• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Significance of Different Microalgal Species for Growth of Moon Jellyfish Ephyrae, Aurelia sp.1

    2015-03-15 01:43:50ZHENGShanSUNXiaoxiaWANGYantaoandSUNSong
    Journal of Ocean University of China 2015年5期

    ZHENG Shan, SUN Xiaoxia, WANG Yantao, and SUN Song

    1) Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    3) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Significance of Different Microalgal Species for Growth of Moon Jellyfish Ephyrae, Aurelia sp.1

    ZHENG Shan1),2),3), SUN Xiaoxia1),*, WANG Yantao1),2),3), and SUN Song1),2)

    1) Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2) Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    3) University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    The scyphozoan Aurelia aurita (Linnaeus) sp. l., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp.1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus Artemia nauplii for 12 - 24 d at 18℃. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no significant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d-1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.

    Aurelia sp.1; ephyrae; phytoplankton; growth

    1 Introduction

    Jellyfish blooms are increasing in many coastal waters worldwide, and cause detrimental effects on human enterprises (Purcell et al., 2007; Condon et al., 2012; McNamara et al., 2013). Carnivorous jellyfish are both competitors and predators of fish (reviewed by Purcell, 1985; Arai, 1988; Purcell and Arai, 2001), thus the increase of jellyfish populations may be a potential threat for sustainable fisheries (Uye, 2008; Pauly et al., 2009). Aurelia aurita, which is one of the most common species in East Asian coastal waters, has resulted in problems in operation of power plants and in commercial fisheries (Han and Uye, 2010).

    A. aurita has a complex life cycle from benthic asexual stage (polyp) to planktonic sexual stage (medusa). Polyps reproduce asexually by budding and producing podocysts to form colonies of millions of individuals. Moreover, individual polyps can metamorphose into strobilae, which release great numbers of ephyrae during strobilation.Hence, numerous ephyrae mature into adult medusae, even cause jellyfish outbreak.

    As a predator, A. aurita has been extensively studied both in the field and in the laboratory (see B?mstedt et al., 1994 and references therein).It is shown in the literature that ambient conditions and food supply are correlated with spatial and temporal variations for both the polyp and the medusa stages (Hernroth and Gr?ndahl, 1985; Schneider and Behrends, 1994; Olesen, 1995; Nielsen et al., 1997; Purcell et al., 1999; Mills, 2001; Malej et al., 2007). Water temperature affects both feeding and growth by regulating the metabolism in basic physiological activities (Olensen, 1995). Food availability controls the growth; consequently, the average size of A. aurita varies along with the variation in food supply (Schneider and Behrends, 1994). It is likely that the suitable food conditions during the period of scyphistoma growth and strobilation give away to poor food conditions during the period of medusa growth and development (B?mstedt et al., 2001).

    A. aurita, usually starting its planktonic life in spring, grows from a 2-mm-diameter ephyra to an adult medusa of more than 25 cm diameter (Lucas, 1996). Technically, ephyrae make contributions to jellyfish blooming fromtwo aspects: considerable survival and rapid growth. Food availability is of significant importance for newly released ephyrae, as suitable food can ensure the rapid growth of ephyrae and avoid the risk of being preyed. As far as we know, most published reports on feeding and utilization for growth have focused on the developed medusa, and simply a few papers referred to the ephyra stage. Yet it is supposed that there should be differences between ephyrae and mature medusae in prey selection and utilization. Olesen et al. (1994) reported that A. aurita ephyrae preyed upon abundant rotifers. Sullivan et al. (1997) observed the gut contents of A. aurita ephyrae sampled from field as well as laboratory and reported the high diversity and selection of prey. B?mstedt et al. (1997) showed that sufficient Artemia nauplii play a significant role in the growth of A. aurita ephyrae. M?ller and Riisg?rd (2007) assessed feeding and growth of A. aurita ephyrae with Artemia sp., Balanus sp., Brachionus sp. and Rathkea octopunctata. However, all the food types in the research mentioned are restricted to the animal food. Few literatures have been published on the feeding and utilization of microalgae by A. aurita ephyrae.

    Ephyrae are released by polyps in spring, which is the same time when phytoplankton blooms. Phytoplankton blooms, especially dinoflagelates blooms, have increased over the past several decades in spring in the East China Sea (Zhou et al., 2008). Southward (1955) suggested A. aurita fed on phytoplankton. Kerstan (1977) found many species of diatoms in the gut of A. aurita ephyrae. B?mstedt et al. (2001) showed that A. aurita ephyrae feed on one specific microalgal species. Zheng et al. (2012) reported that Aurelia sp.1 ephyrae can prey on diatom Skeletonema costatum (Greville) Cleve and dinoflagellate Prorocentrum donghaiense Lu, and presented quantitative data on predation rate. Huang et al. (2014) have described that the concentration of Alexandrium catenella can influence the behavior and growth of Aurelia sp. ephyrea. If the availabity of phytoplankton is high, ephyrae gowth might be enhanced, which is crucial to jellyfish blooms. Therefore, our purpose was to evaluate whether different microalgal species could be used by newly released Aurelia sp.1 ephyrae.

    2 Materials and Methods

    2.1 Source and Culturing Conditions

    We used non-fed ephyrae that were recently strobilated from the laboratory culture of Aurelia sp.1 polyps in the Institute of Oceanology (Chinese Academy of Sciences). The polyps were incubated at 20℃ in filtered seawater with a salinity of 32. They were fed with Artemia sp. nauplii twice a week and the seawater was weekly changed. To stimulate strobilation, the polyps were incubated while temperature was lowered from 20℃ to 13℃, and then increased to 15℃. During the strobilation, Artemia sp. nauplii were not provided for the polyps and ephyrae. Once the ephyrae were released, the healthy ones of the same size were used in the experiments.

    The ephyrae were cultured with six treatments: (1) none, (2) Skeletonema costatum (Greville) Cleve (diatom), (3) Prorocentrum donghaiense Lu (autotrophic dinoflagellate), (4) Noctiluca scintillans (Macartney) Kofoid & Swezy (heterotrophic dinoflagellate), (5) Platymonas subcordiformis (Chlorophyta), and (6) Artemia sp. nauplii (as positive control). The phytoplankton was obtained from the Key Laboratory of Marine Ecology & Environmental Sciences (Chinese Academy of Sciences). The phytoplankton used in experiments was of exponential growth phase. S. costatum and P. donghaiense were cultured in f/2 medium (Guillard and Ryther, 1962), and a 14 h light: 10 h dark cycle with 2000 lux light intensity at 20℃. P. subcordiformis was cultured in SE medium in the same temperature and light condition. N. scintillans was taken from samples collected by vertical plankton hauls in the Jiaozhou Bay. Artemia sp. nauplii used were all acquired from a daily batch of new hatched eggs.

    2.2 Experimental Protocol

    Each treatment consisted of three replicated glass beakers with 1.0 L filtered (0.45 μm pore size) seawater and five ephyrae. The filtered seawater was at a salinity of 32.We renewed the seawater in all beakers every day and added all types of food in a given amount (Table 1). The concentrations of food were close to the maxima occurring naturally in the field (Zhou et al., 2008), and were similar in terms of carbon content, corresponding to the about 1mg C m-3(according to previous results in the laboratory) that was added to the experimental beakers. Food items were gently distributed by equal and slow bubbling in all beakers. All the treatments were kept in the dark in an incubator with the temperature of 18℃; moreover, a storage tank was kept to make sure that the experimental water adjusted to the set temperature. The choice of temperature was based on the results of B?mstedt et al. (1999, 2001) and the need to facilitate the most possible food source.

    These experiment treatments lasted for 12 - 24 d. The ephyrae were gently pipetted from the glass beakers into Petri dishes and measured, then put back after the beakers were renewed with water and food.

    Table 1 Concentration of different food used in the experiment

    Food abundance in all treatments was high enough to eliminate any effect caused by the insufficient food supply.

    2.3 Statistical Analysis

    The diameters (between opposite lappet tips) of ephyrae were measured under a dissection microscope with an ocular graticule every 3 d. To evaluate the variations of individual body size, we calculated the growth rate (% d-1) by using the formula of B?mstedt et al. (1997):

    % growth d-1=ln[(D2/D1)3]/(t2– t1)×100 %,

    where D1and D2are the mean diameters (mm) from each group at t1and t2(d), respectively.

    One-way ANOVA tests were used to test for significant differences among the effects of the different species on the average growth rates over the entire experiments. A post hoc test (Tukey HSD test) was used to identify the differences among the phytoplankton species. The program SPSS 16.0 was used in the statistical calculations.

    3 Results

    The experiment treatments lasted for 24 d except for two cases. The reason why the treatments were eliminated by day 12 was the maturity of ephyrae fed on Artemia nauplii and the mortality of ephyrae cultured with P. donghaiense.

    3.1 Survival

    Fig.1 shows that there were clear differences among the food treatments in the survival of ephyrae. The variations in survival of ephyrae of microalgal species were obvious. During the experiments with ephyrae fed on nothing, N. scintillans, Artemia sp. nauplii and P. subcordiformis maintained high survival (86.7% - 100%). As for ephyrae cultured with S. costatum, the survival slowly declined to 93.3% by day 21, and then sharply dropped to less than 50%. The survival of ephyrae fed with P. donghaiense showed a marked decline which started from day 9 and ended up with 46.7% by day 12.

    Fig.1 Variations of different microalgal species in survival of Aurelia sp.1 ephyrae.

    3.2 Variations of Diameters and Growth Rates

    In all treatments of the experiment, the initial average size of ephyrae was (3.67 ±0.03) mm in diameter. The variations of ephyrae diameter in all treatments were shown in Fig.2. Through the experiment, the average growth rates for different days, calculated by the formula mentioned above, are shown in Table 2. The growth of ephyrae varied in the three different ways mentioned below. Results of One-way ANOVA testing the effect of food type on the average growth rate (% d-1) over the first 12 d are shown in Table 2. A post hoc test (Tukey’S HSD-test) showed that the growth rate diverged significantly for Artemia nauplii compared to other food types (Table 3). In addition, there was no significant difference between the growth rates for S. costatum and P. donghaiense, and no significant difference was found in the growth rates between N. scintillans and P. subcordiformis.

    Fig.2 Effects of different microalgal species on the growth of Aurelia sp.1 ephyrae, n=3 in each treatment.

    Table 2 Results of One-way ANOVA testing the effect of food type on the average growth rate (% d-1) over the first 12 d

    Table 3 Results of post hoc tests (Tukey HSD test) on the average growth rate (% d-1) over the first 12 d in all treatments

    1) Increasing. Ephyrae fed with Artemia nauplii showed the strongest growth and grew up to medusa by day 12 with a rate of about 25.85% overall, growing from (3.68 ± 0.02) mm to (10.35 ±1.42) mm.

    2) Decreasing. Ephyrae fed with nothing, S. costatum and P. donghaiense showed a slow decline in growth rate in the entire period. Ephyrae, suffering from starvation, shrank from (3.69 ± 0.41) mm to (2.74 ± 0.71) mm at a rate of about -3.74% over 24 d. Similarly, the ephyrae fed with S. costatum decreased at a rate of -6.89% in growth rate, with a decline from (3.61 ± 0.29) mm to (2.08 ± 0.54) mm in diameter. Ephyrae fed with P.donghaiense decreased at a rate of -4.81% in growth rate, with a decline from (3.65 ± 0.37) mm to (3.01 ± 0.90) mm in diameter.

    3) Increasing and then decreasing. Ephyrae fed with N. scintillans grew from (3.69 ± 0.21) mm to (4.31 ± 0.59) mm at a rate of about 3.89% in the first 12 d, and then shrank to (3.09 ± 0.39) mm at a growth rate of -8.34% in the next 12 d. Similarly, ephyrae fed with P. subcordiformis grew from (3.68 ± 0.02) mm to (4.90 ± 0.46) mm at a rate of about 7.19% in the first 12 d, and then shrank to (3.74 ± 0.52) mm at a growth rate of -6.78% in the next 12 d.

    4 Discussion

    Generally, results in our experiment showed that newly-released ephyrae can take some species of microalgae for growth in the earliest development stage. In our results, chain diatom S. costatum and autotrophic dinoflagellate P. donghaiense did not support the growth of ephyrae, while dinoflagellate N. scintillans and chlorophyta P. subcordiformis could support the growth for the ephyrae in the earliest phase. However, none of these microalgae species can support ephyrae to mature. There might be two reasons: (1) Swimming ability of phytoplankton could affect the feeding behavior of ephyrae. (2) Food quality of different species of phytoplankton might be important for the growth of ephyrae.

    Firstly, diatom S. costatum cannot support the growth of ephyrae. Sullivan et al. (1997) suggested that the swimming speed and size of prey were of great importance and determined the actual ingestion rate. S. costatum is incapable of swimming and the chains of cells usually fall downwards. On the contrary, three other species of phytoplankton in our experiment are capable of swimming and thus have the higher probability of being captured. Although species of diatom were found in the gut of A. aurita medusa and ephyrae both in the fields (Kerstan, 1977) and in the laboratory (B?mstedt, 1990; Zheng et al., 2012), it might be the result of indiscriminate feeding by A. aurita medusa and ephyrae in the seawater. As coelenterates are unable to disrupting cell walls of phytoplankton mechanically (Pitt et al., 2009b), S. costatum is likely to be hard to be used by ephyrae. Furthermore, it has been showed that diatoms lack in few specific fatty acids and sterols (Jonasdottir et al., 1995; Klein Breteler et al., 1999), which are essential for development, growth and reproduction of zooplankton. As all above, S. costatum is not a sufficient food source and cannot support ephyrae to grow.

    Secondly, P. donghaiense do harm to the A. aurita ephyrae. Compared with other treatment, the survival of ephyrae fed with P. donghaiense rapidly declined in 12 d. Although P. donghaiense is confirmed as non-toxic species, the abundant exudation of cells is sticky when the cells density is high. Therefore, the normal activities of ephyrae might be inhibited to death. Wang et al. (2003) found that P. donghaiense at a density of 10×104cell mL-1resulted in a strong inhibition of the swimming of rotifers, even death.

    Finally, although the ephyrae served with dinoflagellate N. scintillans and chlorophyta P. subcordiformis could grow in the earliest phrase, they were not able to be as mature as those fed on Artemia sp. nauplii. It is obvious that ephyrae benefit more from animal food than from phytoplankton food. It was suggested that ephyrae of Chrysaora quinquecirrha grew much better on ctenophores as food than on rotifers (Olesen et al., 1996). Likewise, Bamstedt (1997) illustrated the priority of ctenophores for the growth of Cyanea capillata ephyrae to Artemia nauplii and copepods. In addition, Bamstedt et al. (2001) compared the effect of one species of phytoplankton to that of four animal foods on the growth of A. aurita ephyrae, and showed that animal supported development better than phytoplankton did. Our observation islikely to be the first report on the effects of different microalgae on growth of ephyrae.

    In conclusion, our results show that newly-released ephyrae can take some species of microalgae for growth in the earliest development stage. Chain diatom S. costatum and autotrophic dinoflagellate could not support the growth of ephyrae, while heterotrophic dinoflagellate N. scintillans and chlorophyta P. subcordiformis could in the earliest phase. However, none of ephyrae only fed with phytoplankton as food could mature to medusae.

    Acknowledgements

    We thank Professor Yan Tian for providing culture strains of Skeletonema costatum, Prorocentrum donghaiense and Platymonas subcordiformis. We also thank Professor Ian R Jenkinson for the assistance with English writing. This research was supported by the National Basic Research Program of China (973 Program) (No. 2011 CB403603), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA0503 0401) and the National Natural Science Founda- tion of Shandong Province, China (No. ZR2012DQ005).

    Arai, M. N., 1988. Interactions of fish and pelagic coelenterates. Canadian Journal of Zoology, 66 (9): 1913-1927.

    B?mstedt, U., 1990. Trophodynamics of the scyphomedusae Aurelia aurita. Predationrate in relation to abundance, size and type of prey organism. Journal of Plankton Research, 12 (1): 215-229.

    B?mstedt, U., Ishii, H., and Martinussen, M. B., 1997. Is the scyphomedusa Cyanea capillata (L.) dependent on gelatinous prey for its early development? Sarsia, 82: 269-273.

    B?mstedt, U., Wild, B., and Martinussen, M., 2001. Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa) Marine Biology, 139 (4): 641-650.

    Condon, R. H., Graham, W. M., Duarte, C. M., Pitt, K. A., Lucas, C. H., Haddock, S. H. D., Sutherland, K. R., Robinson, K. L., Dawson, M. N., Decker, M. B., Mills, C. E., Purcell, J. E., Malej, A., Mianzan, H., Uye, S. I., Gelcich, S., and Madin, L. P., 2012. Questioning the rise of gelatinous zooplankton in the World’s oceans. Bioscience, 62 (2): 160-169.

    Guillard, R. R. L., and Ryther, J. H., 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8 (2): 229-239.

    Han, C. H., and Uye, S., 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton Benthos Research, 5 (3): 98-105.

    Hernroth, L., and Gr?ndahl, F., 1985. On the biology of Aurelia aurita (L.): 2. Major factors regulating the occurrence of ephyrae and young medusae in the Gullmar fjord, western Sweden. Bulletin of Marine Science, 37 (2): 567-576.

    Huang, X. G., Zeng, Y., Huang, B. Q., and Li, S. X., 2014. Effect of Alexandrium catenella (Dinophyta) concentration on the behavior and growth of Aurelia sp. ephyrae. Journal of Plankton Research, 36 (2): 591-595.

    Ianora, A., Poulet, S. A., and Miralto, A., 1995. A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Marine Biology, 121 (3): 533-539.

    Ishii, H., 2001. The influence of environmental changes upon the coastal plankton ecosystems, with special reference to mass occurrence of jellyfish. Bulletin of Plankton Society of Japan, 48: 55-61 (in Japanese with English abstract).

    Jonasdottir, S. H., Fields, D., and Pantoja, S., 1995. Copepod egg production in Long Island Sound, USA, as a function of the chemical composition of seston. Marine Ecology Progress Series, 119: 87-98.

    Kerstan, M., 1977. Untersuchungen zur Nahrungs?kologie von Aurelia aurita Lam. Diplomarbeit, Universit?t Kiel, Kiel, 1-95.

    Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S., and Kraay, G. W., 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: Role of essential lipids. Marine Biology, 135 (1): 191-198.

    López-Sandoval, D. C., Rodríguez-Ramos, T., Cerme?o, P., and Mara?ón, E., 2013. Exudation of organic carbon by marine phytoplankton: Dependence on taxon and cell size. Marine Ecology Progress Series, 477: 53-60.

    Lucas, C. H., 1996. Population dynamics of Aurelia aurita (Scyphozoa) from an isolated brackish lake, with particular reference to sexual reproduction. Journal of Plankton Research, 18 (6): 987-1007.

    McNamara, M. E., Lonsdale, D. J., and Cerrato, R. M., 2013. Top-down control of mesozooplankton by adult Mnemiopsis leidyi influences microplankton abundance and composition enhancing prey conditions for larval ctenophores. Estuarine, Coastal and Shelf Science, 133: 2-10.

    Malej, A., Turk, V., and Lu?i?, D., 2007. Direct and indirect trophic interactions of Aurelia sp. (Scyphozoa) in a stratified marine environment (Mljet Lakes, Adriatic Sea). Marine Biology, 151: 827-841.

    Miller, R. J., 1970. Distribution and energetics of an estuarine population of the ctenophore, Mnemiopsis leidyi. Ph.D thesis, North Carolina State University, Raleigh, 1-44.

    Mills, C. E., 2001. Jellyfish blooms: Are populations increasing globally in response to changing ocean conditions? Hydrobiologia, 451: 55-68.

    M?ller, L. F., and Riisg?rd, H. U., 2007. Feeding, bioenergetics and growth in the common jellyfish Aurelia aurita and two hydromedusae, Sarsia tubulosa and Aequorea vitrina. Marine Ecology Progress Series, 346: 167-177.

    Nielsen, A. S., Pedersen, A. W., and Riisg?rd, H. U., 1997. Implications of density driven currents for interaction between jellyfish (Aurelia aurita) and zooplankton in a Danish fjord. Sarsia, 82 (4): 297-305.

    Olesen, N. J., 1995. Clearance potential of jellyfish Aurelia aurita, and predation impact on zooplankton in a shallow cove. Marine Ecology Progress Series, 124: 63-72.

    Olesen, N. J., Frandsen, K., and Riisg?rd, H. U., 1994. Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series, 105: 9-18.

    Olesen, N. J., Purcell, J. E., and Stoecker, D. K., 1996. Feeding and growth by ephyrae of scyphomedusae Chrysaora quinquecirrha. Marine Ecology Progress Series, 137: 149-159.

    Pauly, D., Graham, W., Libralato, S., Morissette, L., and Palomares, M. L., 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia, 616: 67-85.

    Pitt, K. A., Welsh, D. T., and Condon, R. H., 2009a. Influence of jellyfish blooms on carbon, nitrogen and phosphorus cyclingand plankton production. Hydrobiologia, 616: 133-149.

    Pitt, K. A., Connolly, R. M., and Meziane, T. 2009b. Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: A review.Hydrobiologia, 616: 119-132.

    Purcell, J. E., 2007. Environmental effects on asexual reproduction rates of the scyphozoan Aurelia labiata. Marine Ecology Progress Series, 348: 183-196.

    Purcell, J. E., and Arai, M. N., 2001. Interactions of pelagic cnidarians and ctenophores with fishes: A review. Hydrobiologia, 451: 27-44.

    Purcell, J. E., White, J. R., Nemazie, D. A., and Wright, D. A., 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series, 180: 187-196.

    Schneider, G., and Behrends, G., 1994. Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic. ICES Journal of Marine Science, 51 (4): 359-367.

    Southward, A. J., 1955. Observations on the ciliary currents of the jellyfish Aurelia aurita L. Journal of the Marine Biological Association of the United Kingdom, 34: 201-216.

    Stoecker, D. K., Michaels, A. E., and Davis, L. H., 1987. Grazing by the jellyfish Aurelia aurita on microzooplankton. Journal of Plankton Research, 9: 901-915

    Sullivan, B. K., Suchman, C. L., and Costello, J. H., 1997. Mechanics of prey selection by ephyrae of the scyphomedusa Aurelia aurita. Marine Biology, 130: 213-222.

    Toyokawa, M., Furota, T., and Terazaki, M., 2000. Life history and seasonal abundance of Aurelia aurita medusae in Tokyo Bay, Japan. Plankton Biology and Ecology, 47: 48-58.

    Uye, S., 2008. Blooms of the giant jellyfish Nemopilema nomurai: A threat to the fisheries sustainability of the East Asian Marginal Seas. Plankton Benthos Research, 3 (Suppl): 125-131.

    Wang, L., Yan, T., Tan, Z. and Zhou, M., 2003. Effects of Alexandrium tamarense and Prorocentrum donghaiense on rotifer Brachionus plicatilis population. Chinese Journal of Applied Ecology, 14 (7): 1151-1155 (in Chinese with English abstract).

    Zheng, S., Sun, X., and Sun, S., 2012. The grazing of Aurelia sp.1 on Skeletonema costatum and Prorocentrum donghaiense. Oceanologia et Limnologia Sinica, 43 (3): 445-450 (in Chinese with English abstract).

    (Edited by Ji Dechun)

    (Received October 9, 2014; revised April 14, 2015; accepted April 22, 2015)

    J. Ocean Univ. China (Oceanic and Coastal Sea Research)

    DOI 10.1007/s11802-015-2775-x

    ISSN 1672-5182, 2015 14 (5): 823-828

    http://www.ouc.edu.cn/xbywb/

    E-mail:xbywb@ouc.edu.cn

    * Corresponding author. Tel: 0086-532-82898599

    E-mail: xsun@qdio.ac.cn

    欧美激情久久久久久爽电影 | 亚洲欧洲日产国产| 在线十欧美十亚洲十日本专区| 国产高清视频在线播放一区 | 啦啦啦视频在线资源免费观看| 97精品久久久久久久久久精品| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 大片免费播放器 马上看| 建设人人有责人人尽责人人享有的| 国产淫语在线视频| 久久99一区二区三区| 日本撒尿小便嘘嘘汇集6| 精品国内亚洲2022精品成人 | 中国国产av一级| 色老头精品视频在线观看| 少妇精品久久久久久久| 成年美女黄网站色视频大全免费| 在线av久久热| 一本大道久久a久久精品| 人人妻,人人澡人人爽秒播| www.999成人在线观看| av超薄肉色丝袜交足视频| 少妇的丰满在线观看| 少妇猛男粗大的猛烈进出视频| 精品国产超薄肉色丝袜足j| 久久狼人影院| 美女大奶头黄色视频| 99热国产这里只有精品6| 99久久国产精品久久久| 欧美少妇被猛烈插入视频| 欧美精品啪啪一区二区三区 | 最黄视频免费看| 淫妇啪啪啪对白视频 | 国产精品久久久久久人妻精品电影 | 久久久久久亚洲精品国产蜜桃av| 老司机深夜福利视频在线观看 | 中文字幕最新亚洲高清| 丰满饥渴人妻一区二区三| 国产xxxxx性猛交| 国产欧美日韩精品亚洲av| 日韩大码丰满熟妇| 亚洲精品国产色婷婷电影| 老司机在亚洲福利影院| 蜜桃在线观看..| 中国美女看黄片| 国产成人啪精品午夜网站| 在线 av 中文字幕| 日韩欧美一区二区三区在线观看 | 美女午夜性视频免费| 免费观看av网站的网址| 大片电影免费在线观看免费| a级毛片黄视频| 国产又爽黄色视频| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 韩国高清视频一区二区三区| av有码第一页| 菩萨蛮人人尽说江南好唐韦庄| 大片免费播放器 马上看| 国产精品影院久久| 久久人妻熟女aⅴ| 欧美黄色淫秽网站| 午夜激情av网站| 成年动漫av网址| 久久久久久久久久久久大奶| 国产日韩一区二区三区精品不卡| 国产高清视频在线播放一区 | 久久久久网色| av欧美777| a级毛片在线看网站| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看 | 91老司机精品| 成人国产一区最新在线观看| 51午夜福利影视在线观看| 各种免费的搞黄视频| 亚洲自偷自拍图片 自拍| 国产在线观看jvid| 日韩人妻精品一区2区三区| √禁漫天堂资源中文www| 亚洲欧美精品综合一区二区三区| 考比视频在线观看| 欧美日韩成人在线一区二区| 亚洲精品久久午夜乱码| 老熟女久久久| 国产成人精品久久二区二区91| 亚洲综合色网址| 手机成人av网站| 考比视频在线观看| 操出白浆在线播放| 久久久久久久久免费视频了| 另类精品久久| 免费高清在线观看日韩| 免费av中文字幕在线| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 香蕉国产在线看| 日日夜夜操网爽| 老熟女久久久| 亚洲av欧美aⅴ国产| 欧美国产精品一级二级三级| 免费在线观看影片大全网站| 国产精品av久久久久免费| 一本—道久久a久久精品蜜桃钙片| 丰满少妇做爰视频| 国产欧美日韩一区二区三 | 欧美日韩精品网址| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 欧美 亚洲 国产 日韩一| 欧美在线黄色| 午夜福利在线观看吧| 亚洲av电影在线观看一区二区三区| 欧美亚洲日本最大视频资源| 国产有黄有色有爽视频| 午夜成年电影在线免费观看| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 一级毛片电影观看| 悠悠久久av| 国产成人精品在线电影| 成人三级做爰电影| 少妇粗大呻吟视频| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| 日本五十路高清| 亚洲性夜色夜夜综合| 人妻久久中文字幕网| 国产精品国产三级国产专区5o| 成年人免费黄色播放视频| 久久久精品国产亚洲av高清涩受| 一级黄色大片毛片| 午夜福利免费观看在线| 国产精品亚洲av一区麻豆| 老熟妇乱子伦视频在线观看 | 成人三级做爰电影| 女人被躁到高潮嗷嗷叫费观| 亚洲九九香蕉| 成人18禁高潮啪啪吃奶动态图| 亚洲精品中文字幕在线视频| 免费女性裸体啪啪无遮挡网站| 日本猛色少妇xxxxx猛交久久| 亚洲五月色婷婷综合| 日本精品一区二区三区蜜桃| 在线av久久热| 国产一级毛片在线| 黄频高清免费视频| 精品国内亚洲2022精品成人 | 欧美国产精品va在线观看不卡| 一区福利在线观看| 亚洲五月婷婷丁香| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 美女主播在线视频| 九色亚洲精品在线播放| 女性生殖器流出的白浆| 国产高清videossex| 老熟妇仑乱视频hdxx| 国产精品av久久久久免费| 国产亚洲午夜精品一区二区久久| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 成人18禁高潮啪啪吃奶动态图| 自线自在国产av| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 精品人妻1区二区| 最近最新中文字幕大全免费视频| 中文字幕av电影在线播放| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲| 免费在线观看黄色视频的| 超碰成人久久| 国产一区二区三区综合在线观看| 国产男人的电影天堂91| 自线自在国产av| 啪啪无遮挡十八禁网站| 大片免费播放器 马上看| 在线观看免费视频网站a站| 成年人黄色毛片网站| 久久精品国产综合久久久| 国产主播在线观看一区二区| 最黄视频免费看| 女性被躁到高潮视频| 久久亚洲国产成人精品v| 国产成人一区二区三区免费视频网站| 亚洲精品一卡2卡三卡4卡5卡 | 久久人人爽av亚洲精品天堂| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 午夜两性在线视频| 久久人妻熟女aⅴ| 久久国产精品人妻蜜桃| 国产日韩欧美在线精品| bbb黄色大片| 欧美日韩av久久| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 国产一区有黄有色的免费视频| 日韩大码丰满熟妇| 欧美乱码精品一区二区三区| 午夜福利,免费看| 亚洲免费av在线视频| 又紧又爽又黄一区二区| 亚洲精品中文字幕一二三四区 | 黄色 视频免费看| 国产免费福利视频在线观看| 大片免费播放器 马上看| 午夜福利一区二区在线看| 午夜老司机福利片| a 毛片基地| 又大又爽又粗| 欧美精品啪啪一区二区三区 | 久久午夜综合久久蜜桃| 亚洲av成人不卡在线观看播放网 | 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 男男h啪啪无遮挡| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区精品| 亚洲精品一卡2卡三卡4卡5卡 | 久久ye,这里只有精品| 日韩制服丝袜自拍偷拍| 两性夫妻黄色片| 欧美性长视频在线观看| 免费高清在线观看日韩| 亚洲色图综合在线观看| 国产av一区二区精品久久| 午夜老司机福利片| 一边摸一边做爽爽视频免费| 精品国产一区二区三区久久久樱花| 国产一区二区在线观看av| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 成人国产一区最新在线观看| 后天国语完整版免费观看| 免费在线观看视频国产中文字幕亚洲 | 欧美一级毛片孕妇| 韩国精品一区二区三区| 国产熟女午夜一区二区三区| 久久人人爽人人片av| 免费观看人在逋| 精品国产乱子伦一区二区三区 | 精品国产乱子伦一区二区三区 | 看免费av毛片| 日韩欧美一区视频在线观看| 一本色道久久久久久精品综合| 国产无遮挡羞羞视频在线观看| 久久99一区二区三区| 99国产精品99久久久久| 日韩,欧美,国产一区二区三区| 久久久久国产一级毛片高清牌| 三上悠亚av全集在线观看| 中国美女看黄片| 国产精品一区二区免费欧美 | 国产男女内射视频| 18禁观看日本| 成年人黄色毛片网站| 亚洲国产精品成人久久小说| 少妇裸体淫交视频免费看高清 | 亚洲av片天天在线观看| 亚洲视频免费观看视频| 69精品国产乱码久久久| 一级黄色大片毛片| 一级片免费观看大全| 亚洲av成人一区二区三| 视频区欧美日本亚洲| 欧美精品av麻豆av| 国产淫语在线视频| 狂野欧美激情性xxxx| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 老熟妇乱子伦视频在线观看 | 中文字幕av电影在线播放| 91麻豆精品激情在线观看国产 | 人人妻人人爽人人添夜夜欢视频| 午夜激情久久久久久久| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 午夜两性在线视频| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区大全| 欧美人与性动交α欧美软件| 国产男女超爽视频在线观看| 色播在线永久视频| 美女高潮到喷水免费观看| 国产精品一区二区在线不卡| 久久久欧美国产精品| 国产精品亚洲av一区麻豆| 男人舔女人的私密视频| 麻豆国产av国片精品| 黑人巨大精品欧美一区二区mp4| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 久久中文看片网| 成人三级做爰电影| 欧美97在线视频| 最新在线观看一区二区三区| videos熟女内射| 久久精品久久久久久噜噜老黄| 妹子高潮喷水视频| 一区二区三区精品91| 水蜜桃什么品种好| 99国产精品一区二区蜜桃av | 亚洲中文日韩欧美视频| 在线天堂中文资源库| 国产一区二区 视频在线| 久久精品aⅴ一区二区三区四区| 久久久久视频综合| 国产精品久久久av美女十八| 狂野欧美激情性xxxx| 日本五十路高清| 视频区图区小说| 悠悠久久av| 久久九九热精品免费| 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 岛国在线观看网站| 亚洲七黄色美女视频| 国产亚洲精品一区二区www | 成人免费观看视频高清| 亚洲精品av麻豆狂野| 欧美黄色片欧美黄色片| 精品第一国产精品| 国产精品二区激情视频| 久久99热这里只频精品6学生| 亚洲第一青青草原| 91老司机精品| 老汉色av国产亚洲站长工具| 啦啦啦中文免费视频观看日本| 一本一本久久a久久精品综合妖精| 亚洲精品国产色婷婷电影| 欧美黑人精品巨大| 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 午夜激情久久久久久久| 日韩欧美一区视频在线观看| av一本久久久久| 久久人人97超碰香蕉20202| 最近最新免费中文字幕在线| 大片免费播放器 马上看| 午夜福利乱码中文字幕| 国产激情久久老熟女| 青春草视频在线免费观看| 国产精品亚洲av一区麻豆| videos熟女内射| 色婷婷av一区二区三区视频| 波多野结衣av一区二区av| 99久久精品国产亚洲精品| 亚洲全国av大片| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 午夜精品久久久久久毛片777| 国产一级毛片在线| 99香蕉大伊视频| 国产高清视频在线播放一区 | 午夜影院在线不卡| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧洲精品一区二区精品久久久| 国产淫语在线视频| 熟女少妇亚洲综合色aaa.| 日韩 欧美 亚洲 中文字幕| 可以免费在线观看a视频的电影网站| 午夜福利视频在线观看免费| 人妻久久中文字幕网| 欧美97在线视频| 2018国产大陆天天弄谢| 久久精品aⅴ一区二区三区四区| 国产成人啪精品午夜网站| videos熟女内射| e午夜精品久久久久久久| 极品少妇高潮喷水抽搐| 桃花免费在线播放| tube8黄色片| 欧美一级毛片孕妇| 国产av一区二区精品久久| 丰满人妻熟妇乱又伦精品不卡| 在线永久观看黄色视频| 国产日韩一区二区三区精品不卡| 久久久久精品人妻al黑| 中文字幕高清在线视频| 国产男女超爽视频在线观看| 不卡av一区二区三区| 亚洲一码二码三码区别大吗| 777久久人妻少妇嫩草av网站| 纵有疾风起免费观看全集完整版| 又紧又爽又黄一区二区| 如日韩欧美国产精品一区二区三区| 亚洲精品中文字幕在线视频| 国产成人av教育| 成人国产一区最新在线观看| 一本色道久久久久久精品综合| 天天影视国产精品| 男女高潮啪啪啪动态图| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 90打野战视频偷拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久青草综合色| 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 国产成人精品无人区| 一二三四在线观看免费中文在| 中国美女看黄片| 一区二区三区激情视频| 操出白浆在线播放| 日本91视频免费播放| 亚洲综合色网址| 国产免费av片在线观看野外av| 国产日韩一区二区三区精品不卡| www.av在线官网国产| 男男h啪啪无遮挡| 久久中文字幕一级| 爱豆传媒免费全集在线观看| 精品一区二区三卡| 久久久久精品国产欧美久久久 | 国产亚洲午夜精品一区二区久久| 久久av网站| 欧美另类一区| 亚洲欧美色中文字幕在线| 久久久精品免费免费高清| 久久精品亚洲av国产电影网| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的| 亚洲七黄色美女视频| 一本久久精品| 19禁男女啪啪无遮挡网站| 男女国产视频网站| 国产亚洲精品第一综合不卡| 一个人免费看片子| 美女主播在线视频| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| 国产成人精品无人区| 精品高清国产在线一区| 久久久欧美国产精品| 99久久国产精品久久久| 一区二区三区激情视频| 交换朋友夫妻互换小说| 99久久99久久久精品蜜桃| 精品少妇黑人巨大在线播放| 亚洲精品国产一区二区精华液| 午夜免费成人在线视频| 欧美日韩视频精品一区| 一二三四在线观看免费中文在| 在线看a的网站| 超碰成人久久| 日韩大码丰满熟妇| 久久人人97超碰香蕉20202| 国产成人欧美在线观看 | 国产精品99久久99久久久不卡| 国产精品 国内视频| 欧美日韩精品网址| 久久久久久久久久久久大奶| 亚洲午夜精品一区,二区,三区| 叶爱在线成人免费视频播放| 亚洲色图综合在线观看| 1024香蕉在线观看| 夫妻午夜视频| 精品一区二区三卡| 精品欧美一区二区三区在线| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 日韩电影二区| 久久99热这里只频精品6学生| 最近中文字幕2019免费版| 国产免费一区二区三区四区乱码| 91av网站免费观看| 午夜两性在线视频| 国产一区二区在线观看av| 男女无遮挡免费网站观看| 91老司机精品| 久久人妻福利社区极品人妻图片| 亚洲欧美日韩另类电影网站| 国产成人一区二区三区免费视频网站| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 俄罗斯特黄特色一大片| 少妇 在线观看| 久久香蕉激情| 搡老岳熟女国产| 中国国产av一级| 精品久久久久久久毛片微露脸 | 精品久久久久久久毛片微露脸 | 国产伦人伦偷精品视频| 黄网站色视频无遮挡免费观看| 精品国产一区二区久久| 成年动漫av网址| 脱女人内裤的视频| 男女免费视频国产| 国产成人欧美| 国产成人欧美在线观看 | 成年动漫av网址| 久久青草综合色| 国产免费福利视频在线观看| 婷婷色av中文字幕| 久久久久国产一级毛片高清牌| 欧美黄色片欧美黄色片| 国产亚洲精品一区二区www | av网站免费在线观看视频| 免费在线观看影片大全网站| 自拍欧美九色日韩亚洲蝌蚪91| 男女床上黄色一级片免费看| 欧美人与性动交α欧美软件| 制服诱惑二区| 欧美av亚洲av综合av国产av| 久久热在线av| 久久人妻熟女aⅴ| 啦啦啦啦在线视频资源| 十分钟在线观看高清视频www| 亚洲成人国产一区在线观看| av电影中文网址| 久久精品成人免费网站| 精品人妻1区二区| 亚洲欧洲精品一区二区精品久久久| 90打野战视频偷拍视频| 又紧又爽又黄一区二区| 性少妇av在线| 午夜免费观看性视频| 国产免费视频播放在线视频| 日韩人妻精品一区2区三区| 嫩草影视91久久| www.熟女人妻精品国产| 黑丝袜美女国产一区| 一级a爱视频在线免费观看| 一区二区av电影网| 亚洲视频免费观看视频| 国产亚洲精品一区二区www | 亚洲国产欧美一区二区综合| 国产高清视频在线播放一区 | 捣出白浆h1v1| 老熟妇乱子伦视频在线观看 | 国产精品一二三区在线看| 亚洲免费av在线视频| 亚洲第一青青草原| 老司机深夜福利视频在线观看 | 国产一区有黄有色的免费视频| 人人妻人人添人人爽欧美一区卜| 满18在线观看网站| 亚洲 国产 在线| 一级毛片电影观看| 99精国产麻豆久久婷婷| 久久久久久免费高清国产稀缺| 亚洲第一欧美日韩一区二区三区 | 男女免费视频国产| 老熟妇仑乱视频hdxx| 国产精品欧美亚洲77777| 视频区欧美日本亚洲| 水蜜桃什么品种好| 少妇人妻久久综合中文| 亚洲男人天堂网一区| 欧美精品啪啪一区二区三区 | 激情视频va一区二区三区| 精品一区二区三区四区五区乱码| 国产又色又爽无遮挡免| 午夜91福利影院| 大香蕉久久成人网| 日韩视频在线欧美| 丁香六月欧美| 这个男人来自地球电影免费观看| 97在线人人人人妻| 午夜免费鲁丝| 老鸭窝网址在线观看| 午夜免费成人在线视频| 青青草视频在线视频观看| 亚洲一码二码三码区别大吗| 嫩草影视91久久| 中国国产av一级| 国产免费福利视频在线观看| 成年av动漫网址| 男女国产视频网站| 肉色欧美久久久久久久蜜桃| 久久久久久久大尺度免费视频| 免费久久久久久久精品成人欧美视频| 国产成人精品在线电影| 在线观看www视频免费| 大片电影免费在线观看免费| 久久女婷五月综合色啪小说| 欧美成人午夜精品| 婷婷丁香在线五月| 国产一区二区激情短视频 | 国产麻豆69| 高清视频免费观看一区二区| www日本在线高清视频| 久久久精品国产亚洲av高清涩受| 久久av网站| 9热在线视频观看99| 两人在一起打扑克的视频| 日本黄色日本黄色录像| 亚洲va日本ⅴa欧美va伊人久久 | 在线观看www视频免费| 亚洲avbb在线观看| 大陆偷拍与自拍| 欧美日韩亚洲高清精品| av天堂久久9| 亚洲一码二码三码区别大吗| av天堂在线播放| 青青草视频在线视频观看|