, 1994). It is likely that the suitable food conditions during the period of scyphistoma growth and strobilation give away to poor food conditions during the period of medusa growth and development (B?mstedt et al., 2001).

    A. aurita, usually starting its planktonic life in spring, grows from a 2-mm-diameter ephyra to an adult medusa of more than 25 cm diameter (Lucas, 1996). Technically, ephyrae make contributions to jellyfish blooming fromtwo aspects: considerable survival and rapid growth. Food availability is of significant importance for newly released ephyrae, as suitable food can ensure the rapid growth of ephyrae and avoid the risk of being preyed. As far as we know, most published reports on feeding and utilization for growth have focused on the developed medusa, and simply a few papers referred to the ephyra stage. Yet it is supposed that there should be differences between ephyrae and mature medusae in prey selection and utilization. Olesen et al. (1994) reported that A. aurita ephyrae preyed upon abundant rotifers. Sullivan et al. (1997) observed the gut contents of A. aurita ephyrae sampled from field as well as laboratory and reported the high diversity and selection of prey. B?mstedt et al. (1997) showed that sufficient Artemia nauplii play a significant role in the growth of A. aurita ephyrae. M?ller and Riisg?rd (2007) assessed feeding and growth of A. aurita ephyrae with Artemia sp., Balanus sp., Brachionus sp. and Rathkea octopunctata. However, all the food types in the research mentioned are restricted to the animal food. Few literatures have been published on the feeding and utilization of microalgae by A. aurita ephyrae.

    Ephyrae are released by polyps in spring, which is the same time when phytoplankton blooms. Phytoplankton blooms, especially dinoflagelates blooms, have increased over the past several decades in spring in the East China Sea (Zhou et al., 2008). Southward (1955) suggested A. aurita fed on phytoplankton. Kerstan (1977) found many species of diatoms in the gut of A. aurita ephyrae. B?mstedt et al. (2001) showed that A. aurita ephyrae feed on one specific microalgal species. Zheng et al. (2012) reported that Aurelia sp.1 ephyrae can prey on diatom Skeletonema costatum (Greville) Cleve and dinoflagellate Prorocentrum donghaiense Lu, and presented quantitative data on predation rate. Huang et al. (2014) have described that the concentration of Alexandrium catenella can influence the behavior and growth of Aurelia sp. ephyrea. If the availabity of phytoplankton is high, ephyrae gowth might be enhanced, which is crucial to jellyfish blooms. Therefore, our purpose was to evaluate whether different microalgal species could be used by newly released Aurelia sp.1 ephyrae.

    2 Materials and Methods

    2.1 Source and Culturing Conditions

    We used non-fed ephyrae that were recently strobilated from the laboratory culture of Aurelia sp.1 polyps in the Institute of Oceanology (Chinese Academy of Sciences). The polyps were incubated at 20℃ in filtered seawater with a salinity of 32. They were fed with Artemia sp. nauplii twice a week and the seawater was weekly changed. To stimulate strobilation, the polyps were incubated while temperature was lowered from 20℃ to 13℃, and then increased to 15℃. During the strobilation, Artemia sp. nauplii were not provided for the polyps and ephyrae. Once the ephyrae were released, the healthy ones of the same size were used in the experiments.

    The ephyrae were cultured with six treatments: (1) none, (2) Skeletonema costatum (Greville) Cleve (diatom), (3) Prorocentrum donghaiense Lu (autotrophic dinoflagellate), (4) Noctiluca scintillans (Macartney) Kofoid & Swezy (heterotrophic dinoflagellate), (5) Platymonas subcordiformis (Chlorophyta), and (6) Artemia sp. nauplii (as positive control). The phytoplankton was obtained from the Key Laboratory of Marine Ecology & Environmental Sciences (Chinese Academy of Sciences). The phytoplankton used in experiments was of exponential growth phase. S. costatum and P. donghaiense were cultured in f/2 medium (Guillard and Ryther, 1962), and a 14 h light: 10 h dark cycle with 2000 lux light intensity at 20℃. P. subcordiformis was cultured in SE medium in the same temperature and light condition. N. scintillans was taken from samples collected by vertical plankton hauls in the Jiaozhou Bay. Artemia sp. nauplii used were all acquired from a daily batch of new hatched eggs.

    2.2 Experimental Protocol

    Each treatment consisted of three replicated glass beakers with 1.0 L filtered (0.45 μm pore size) seawater and five ephyrae. The filtered seawater was at a salinity of 32.We renewed the seawater in all beakers every day and added all types of food in a given amount (Table 1). The concentrations of food were close to the maxima occurring naturally in the field (Zhou et al., 2008), and were similar in terms of carbon content, corresponding to the about 1mg C m-3(according to previous results in the laboratory) that was added to the experimental beakers. Food items were gently distributed by equal and slow bubbling in all beakers. All the treatments were kept in the dark in an incubator with the temperature of 18℃; moreover, a storage tank was kept to make sure that the experimental water adjusted to the set temperature. The choice of temperature was based on the results of B?mstedt et al. (1999, 2001) and the need to facilitate the most possible food source.

    These experiment treatments lasted for 12 - 24 d. The ephyrae were gently pipetted from the glass beakers into Petri dishes and measured, then put back after the beakers were renewed with water and food.

    Table 1 Concentration of different food used in the experiment

    Food abundance in all treatments was high enough to eliminate any effect caused by the insufficient food supply.

    2.3 Statistical Analysis

    The diameters (between opposite lappet tips) of ephyrae were measured under a dissection microscope with an ocular graticule every 3 d. To evaluate the variations of individual body size, we calculated the growth rate (% d-1) by using the formula of B?mstedt et al. (1997):

    % growth d-1=ln[(D2/D1)3]/(t2– t1)×100 %,

    where D1and D2are the mean diameters (mm) from each group at t1and t2(d), respectively.

    One-way ANOVA tests were used to test for significant differences among the effects of the different species on the average growth rates over the entire experiments. A post hoc test (Tukey HSD test) was used to identify the differences among the phytoplankton species. The program SPSS 16.0 was used in the statistical calculations.

    3 Results

    The experiment treatments lasted for 24 d except for two cases. The reason why the treatments were eliminated by day 12 was the maturity of ephyrae fed on Artemia nauplii and the mortality of ephyrae cultured with P. donghaiense.

    3.1 Survival

    Fig.1 shows that there were clear differences among the food treatments in the survival of ephyrae. The variations in survival of ephyrae of microalgal species were obvious. During the experiments with ephyrae fed on nothing, N. scintillans, Artemia sp. nauplii and P. subcordiformis maintained high survival (86.7% - 100%). As for ephyrae cultured with S. costatum, the survival slowly declined to 93.3% by day 21, and then sharply dropped to less than 50%. The survival of ephyrae fed with P. donghaiense showed a marked decline which started from day 9 and ended up with 46.7% by day 12.

    Fig.1 Variations of different microalgal species in survival of Aurelia sp.1 ephyrae.

    3.2 Variations of Diameters and Growth Rates

    In all treatments of the experiment, the initial average size of ephyrae was (3.67 ±0.03) mm in diameter. The variations of ephyrae diameter in all treatments were shown in Fig.2. Through the experiment, the average growth rates for different days, calculated by the formula mentioned above, are shown in Table 2. The growth of ephyrae varied in the three different ways mentioned below. Results of One-way ANOVA testing the effect of food type on the average growth rate (% d-1) over the first 12 d are shown in Table 2. A post hoc test (Tukey’S HSD-test) showed that the growth rate diverged significantly for Artemia nauplii compared to other food types (Table 3). In addition, there was no significant difference between the growth rates for S. costatum and P. donghaiense, and no significant difference was found in the growth rates between N. scintillans and P. subcordiformis.

    Fig.2 Effects of different microalgal species on the growth of Aurelia sp.1 ephyrae, n=3 in each treatment.

    Table 2 Results of One-way ANOVA testing the effect of food type on the average growth rate (% d-1) over the first 12 d

    Table 3 Results of post hoc tests (Tukey HSD test) on the average growth rate (% d-1) over the first 12 d in all treatments

    1) Increasing. Ephyrae fed with Artemia nauplii showed the strongest growth and grew up to medusa by day 12 with a rate of about 25.85% overall, growing from (3.68 ± 0.02) mm to (10.35 ±1.42) mm.

    2) Decreasing. Ephyrae fed with nothing, S. costatum and P. donghaiense showed a slow decline in growth rate in the entire period. Ephyrae, suffering from starvation, shrank from (3.69 ± 0.41) mm to (2.74 ± 0.71) mm at a rate of about -3.74% over 24 d. Similarly, the ephyrae fed with S. costatum decreased at a rate of -6.89% in growth rate, with a decline from (3.61 ± 0.29) mm to (2.08 ± 0.54) mm in diameter. Ephyrae fed with P.donghaiense decreased at a rate of -4.81% in growth rate, with a decline from (3.65 ± 0.37) mm to (3.01 ± 0.90) mm in diameter.

    3) Increasing and then decreasing. Ephyrae fed with N. scintillans grew from (3.69 ± 0.21) mm to (4.31 ± 0.59) mm at a rate of about 3.89% in the first 12 d, and then shrank to (3.09 ± 0.39) mm at a growth rate of -8.34% in the next 12 d. Similarly, ephyrae fed with P. subcordiformis grew from (3.68 ± 0.02) mm to (4.90 ± 0.46) mm at a rate of about 7.19% in the first 12 d, and then shrank to (3.74 ± 0.52) mm at a growth rate of -6.78% in the next 12 d.

    4 Discussion

    Generally, results in our experiment showed that newly-released ephyrae can take some species of microalgae for growth in the earliest development stage. In our results, chain diatom S. costatum and autotrophic dinoflagellate P. donghaiense did not support the growth of ephyrae, while dinoflagellate N. scintillans and chlorophyta P. subcordiformis could support the growth for the ephyrae in the earliest phase. However, none of these microalgae species can support ephyrae to mature. There might be two reasons: (1) Swimming ability of phytoplankton could affect the feeding behavior of ephyrae. (2) Food quality of different species of phytoplankton might be important for the growth of ephyrae.

    Firstly, diatom S. costatum cannot support the growth of ephyrae. Sullivan et al. (1997) suggested that the swimming speed and size of prey were of great importance and determined the actual ingestion rate. S. costatum is incapable of swimming and the chains of cells usually fall downwards. On the contrary, three other species of phytoplankton in our experiment are capable of swimming and thus have the higher probability of being captured. Although species of diatom were found in the gut of A. aurita medusa and ephyrae both in the fields (Kerstan, 1977) and in the laboratory (B?mstedt, 1990; Zheng et al., 2012), it might be the result of indiscriminate feeding by A. aurita medusa and ephyrae in the seawater. As coelenterates are unable to disrupting cell walls of phytoplankton mechanically (Pitt et al., 2009b), S. costatum is likely to be hard to be used by ephyrae. Furthermore, it has been showed that diatoms lack in few specific fatty acids and sterols (Jonasdottir et al., 1995; Klein Breteler et al., 1999), which are essential for development, growth and reproduction of zooplankton. As all above, S. costatum is not a sufficient food source and cannot support ephyrae to grow.

    Secondly, P. donghaiense do harm to the A. aurita ephyrae. Compared with other treatment, the survival of ephyrae fed with P. donghaiense rapidly declined in 12 d. Although P. donghaiense is confirmed as non-toxic species, the abundant exudation of cells is sticky when the cells density is high. Therefore, the normal activities of ephyrae might be inhibited to death. Wang et al. (2003) found that P. donghaiense at a density of 10×104cell mL-1resulted in a strong inhibition of the swimming of rotifers, even death.

    Finally, although the ephyrae served with dinoflagellate N. scintillans and chlorophyta P. subcordiformis could grow in the earliest phrase, they were not able to be as mature as those fed on Artemia sp. nauplii. It is obvious that ephyrae benefit more from animal food than from phytoplankton food. It was suggested that ephyrae of Chrysaora quinquecirrha grew much better on ctenophores as food than on rotifers (Olesen et al., 1996). Likewise, Bamstedt (1997) illustrated the priority of ctenophores for the growth of Cyanea capillata ephyrae to Artemia nauplii and copepods. In addition, Bamstedt et al. (2001) compared the effect of one species of phytoplankton to that of four animal foods on the growth of A. aurita ephyrae, and showed that animal supported development better than phytoplankton did. Our observation islikely to be the first report on the effects of different microalgae on growth of ephyrae.

    In conclusion, our results show that newly-released ephyrae can take some species of microalgae for growth in the earliest development stage. Chain diatom S. costatum and autotrophic dinoflagellate could not support the growth of ephyrae, while heterotrophic dinoflagellate N. scintillans and chlorophyta P. subcordiformis could in the earliest phase. However, none of ephyrae only fed with phytoplankton as food could mature to medusae.

    Acknowledgements

    We thank Professor Yan Tian for providing culture strains of Skeletonema costatum, Prorocentrum donghaiense and Platymonas subcordiformis. We also thank Professor Ian R Jenkinson for the assistance with English writing. This research was supported by the National Basic Research Program of China (973 Program) (No. 2011 CB403603), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA0503 0401) and the National Natural Science Founda- tion of Shandong Province, China (No. ZR2012DQ005).

    Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology, 66 (9): 1913-1927.

    B?mstedt, U., 1990. Trophodynamics of the scyphomedusae Aurelia aurita. Predationrate in relation to abundance, size and type of prey organism. Journal of Plankton Research, 12 (1): 215-229.

    B?mstedt, U., Ishii, H., and Martinussen, M. B., 1997. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? Sarsia, 82: 269-273.

    B?mstedt, U., Wild, B., and Martinussen, M., 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa) Marine Biology, 139 (4): 641-650.

    Condon, R. H., Graham, W. M., Duarte, C. M., Pitt, K. A., Lucas, C. H., Haddock, S. H. D., Sutherland, K. R., Robinson, K. L., Dawson, M. N., Decker, M. B., Mills, C. E., Purcell, J. E., Malej, A., Mianzan, H., Uye, S. I., Gelcich, S., and Madin, L. P., 2012. Questioning the rise of gelatinous zooplankton in the World’s oceans. Bioscience, 62 (2): 160-169.

    Guillard, R. R. L., and Ryther, J. H., 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8 (2): 229-239.

    Han, C. H., and Uye, S., 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Benthos Research, 5 (3): 98-105.

    Hernroth, L., and Gr?ndahl, F., 1985. On the biology of Aurelia aurita (L.): 2. Major factors regulating the occurrence of ephyrae and young medusae in the Gullmar fjord, western Sweden. Bulletin of Marine Science, 37 (2): 567-576.

    Huang, X. G., Zeng, Y., Huang, B. Q., and Li, S. X., 2014. Effect of Alexandrium catenella (Dinophyta) concentration on the behavior and growth of Aurelia sp. ephyrae. Journal of Plankton Research, 36 (2): 591-595.

    Ianora, A., Poulet, S. A., and Miralto, A., 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology, 121 (3): 533-539.

    Ishii, H., 2001. The influence of environmental changes upon the coastal plankton ecosystems, with special reference to mass occurrence of jellyfish. Bulletin of Plankton Society of Japan, 48: 55-61 (in Japanese with English abstract).

    Jonasdottir, S. H., Fields, D., and Pantoja, S., 1995. Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston. Marine Ecology Progress Series, 119: 87-98.

    Kerstan, M., 1977. Untersuchungen zur Nahrungs?kologie von Aurelia aurita Lam. Diplomarbeit, Universit?t Kiel, Kiel, 1-95.

    Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S., and Kraay, G. W., 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: Role of essential lipids. Marine Biology, 135 (1): 191-198.

    López-Sandoval, D. C., Rodríguez-Ramos, T., Cerme?o, P., and Mara?ón, E., 2013. Exudation of organic carbon by marine phytoplankton: Dependence on taxon and cell size. Marine Ecology Progress Series, 477: 53-60.

    Lucas, C. H., 1996. Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. Journal of Plankton Research, 18 (6): 987-1007.

    McNamara, M. E., Lonsdale, D. J., and Cerrato, R. M., 2013. Top-down control of mesozooplankton by adult Mnemiopsis leidyi influences microplankton abundance and composition enhancing prey conditions for larval ctenophores. Estuarine, Coastal and Shelf Science, 133: 2-10.

    Malej, A., Turk, V., and Lu?i?, D., 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology, 151: 827-841.

    Miller, R. J., 1970. Distribution and energetics of an estuarine population of the ctenophore, Mnemiopsis leidyi. Ph.D thesis, North Carolina State University, Raleigh, 1-44.

    Mills, C. E., 2001. Jellyfish blooms: Are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451: 55-68.

    M?ller, L. F., and Riisg?rd, H. U., 2007. Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Marine Ecology Progress Series, 346: 167-177.

    Nielsen, A. S., Pedersen, A. W., and Riisg?rd, H. U., 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia, 82 (4): 297-305.

    Olesen, N. J., 1995. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Marine Ecology Progress Series, 124: 63-72.

    Olesen, N. J., Frandsen, K., and Riisg?rd, H. U., 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series, 105: 9-18.

    Olesen, N. J., Purcell, J. E., and Stoecker, D. K., 1996. Feeding and growth by ephyrae of scyphomedusae Chrysaora quinquecirrha. Marine Ecology Progress Series, 137: 149-159.

    Pauly, D., Graham, W., Libralato, S., Morissette, L., and Palomares, M. L., 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia, 616: 67-85.

    Pitt, K. A., Welsh, D. T., and Condon, R. H., 2009a. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cyclingand plankton production. Hydrobiologia, 616: 133-149.

    Pitt, K. A., Connolly, R. M., and Meziane, T. 2009b. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: A review.Hydrobiologia, 616: 119-132.

    Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series, 348: 183-196.

    Purcell, J. E., and Arai, M. N., 2001. Interactions of pelagic cnidarians and ctenophores with fishes: A review. Hydrobiologia, 451: 27-44.

    Purcell, J. E., White, J. R., Nemazie, D. A., and Wright, D. A., 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series, 180: 187-196.

    Schneider, G., and Behrends, G., 1994. Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic. ICES Journal of Marine Science, 51 (4): 359-367.

    Southward, A. J., 1955. Observations on the ciliary currents of the jellyfish Aurelia aurita L. Journal of the Marine Biological Association of the United Kingdom, 34: 201-216.

    Stoecker, D. K., Michaels, A. E., and Davis, L. H., 1987. Grazing by the jellyfish Aurelia aurita on microzooplankton. Journal of Plankton Research, 9: 901-915

    Sullivan, B. K., Suchman, C. L., and Costello, J. H., 1997. Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Marine Biology, 130: 213-222.

    Toyokawa, M., Furota, T., and Terazaki, M., 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biology and Ecology, 47: 48-58.

    Uye, S., 2008. Blooms of the giant jellyfish Nemopilema nomurai: A threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Research, 3 (Suppl): 125-131.

    Wang, L., Yan, T., Tan, Z. and Zhou, M., 2003. Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population. Chinese Journal of Applied Ecology, 14 (7): 1151-1155 (in Chinese with English abstract).

    Zheng, S., Sun, X., and Sun, S., 2012. The grazing of Aurelia sp.1 on Skeletonema costatum and Prorocentrum donghaiense. Oceanologia et Limnologia Sinica, 43 (3): 445-450 (in Chinese with English abstract).

    (Edited by Ji Dechun)

    (Received October 9, 2014; revised April 14, 2015; accepted April 22, 2015)

    J. Ocean Univ. China (Oceanic and Coastal Sea Research)

    DOI 10.1007/s11802-015-2775-x

    ISSN 1672-5182, 2015 14 (5): 823-828

    http://www.ouc.edu.cn/xbywb/

    E-mail:xbywb@ouc.edu.cn

    * Corresponding author. Tel: 0086-532-82898599

    E-mail: xsun@qdio.ac.cn

    avwww免费| 免费人妻精品一区二区三区视频| 久久av网站| 亚洲视频免费观看视频| 精品亚洲成a人片在线观看| 99久久人妻综合| 久久婷婷成人综合色麻豆| 亚洲五月色婷婷综合| 色婷婷久久久亚洲欧美| 桃花免费在线播放| 天天添夜夜摸| 免费黄频网站在线观看国产| 精品高清国产在线一区| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 成人免费观看视频高清| 精品人妻1区二区| 在线观看免费视频日本深夜| 一区在线观看完整版| 欧美午夜高清在线| 不卡av一区二区三区| 欧美乱妇无乱码| 免费观看av网站的网址| 国产xxxxx性猛交| 亚洲专区国产一区二区| 女人精品久久久久毛片| 色94色欧美一区二区| 99re在线观看精品视频| 精品国产一区二区三区四区第35| 欧美精品高潮呻吟av久久| 久久毛片免费看一区二区三区| 国产又爽黄色视频| 少妇被粗大的猛进出69影院| 久久精品熟女亚洲av麻豆精品| 欧美黑人精品巨大| 人妻一区二区av| 国产不卡av网站在线观看| 新久久久久国产一级毛片| 下体分泌物呈黄色| 国产精品一区二区精品视频观看| 国产精品一区二区精品视频观看| 激情视频va一区二区三区| www.熟女人妻精品国产| 操美女的视频在线观看| 两性夫妻黄色片| av有码第一页| 80岁老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区蜜桃| 啦啦啦免费观看视频1| 精品一区二区三卡| 成人av一区二区三区在线看| 不卡av一区二区三区| 真人做人爱边吃奶动态| 多毛熟女@视频| 欧美黄色淫秽网站| 亚洲熟女精品中文字幕| 亚洲国产精品一区二区三区在线| 18禁美女被吸乳视频| 日韩熟女老妇一区二区性免费视频| 精品视频人人做人人爽| 蜜桃国产av成人99| 九色亚洲精品在线播放| 久久精品亚洲精品国产色婷小说| av一本久久久久| 天堂8中文在线网| 一级毛片精品| 我的亚洲天堂| 一级片'在线观看视频| 国产极品粉嫩免费观看在线| 国产精品偷伦视频观看了| 欧美日韩亚洲综合一区二区三区_| 人人妻人人澡人人爽人人夜夜| 欧美+亚洲+日韩+国产| 国产成人欧美| 欧美亚洲日本最大视频资源| 国产野战对白在线观看| 高清视频免费观看一区二区| 国产精品自产拍在线观看55亚洲 | 精品欧美一区二区三区在线| 亚洲成a人片在线一区二区| 女人精品久久久久毛片| 亚洲综合色网址| 亚洲成国产人片在线观看| 青青草视频在线视频观看| 99九九在线精品视频| 国产成人精品久久二区二区免费| 亚洲色图av天堂| 久久国产亚洲av麻豆专区| 91麻豆av在线| 夜夜夜夜夜久久久久| 精品国产乱码久久久久久小说| 老鸭窝网址在线观看| 人人妻人人澡人人爽人人夜夜| 国产91精品成人一区二区三区 | 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区三区在线| 久久久久网色| 不卡av一区二区三区| 夜夜骑夜夜射夜夜干| 天堂8中文在线网| 下体分泌物呈黄色| 老熟妇乱子伦视频在线观看| 在线 av 中文字幕| 一边摸一边抽搐一进一出视频| 在线 av 中文字幕| 中文亚洲av片在线观看爽 | 久久人妻av系列| 王馨瑶露胸无遮挡在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲精品成人av观看孕妇| 好男人电影高清在线观看| 久久久欧美国产精品| 一夜夜www| 久久这里只有精品19| 黄色a级毛片大全视频| 日韩免费高清中文字幕av| 国产亚洲一区二区精品| 极品少妇高潮喷水抽搐| 99精品欧美一区二区三区四区| 日本a在线网址| 国产国语露脸激情在线看| 2018国产大陆天天弄谢| 亚洲avbb在线观看| 欧美另类亚洲清纯唯美| 亚洲欧美一区二区三区久久| 少妇粗大呻吟视频| 免费黄频网站在线观看国产| 精品乱码久久久久久99久播| 国产精品久久久久久人妻精品电影 | 中文字幕人妻丝袜一区二区| 男女边摸边吃奶| 两人在一起打扑克的视频| 人人妻人人添人人爽欧美一区卜| 国产精品亚洲一级av第二区| 黑人巨大精品欧美一区二区蜜桃| 国产一卡二卡三卡精品| 纵有疾风起免费观看全集完整版| 亚洲精华国产精华精| 精品国产乱码久久久久久小说| 国产精品欧美亚洲77777| 黄片播放在线免费| 精品久久久精品久久久| 亚洲欧美精品综合一区二区三区| 999久久久精品免费观看国产| 热99久久久久精品小说推荐| 国产亚洲精品久久久久5区| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 在线 av 中文字幕| 午夜福利视频在线观看免费| 国产精品九九99| 最新的欧美精品一区二区| 大片电影免费在线观看免费| 99久久99久久久精品蜜桃| 久久国产亚洲av麻豆专区| 国产精品国产高清国产av | 大片电影免费在线观看免费| 法律面前人人平等表现在哪些方面| 亚洲成人手机| 999久久久国产精品视频| av欧美777| 免费高清在线观看日韩| 国产男女超爽视频在线观看| 国产男女超爽视频在线观看| 黄色视频,在线免费观看| 免费高清在线观看日韩| 久久中文字幕人妻熟女| 国产精品久久久久久人妻精品电影 | av片东京热男人的天堂| 两个人看的免费小视频| 色婷婷久久久亚洲欧美| 久久国产亚洲av麻豆专区| 老司机福利观看| 国产成人av激情在线播放| 一边摸一边抽搐一进一出视频| 亚洲欧美色中文字幕在线| 亚洲中文av在线| 后天国语完整版免费观看| 欧美成人免费av一区二区三区 | 女性生殖器流出的白浆| 久久精品亚洲av国产电影网| 黄色片一级片一级黄色片| 正在播放国产对白刺激| 精品国内亚洲2022精品成人 | 成人三级做爰电影| 最新美女视频免费是黄的| 又黄又粗又硬又大视频| 欧美亚洲日本最大视频资源| 久久久欧美国产精品| 亚洲七黄色美女视频| 久久性视频一级片| 久久午夜综合久久蜜桃| 无限看片的www在线观看| 精品高清国产在线一区| 国产欧美日韩一区二区三区在线| 男女床上黄色一级片免费看| 男女下面插进去视频免费观看| 最新在线观看一区二区三区| 国产免费视频播放在线视频| 一级黄色大片毛片| 久久狼人影院| 香蕉丝袜av| 超色免费av| 中文字幕色久视频| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 国产一卡二卡三卡精品| bbb黄色大片| 五月天丁香电影| 日本精品一区二区三区蜜桃| 99热网站在线观看| 少妇 在线观看| 国产精品.久久久| 大片电影免费在线观看免费| 国产成人欧美| 日韩人妻精品一区2区三区| 高潮久久久久久久久久久不卡| 极品少妇高潮喷水抽搐| 亚洲一区二区三区欧美精品| 午夜91福利影院| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线| 久久国产精品影院| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品秋霞免费鲁丝片| 久久精品亚洲熟妇少妇任你| 亚洲精品国产精品久久久不卡| 亚洲成国产人片在线观看| 亚洲成人免费电影在线观看| 51午夜福利影视在线观看| 欧美精品av麻豆av| 十八禁高潮呻吟视频| 久久精品成人免费网站| 大片免费播放器 马上看| 欧美黑人精品巨大| 国产成人av教育| 老司机在亚洲福利影院| videosex国产| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 一级,二级,三级黄色视频| 精品高清国产在线一区| 少妇被粗大的猛进出69影院| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 国产亚洲午夜精品一区二区久久| 午夜免费成人在线视频| 欧美日韩成人在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 无限看片的www在线观看| 日韩欧美三级三区| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 免费观看av网站的网址| 午夜免费鲁丝| 久久久欧美国产精品| 99热网站在线观看| 久久久久久免费高清国产稀缺| 一夜夜www| 久久99热这里只频精品6学生| 99re在线观看精品视频| 18禁黄网站禁片午夜丰满| 久热爱精品视频在线9| 黑丝袜美女国产一区| 久久ye,这里只有精品| 精品亚洲成a人片在线观看| 青草久久国产| 欧美日韩精品网址| 日韩视频一区二区在线观看| xxxhd国产人妻xxx| 久热这里只有精品99| 人人妻人人澡人人看| 亚洲精品一卡2卡三卡4卡5卡| 老司机影院毛片| 制服人妻中文乱码| 久久久国产欧美日韩av| 69精品国产乱码久久久| av免费在线观看网站| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 久久久精品免费免费高清| 99热网站在线观看| 12—13女人毛片做爰片一| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 久久av网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲自偷自拍图片 自拍| 99国产精品免费福利视频| 人妻久久中文字幕网| 日韩制服丝袜自拍偷拍| 在线观看免费日韩欧美大片| 欧美国产精品va在线观看不卡| 亚洲精品美女久久av网站| 免费av中文字幕在线| 亚洲成人免费av在线播放| 青草久久国产| 午夜两性在线视频| 在线看a的网站| 国产成人精品久久二区二区免费| 国产在线视频一区二区| 欧美精品av麻豆av| 精品一区二区三卡| 桃花免费在线播放| 91字幕亚洲| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 精品久久久久久久毛片微露脸| 制服人妻中文乱码| 国产在线观看jvid| 精品国产一区二区久久| 一区二区三区激情视频| 69av精品久久久久久 | 亚洲国产欧美一区二区综合| 不卡av一区二区三区| 久久精品人人爽人人爽视色| av国产精品久久久久影院| av视频免费观看在线观看| 日韩大片免费观看网站| 日韩制服丝袜自拍偷拍| 麻豆国产av国片精品| 久热爱精品视频在线9| 亚洲av第一区精品v没综合| 国产成人精品久久二区二区免费| 国产精品.久久久| 人人澡人人妻人| 日韩欧美一区视频在线观看| 大片电影免费在线观看免费| 99re在线观看精品视频| 一本色道久久久久久精品综合| 亚洲全国av大片| 成年人黄色毛片网站| 黄色成人免费大全| 国产免费福利视频在线观看| 欧美性长视频在线观看| 俄罗斯特黄特色一大片| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| 黑人猛操日本美女一级片| 日本五十路高清| 大型av网站在线播放| 一级毛片女人18水好多| 亚洲精品一二三| 亚洲国产中文字幕在线视频| 国产淫语在线视频| 中文字幕色久视频| 精品人妻1区二区| 69av精品久久久久久 | 老司机影院毛片| 国产激情久久老熟女| 天堂俺去俺来也www色官网| 男女下面插进去视频免费观看| 日韩免费高清中文字幕av| 国产免费现黄频在线看| 窝窝影院91人妻| 国产91精品成人一区二区三区 | 精品人妻熟女毛片av久久网站| 制服人妻中文乱码| 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 在线av久久热| 在线观看一区二区三区激情| 婷婷丁香在线五月| 国产成人系列免费观看| 国产成人欧美在线观看 | 女性生殖器流出的白浆| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 久久99热这里只频精品6学生| 他把我摸到了高潮在线观看 | 少妇粗大呻吟视频| 国产不卡av网站在线观看| 天天躁夜夜躁狠狠躁躁| 欧美黑人精品巨大| 制服诱惑二区| 一本大道久久a久久精品| 80岁老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 天天躁日日躁夜夜躁夜夜| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 757午夜福利合集在线观看| 久久av网站| 99精品久久久久人妻精品| av电影中文网址| 1024香蕉在线观看| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看. | 水蜜桃什么品种好| 捣出白浆h1v1| 欧美成人免费av一区二区三区 | 国产亚洲精品一区二区www | 18禁黄网站禁片午夜丰满| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 亚洲精品在线观看二区| 两人在一起打扑克的视频| 国产日韩欧美亚洲二区| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 18禁黄网站禁片午夜丰满| 好男人电影高清在线观看| 18禁黄网站禁片午夜丰满| 91字幕亚洲| 午夜老司机福利片| 新久久久久国产一级毛片| 女人精品久久久久毛片| 国产在线观看jvid| 熟女少妇亚洲综合色aaa.| 99re在线观看精品视频| 国产男女内射视频| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 亚洲成av片中文字幕在线观看| 我的亚洲天堂| 国产精品.久久久| 色综合婷婷激情| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 大型av网站在线播放| 成年版毛片免费区| 视频在线观看一区二区三区| 另类精品久久| 日本一区二区免费在线视频| videos熟女内射| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美色中文字幕在线| 人妻久久中文字幕网| 亚洲精品久久成人aⅴ小说| svipshipincom国产片| 久久毛片免费看一区二区三区| 91大片在线观看| 日本精品一区二区三区蜜桃| 国产免费视频播放在线视频| 久久中文字幕一级| 热re99久久国产66热| a级片在线免费高清观看视频| 91麻豆av在线| 首页视频小说图片口味搜索| 中文字幕最新亚洲高清| 国产成人精品久久二区二区免费| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看 | 精品福利永久在线观看| 一本大道久久a久久精品| 国产日韩欧美亚洲二区| 久久精品亚洲av国产电影网| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 桃花免费在线播放| 在线观看66精品国产| 久久人妻熟女aⅴ| 精品卡一卡二卡四卡免费| 国产精品九九99| 丁香六月欧美| 久久久水蜜桃国产精品网| 国产精品一区二区在线不卡| 搡老岳熟女国产| 99香蕉大伊视频| 777久久人妻少妇嫩草av网站| 露出奶头的视频| 久久ye,这里只有精品| 天天影视国产精品| 中文字幕人妻熟女乱码| 久热爱精品视频在线9| 肉色欧美久久久久久久蜜桃| 黄色怎么调成土黄色| 国产精品国产av在线观看| 一本—道久久a久久精品蜜桃钙片| 成人av一区二区三区在线看| cao死你这个sao货| 国产亚洲精品一区二区www | 国产一区二区激情短视频| 国产精品一区二区在线不卡| av在线播放免费不卡| 亚洲国产av新网站| 少妇粗大呻吟视频| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 国产单亲对白刺激| 一区二区日韩欧美中文字幕| xxxhd国产人妻xxx| 日韩欧美免费精品| 亚洲精品成人av观看孕妇| 69精品国产乱码久久久| 亚洲全国av大片| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| 亚洲成国产人片在线观看| 国产av一区二区精品久久| 亚洲精品久久午夜乱码| 人人妻人人澡人人爽人人夜夜| 日日爽夜夜爽网站| 精品人妻熟女毛片av久久网站| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 日韩有码中文字幕| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| 岛国在线观看网站| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 精品人妻在线不人妻| 精品国产一区二区久久| 国产高清视频在线播放一区| 在线观看免费日韩欧美大片| 麻豆成人av在线观看| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 久久 成人 亚洲| 精品人妻熟女毛片av久久网站| 久久人妻av系列| 欧美午夜高清在线| 亚洲精品国产一区二区精华液| 天天影视国产精品| 国产精品亚洲av一区麻豆| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| 不卡一级毛片| 久久九九热精品免费| 黑人巨大精品欧美一区二区mp4| 久久免费观看电影| 国产精品99久久99久久久不卡| 天天操日日干夜夜撸| 美女国产高潮福利片在线看| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| 国产成人一区二区三区免费视频网站| 亚洲国产欧美日韩在线播放| 亚洲av第一区精品v没综合| 中文字幕精品免费在线观看视频| 丝袜美腿诱惑在线| 亚洲国产欧美网| 99国产精品免费福利视频| 91大片在线观看| 亚洲成人国产一区在线观看| 成人三级做爰电影| 午夜福利欧美成人| 高清av免费在线| 久久亚洲精品不卡| 国产成人啪精品午夜网站| 欧美黑人精品巨大| 美女福利国产在线| 男女边摸边吃奶| av线在线观看网站| 欧美精品av麻豆av| 精品国产一区二区三区久久久樱花| 精品少妇一区二区三区视频日本电影| 精品久久久久久电影网| kizo精华| 99九九在线精品视频| 久久天躁狠狠躁夜夜2o2o| 午夜两性在线视频| 午夜精品久久久久久毛片777| 啦啦啦在线免费观看视频4| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 看免费av毛片| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 午夜福利,免费看| 精品国产乱子伦一区二区三区| 国产一区二区三区综合在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲男人天堂网一区| 搡老乐熟女国产| 在线观看免费视频网站a站| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月 | 男人操女人黄网站| 成人av一区二区三区在线看| 一区在线观看完整版| 老熟妇仑乱视频hdxx| tocl精华| 少妇粗大呻吟视频| 久久午夜亚洲精品久久| 久久久精品区二区三区| 男人操女人黄网站| 成人国产一区最新在线观看| e午夜精品久久久久久久| 国产真人三级小视频在线观看| www.精华液| 国产一卡二卡三卡精品| 人人妻人人添人人爽欧美一区卜| 国产午夜精品久久久久久| 99久久99久久久精品蜜桃| 少妇裸体淫交视频免费看高清 | 久久精品熟女亚洲av麻豆精品| 美女福利国产在线| 18在线观看网站| 一个人免费看片子| 国产精品电影一区二区三区 | 午夜成年电影在线免费观看| 免费高清在线观看日韩| 精品一区二区三区视频在线观看免费 | 国产无遮挡羞羞视频在线观看| 操出白浆在线播放| 在线观看人妻少妇| 高清在线国产一区| 亚洲自偷自拍图片 自拍| 亚洲性夜色夜夜综合| 日韩有码中文字幕| 日本欧美视频一区| 淫妇啪啪啪对白视频| 露出奶头的视频| 九色亚洲精品在线播放| 欧美日韩福利视频一区二区|