• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Nonlinear Bifurcation and Chaos of Coupled Heave and Pitch Motions of a Truss Spar Platform

    2015-03-15 01:43:42HUANGLeiLIULiqinLIUChunyuanandTANGYougang
    Journal of Ocean University of China 2015年5期

    HUANG Lei, LIU Liqin, LIU Chunyuan, and TANG Yougang

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, P. R. China

    The Nonlinear Bifurcation and Chaos of Coupled Heave and Pitch Motions of a Truss Spar Platform

    HUANG Lei, LIU Liqin*, LIU Chunyuan, and TANG Yougang

    State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, P. R. China

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2015

    This paper presents the results from a numerical study on the nonlinear dynamic behaviors including bifurcation and chaos of a truss spar platform. In view of the mutual influences between the heave and the pitch modes, the coupled heave and pitch motion equations of the spar platform hull were established in the regular waves. In order to analyze the nonlinear motions of the platform, three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs were constructed, the Poincaré maps and the power spectrums of the platform response were calculated. It was found that the platform motions are sensitive to wave frequency. With changing wave frequency, the platform undergoes complicated nonlinear motions, including 1/2 sub-harmonic motion, quasi-periodic motion and chaotic motion. When the wave frequency approaches the natural frequency of the heave mode of the platform, the platform moves with quasi-periodic motion and chaotic motional ternately. For a certain range of wave frequencies, the platform moves with totally chaotic motion. The range of wave frequencies which leads to chaotic motion of the platform increases with increasing wave height. The three-dimensional maximum Lyapunov exponent graphs and the bifurcation graphs reveal the nonlinear motions of the spar platform under different wave conditions.

    truss spar platform; coupled heave and pitch; quasi-periodic motion; chaotic motion; 1/2 sub-harmonic motion; maximum Lyapunov exponent; bifurcation graph

    1 Introduction

    The spar platform is one of the most important platform types in deep-sea oil and gas field. Research on spar platform mainly focuses on wave loads acting on the hull and the hydrodynamic characteristics, dynamic response of the platform, the mooring system and the riser system, and the vortex-induced vibration of the platform (Tang, 2008). With the increase of operation water depth, a greater accuracy on predicting the motions of the spar platforms is required. The platform motions were studied considering coupling between the hull, mooring system and riser system, and the coupling of different degree of freedoms were also performed (Tahar and Kim, 2008; Jameel et al., 2011; Yang et al., 2012; Xu and Jing, 2013).

    Due to the large draft, the natural periods of the spar platform are relatively long, and the ratio between the natural frequencies of the heave mode and the pitch mode is close to 2:1. Under the excitation of long period wave or ground swell, the spar platform undergoes complicated nonlinear motions, such as response jumping, Mathieu instable motion, super-harmonic and sub-harmonic bifurcation. Haslum and Faltinsen (2000) studied the pitch motions of a spar platform using model experiment. Theyplotted the Mathieu stable graphs of the pitch motion. Rho and Choi (2004) established the pitch motion equation of a truss spar platform and investigated the stability. They found that large amplitude motion of the heave may lead to unstable pitch motions. The response jumping occurs when the wave frequency is close to the natural frequency of heave mode of the platform. Lim et al. (2005) studied the coupled heave and pitch motions of a cell spar platform experimentally. They observed that pitch motion becomes unstable when kinetic energy from the heave mode is transferred to the pitch mode due to coupling. Zhao et al. (2010) studied the nonlinear coupled motions of heave and pitch of a classic spar platform with2:1 internal resonance between the heave and the pitch modes. The parameter domain that leads to unstable response was also calculated. Gavassoni et al. (2014) studied the dynamic responses of coupled heave and pitch motions of a truss spar platform analytically. The Floquet theory, the bifurcation diagrams and Mathieu charts were used to analyze the instable motions of the platform. Some important response features were obtained, such as response jumping, bifurcation and unstable solutions. The results also showed that damping is essential to control the large amplitude response.

    Using a numerical method, the present research studied the bifurcation and chaotic motions of a truss spar platform in regular waves. The nonlinear methods of maxi-mum Lyapunov exponent, bifurcation graphs and Poincaré maps were used to investigate the response of the truss spar platform.

    2 Coupled Motion Equations of Heave and Pitch of the Truss Spar Platform

    For simplicity, the current study does not include the coupling motions between surge and pitch. Yan (2010) analyzed the effects of surge motion on the nonlinear coupled heave-pitch motions of a cylinder structure. She found that the existence of the surge motion did not affect the frequency condition for instable heave-pitch coupling motions. This is because the natural frequencies of the system do not vary with surge motion. However, for certain situations with certain initial conditions, she found that the effect of interactions between surge motion and base flow may strengthen or weaken the growth of unstable heave and pitch motions.

    The coupled motion equations were established based on the work of Rho and Choi (2004), Zhao (2010), Shen and Tang (2011). Considering the restoring force (moment), linear damping force (moment), quadratic damping force (moment) and the regular wave exciting force (moment), the heave-pitch coupling motion equations of the platform hull can be written as

    where ξ3(t) is the heave displacement, ξ5(t) is the pitch angle, m is the hull mass, Δm is the heave added mass, I is the moment of inertia of pitch, ΔI is the added moment of inertia of pitch A11is the linear damping coefficient of the platform heave, A12is the quadratic damping coefficient of the platform heave, B11is the linear damping coefficient of the platform pitch, B12is the quadratic damping coefficient of the platform pitch, FHis the restoring force of the platform heave, MPis the restoring moment of the platform pitch, F3and M5are wave force acting on the platform heave and wave moment acting on the platform pitch.

    Considering mutual influences between the heave mode and the pitch mode, the heave restoring force of the platform hull in calm water is (Zhao, 2010)

    where ρ is the water density, g is the acceleration of gravity, Awis area of the water plane of platform hull, Hgis the vertical distance from calm water surface to the center of gravity of the platform, η(t) is the wave elevation.

    The pitching restoring moment is

    where ?newis the instantaneous volume of displacement, GMnewis the instantaneous meta center height, they can be written as follows (Zhao, 2010)

    where ? is the initial volume of displacement of the platform,GM is initial meta centric height of the pitch.

    Assuming ξ5is a small angle, according to the Taylor expansion, the following formula can be obtained

    By ignoring the effect of wave elevation and the higher order nonlinear terms (higher than 2nd order), substituting Eq. (7) into Eq. (3), Eq. (5) and Eq. (6), Eq. (3) and Eq. (4) can be rewritten as

    Substituting Eq. (8) and Eq. (9) into Eq. (1) and Eq. (2), and then dividing Eq. (1) and Eq. (2) by (m+Δm) and (I+ ΔI), respectively, yields the relations

    where

    Eq. (10) and Eq. (11) show that heave and pitch of the spar platform are coupled by nonlinear terms.

    3 Wave Force (Moment) Acting on the Platform

    The first order wave force and wave moment are onlyconsidered here. Following Weggel and Roesset (1994), the total heave force acting on the hull was assumed to be the product of a diffraction coefficient and the Froude-Krylov force (Sadeghi et al., 2004), where the Froude-Krylov force acting on the bottom of a truncated cylinder can be written as

    where Hwis the wave height, k is the wave number, R is radius of the platform hull, J1is the first order Bessel function of first kind, d is draft of the platform hull, ? is the wave frequency,. Then the heave force acting on the spar hull can be written as (Sadeghi et al., 2004)

    The pitching moment acting on the hull can be approximated using the linear diffraction theory. The first order surge wave force acting on the unit length of a vertical cylinder can be written as (Zhao, 2010)

    4 The Lyapunov Exponent

    The Lyapunov exponent is one of the most popular tools to investigate the stability and chaos of nonlinear dynamic system. It denotes the average exponent divergence or convergence rate of the neighboring trajectories in the phase space (Wolf et al., 1985). The negative exponent denotes periodic motion and the positive exponent denotes a periodic motion. In this study, the maximum Lyapunov exponents were used to assess the chaotic motion of the truss spar platform. They were calculated using the Wolf’s QR decomposition method (Andrea and Gallas Jason, 1995), which is based on the growth of tangent vectors in the phase space of the dynamical equations.

    Eq. (10) and Eq. (11) are transformed into following differential equations

    where y1=ξ3, y2=dξ3/dt, y3=ξ5, y4=dξ5/dt, f and h are amplitudes ofF3and M5, respectively. Eq. (16) can be rewritten as following five dimensions autonomy system

    where y5=t. The tangent space flow of Eq. (17) is

    where Y={y1, y2,…, y5}, U={U1, U2,…, U5}, J is the Jacobian matrix of Eq. (17) with following form

    The Lyapunov exponents can be obtained by following formula

    In Eq. (21), the Lyapunov exponents are arranged from large to small. So,λ1is the maximum Lyapunov exponent. The tangent vector U is orthonormalized by Gram-Schmidt method (Zeni and Gallas, 1995) after each iterative cycle, it is selected as the initial tangent vector for the next iterative cycle. Step by step, the Jacobian matrix J brings the tangent vector U approaching to the orientation of the maximum Lyapunov exponent. Using the 4-order Runge-Kutta method in the numerical integration, the maximum Lyapunov exponents are calculated in Section 5.

    The main steps of computing the three-dimensional maximum Lyapunov exponent graph are as follows,

    1) Select one set of initial values, integrate Eq. (17) for 1000 cycles of wave periods and set the results of the last step as the initial values to calculate the Lyapunov exponents.

    2) Calculate the Lyapunov exponents and average them along the phase trajectories using Eq. (18) to Eq. (21), for 100 cycles of wave periods.

    3) Repeat steps (1) and (2) for different wave height and wave frequency.

    To reveal the nonlinear motions of the platform, the bifurcation graphs, Poincaré maps and power spectrums are also calculated.

    5 Results and Analysis

    The restoring moment of pitch motion of the spar platform depends on the displaced volume and metacentric height, and both of these parameters change in the time domain due to the heave motion of the platform, as shown in Eq. (5) and Eq. (6). The semotion equations are named Mathieu equations. Haslum and Faltinsen (2000) showed that for a system with no damping, no excitation, and no coupling between pitch and surge, it is possible for the Mathieu instability to occur when the ratios between the natural frequencies of heave mode and pitch mode are close to 0.5, 1, 1.5 and 2.

    The platform particulars of Horn Mountain spar platform are shown in Table 1.

    Table1 Platform particulars

    The ratio between the natural frequencies of heave mode and pitch mode is close to 2:1. Petter (2000), using model experiment, tested the motion of this truss spar platform both in calm water and in waves. To carry out the numerical calculation, the platform parameters of Horn Mountain platform were used and the natural periods and damping were from the results of Petter’s (2000) model experiment. The three-dimensional Maximum Lyapunov exponent graph and bifurcation graph for different wave heights and wave frequencies are shown in Figs.1 and 2.

    Fig.1 3D Maximum Lyapunov exponents (Hw∈[1, 5] m, ?∈[0.25, 0.4] rad s-1).

    Fig.2 3D bifurcation graphs (Hw∈[1, 5] m, ?∈[0.25, 0.4] rad s-1).

    From these two figures, it is observed that when the wave frequency is close to the natural frequency of the heave mode, the platform moves with nonlinear chaotic and quasi-periodic motions. With increasing wave height, the response amplitudes of heave and pitch increase, and the range of wave frequency which leads to chaotic motion of the platform also increase. Figs.1 and 2 reveal the general nonlinear motions of the platform under different wave conditions.

    The maximum Lyapunov exponents and bifurcationgraphs for 3 m and 4m wave heights are shown in Figs.3 and 4. With reference to these two figures, Tables 2 and 3 contain summaries of the dynamic behaviors of heave and pitch of the platform for the 3 m and 4 m wave heights.

    Fig.3 Maximum Lyapunov exponents and bifurcation graphs (Hw=3 m). (a) Maximum Lyapunov exponents. (b) Heave bifurcation graph. (c) Pitch bifurcation graph.

    Fig.4 Same as Fig.3, but for Hw=4 m.

    Table 2 Platform motion analysis (Hw=3 m, ?∈[0.25, 0.35] rad s-1)

    Table 3 Platform motion analysis (Hw=3 m, ?∈[0.25, 0.35] rad s-1)

    Tables 2 and 3 show that the platform undergoes harmonic motion, quasi-periodic motion, chaotic motion and 1/2 sub-harmonic motion for the different wave frequencies. When the wave frequency approaches the natural frequency of the heave mode, the platform moves with quasi-periodic motion and chaotic motion alternately. For a certain range of wave frequencies, the platform moves with totally chaotic motions.

    Comparing with case of 4 m wave height, the motions of the platform are more complicated than the case of 3m wave height. As shown in Table 2, with increasing wave frequency, the platform undergoes harmonic motion, alternate quasi-periodic and chaotic motion, chaotic motion, alternate quasi-periodic and chaotic motion, 1/2 sub- harmonic motion, harmonic motion, 1/2 sub-harmonic motion and harmonic motion. The range of wave frequency which leads to chaotic motion of the platform is larger, as shown in Table 3.

    To further analyze the nonlinear motions of the platform, the Poincaré maps, power spectrums and time histories under different wave frequencies are calculated, as shown in Figs.5–8.

    Fig.5 Time histories and Poincaré maps (?=0.28 rad s-1, H=4 m).

    Fig.6 Time histories and Poincaré maps (?=0.30 rad s-1, H=4 m).

    Fig.7 Time histories and Poincaré maps (?=0.31 rad s-1, H=4 m).

    Fig.8 Poincaré maps and power spectrums (?=0.33 rad s-1, H=4 m).

    In Fig.8, Sheaveand Spitchdenote the response power spectrums of heave and pitch of the platform, respectively. Figs.5–8 reveal four different types of motions of the platform, which are harmonic motion, chaotic motion, quasi-periodic motion and 1/2 sub-harmonic motion. As shown in Fig.5, for ?=0.28 rad s-1, there is only one point on the Poincaré maps of heave and pitch and the platform undergoes harmonic motion. As shown in Fig.6, for ?= 0.30 rad s-1there is a series of points distribute irregularly in the Poincaré maps of heave and pitch, and the platform moves with the chaotic motions in the heave and pitch modes. As shown in Fig.7, for ?=0.31 rad s-1the points on the Poincaré maps of heave and pitchare linked together as closed trajectories and the platform moves with quasi-periodic motions. As shown in Fig.8, for ?=0.33 rad s-1there is 1/2 sub-harmonic frequency component in the response power spectrums of heave and pitch of the platform. The response frequencies of heave are dominated by wave frequency and the response frequencies of pitch are dominated by 1/2 sub-harmonic frequency.

    6 Conclusions

    The nonlinear dynamic behaviors of the truss spar platform were studied by the numerical simulation method. The coupled heave and pitch motion equations ofthe platform hull were established in regular waves. The maximum Lyapunov exponents, Poincaré map and bifurcation graph were used to analyze the nonlinear motions of the platform. The main conclusions are:

    1) The platform undergoes complicated nonlinear motions with changing wave frequency, including quasiperiodic motion, chaotic motion and 1/2 sub-harmonic motion. The three-dimensional maximum Lyapunov exponent graph and bifurcation graph reveal the nonlinear motions of the platform under different wave conditions.

    2) When the wave frequency approaches the natural frequency of the heave mode, the platform moves with quasi-periodic motions and the chaotic motions alternately. For a certain range of wave frequencies, the platform moves with totally chaotic motions. The range of wave frequency which leads to chaotic motions of the platform increases with increasing wave height.

    3) The platform moves with 1/2 sub-harmonic motion under some wave frequencies, the response frequencies of heave of the platform are dominated by wave frequency, and the response frequencies of pitch of the platform are dominated by 1/2 sub-harmonic frequency component.

    In this study, the damping effect was not included. In fact, damping plays a very important role in the coupled nonlinear analysis of a spar platform so that the nonlinear motions can be suppressed efficiently through increasing heave or pitch damping. Depending on the amount of available damping, some nonlinear responses may not occur.

    Acknowledgements

    The project was supported by the National Natural Science Foundation of China under Grant No. 51179125 and the Innovation Foundation of Tianjin University under Approving No. 1301.

    Andrea, R. Z., and Gallas Jason, A. C., 1995. Lyapunov exponents for a duffing oscillator. Physica D, 89: 71-82.

    Gavassoni, E., Gon?alves, P. B., and Roehl, D. M., 2014. Nonlinear vibration modes and instability of a conceptual model of a spar platform. Nonlinear Dynamics, 74 (1): 809-826.

    Haslum, H. A., and Faltinsen, O. M., 2000. Alternative shape of spar platforms for use in hostile areas. In: Proceedings of the 31st Offshore Technology Conference. Huston, USA, 217-288.

    Jameel, M., Ahmad, S., Islam, A. B. M. S., and Jumaat, M. Z., 2013. Non-linear dynamic analysis of coupled spar platform. Journal of Civil Engineering and Management, 19 (4): 476-491.

    Lim, S. J., Rho, J. B., and Choi, H. S., 2005. An experimental study on motion characteristics of cell spar platform. In: Proceedings of the International Offshore and Polar Engineering Conference. Seoul, Korea, 233-237.

    Petter, A. B., 2000. Dynamic response analysis of a truss spar in waves. PhD thesis. University of Newcastle, Newcastle.

    Rho, J. B., and Choi, H. S., 2004. Vertical motion characteristics of truss spars in waves. In: Proceedings of the International Offshore and Polar Engineering Conference. Toulon, France, 662-665.

    Sadeghi, K., Incecik, A., and Downie, M. J., 2004. Response analysis of a truss spar in the frequency domain. Journal of Marine science and technology, 8: 126-137.

    Shen, W. J., and Tang, Y. G., 2011. Stochastic analysis of nonlinear coupled heave-pitch motion for the truss spar platform. Journal of Marine Scienceand Application, 10: 471-477.

    Tahar, A., and Kim, M. H., 2008. Coupled-dynamic analysis of floating structures with polyester mooring lines. Ocean Engineering, 35: 1676-1685.

    Tang, Y. G., 2008. Ocean Engineering Structural Dynamics. Tianjin University Press, Tianjin, 291pp (in Chinese).

    Weggel, D. C., and Roesset, J. M., 1994. Vertical hydrodynamic forces on truncated cylinders. In: Proceedings of the 4th International Offshore and Polar Engineering Conference. Osaka, Japan, 210-217.

    Wolf, A., Swift, J. B., Swinney, H. L., and Vasrano, J. A., 1985. Determining Lyapunov exponents from a time series. Physica D, 16: 285-317.

    Xu, L. X., and Jing, X. N., 2013. Calculating riser dynamic effects on spar motions in waves. In: Proceedings of the 23rd International Offshore and Polar Engineering Conference. Anchorage, Alaska, USA, 78-84.

    Yan, H. M., 2010. Computations of fully nonlinear three- dimensional wave-body interactions. PhD thesis. Massachusetts Institute of Technology.

    Yang, M., Teng, B., Ning, D., and Shi, Z., 2012. Coupled dynamic analysis for wave interaction with a truss spar and its mooring line/riser system in time domain. Ocean Engineering, 39: 72-87.

    Zeni, A. R., and Gallas, J. A. C., 1995. Lyapunov exponents for a duffing oscillator. Physica D, 89: 71-82.

    Zhao, J. R., Tang, Y. G., and Shen, W. J., 2010. A study on the combination resonance response of a classic spar platform. Journal of Vibration and Control, 16 (14): 2083-2107.

    Zhao, J. R., 2010. Study on nonlinear coupling dynamic response of a classic spar platform. PhD thesis. Tianjin University, Tianjin (in Chinese).

    (Edited by Xie Jun)

    (Received February 11, 2014; revised April 21, 2014; accepted January 12, 2015)

    J. Ocean Univ. China (Oceanic and Coastal Sea Research)

    DOI 10.1007/s11802-015-2592-2

    ISSN 1672-5182, 2015 14 (5): 795-802

    http://www.ouc.edu.cn/xbywb/

    E-mail:xbywb@ouc.edu.cn

    * Corresponding author. E-mail: liuliqin@tju.edu.cn

    av视频在线观看入口| 午夜福利18| 又大又爽又粗| 啦啦啦免费观看视频1| 精品久久久久久久人妻蜜臀av| 日韩有码中文字幕| 亚洲精品粉嫩美女一区| 麻豆成人av在线观看| 成人一区二区视频在线观看| 日韩高清综合在线| 亚洲成人国产一区在线观看| 国产野战对白在线观看| 又黄又爽又免费观看的视频| 久久精品国产99精品国产亚洲性色| 国产精品九九99| ponron亚洲| 欧美国产日韩亚洲一区| 在线观看免费日韩欧美大片| 宅男免费午夜| 国产一级毛片七仙女欲春2| 亚洲最大成人中文| 久久九九热精品免费| 亚洲国产精品999在线| 久久精品91蜜桃| 岛国在线观看网站| 天堂影院成人在线观看| 亚洲人成网站高清观看| 极品教师在线免费播放| 嫩草影视91久久| 真人做人爱边吃奶动态| 中文字幕精品亚洲无线码一区| 亚洲人成77777在线视频| 亚洲 国产 在线| 久久国产精品影院| 欧美日本视频| 桃色一区二区三区在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲在线自拍视频| 日韩大码丰满熟妇| avwww免费| 老司机在亚洲福利影院| 成人一区二区视频在线观看| 国产熟女午夜一区二区三区| 久久中文看片网| 亚洲欧美日韩东京热| 中文字幕精品亚洲无线码一区| 宅男免费午夜| 午夜两性在线视频| 亚洲天堂国产精品一区在线| 丝袜美腿诱惑在线| 日韩欧美 国产精品| 91大片在线观看| 18禁裸乳无遮挡免费网站照片| 黄色女人牲交| 熟女电影av网| 免费在线观看黄色视频的| 丰满的人妻完整版| 成人特级黄色片久久久久久久| 国产人伦9x9x在线观看| 国产精品美女特级片免费视频播放器 | 啦啦啦韩国在线观看视频| 欧美丝袜亚洲另类 | 欧美大码av| 丝袜人妻中文字幕| 哪里可以看免费的av片| 在线观看舔阴道视频| 成年人黄色毛片网站| 亚洲精品美女久久久久99蜜臀| 不卡一级毛片| 一级毛片高清免费大全| 少妇的丰满在线观看| 免费搜索国产男女视频| 两个人免费观看高清视频| 亚洲专区国产一区二区| 亚洲第一电影网av| 制服诱惑二区| av有码第一页| 国产精品综合久久久久久久免费| 韩国av一区二区三区四区| 老司机午夜福利在线观看视频| 午夜福利免费观看在线| av天堂在线播放| 特级一级黄色大片| 中文字幕精品亚洲无线码一区| 在线免费观看的www视频| 悠悠久久av| 精品久久久久久久久久免费视频| 亚洲成av人片免费观看| 久久久久久久午夜电影| 亚洲美女黄片视频| 免费在线观看视频国产中文字幕亚洲| 久久伊人香网站| a级毛片在线看网站| 亚洲美女视频黄频| 欧美精品亚洲一区二区| 国产69精品久久久久777片 | 男女那种视频在线观看| 在线观看免费日韩欧美大片| 久久久精品欧美日韩精品| 亚洲国产精品sss在线观看| 亚洲av五月六月丁香网| 黄色丝袜av网址大全| 国产熟女午夜一区二区三区| 我要搜黄色片| 黄片小视频在线播放| 动漫黄色视频在线观看| 中文资源天堂在线| 精品午夜福利视频在线观看一区| 狂野欧美白嫩少妇大欣赏| 国产成人精品久久二区二区91| 亚洲男人天堂网一区| 老司机深夜福利视频在线观看| 亚洲精品国产一区二区精华液| 在线观看午夜福利视频| 亚洲精品中文字幕一二三四区| 亚洲18禁久久av| 国产野战对白在线观看| 婷婷亚洲欧美| 99热这里只有是精品50| 精品熟女少妇八av免费久了| 天天添夜夜摸| 成人三级黄色视频| 国产精品电影一区二区三区| 欧美成人免费av一区二区三区| 免费人成视频x8x8入口观看| 亚洲18禁久久av| 免费看a级黄色片| 久热爱精品视频在线9| 97超级碰碰碰精品色视频在线观看| 欧美黑人巨大hd| 舔av片在线| 巨乳人妻的诱惑在线观看| 三级国产精品欧美在线观看 | 精品人妻1区二区| 亚洲国产精品合色在线| 精品一区二区三区av网在线观看| 中文字幕精品亚洲无线码一区| а√天堂www在线а√下载| 午夜福利欧美成人| 999久久久国产精品视频| 免费观看精品视频网站| 嫁个100分男人电影在线观看| 亚洲熟妇熟女久久| 最好的美女福利视频网| 国产午夜精品论理片| 日韩大码丰满熟妇| 九九热线精品视视频播放| 亚洲欧洲日产国产| 2021天堂中文幕一二区在线观| 中国美白少妇内射xxxbb| 亚洲一区高清亚洲精品| 亚洲欧美清纯卡通| 国产av不卡久久| av国产免费在线观看| 久久人人精品亚洲av| 日韩av不卡免费在线播放| 欧美最新免费一区二区三区| 黄色一级大片看看| kizo精华| av在线老鸭窝| 国产成人aa在线观看| 国模一区二区三区四区视频| 国产高清有码在线观看视频| 舔av片在线| 丰满人妻一区二区三区视频av| 此物有八面人人有两片| 国产免费一级a男人的天堂| 久久欧美精品欧美久久欧美| 自拍偷自拍亚洲精品老妇| 色综合亚洲欧美另类图片| 高清日韩中文字幕在线| 国产成年人精品一区二区| 我的女老师完整版在线观看| 成人毛片a级毛片在线播放| 亚洲成人av在线免费| 国产伦一二天堂av在线观看| 精品久久久久久久久久免费视频| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜爱| 亚洲国产欧洲综合997久久,| 久久精品夜夜夜夜夜久久蜜豆| 久久国产乱子免费精品| 国产精品久久久久久亚洲av鲁大| 午夜视频国产福利| 天堂影院成人在线观看| 中文在线观看免费www的网站| 日本撒尿小便嘘嘘汇集6| 麻豆成人午夜福利视频| 少妇猛男粗大的猛烈进出视频 | 国产又黄又爽又无遮挡在线| 久久精品久久久久久久性| 久久精品国产亚洲网站| 亚洲精品国产av成人精品| 午夜福利在线观看吧| 偷拍熟女少妇极品色| 高清日韩中文字幕在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品99久久久久久久久| 国产欧美日韩精品一区二区| 国产精品麻豆人妻色哟哟久久 | www日本黄色视频网| 天天躁夜夜躁狠狠久久av| 免费av不卡在线播放| 内射极品少妇av片p| 国内精品久久久久精免费| 桃色一区二区三区在线观看| 欧美色视频一区免费| 99热只有精品国产| 麻豆一二三区av精品| 国内久久婷婷六月综合欲色啪| 好男人在线观看高清免费视频| 日韩av在线大香蕉| 少妇的逼好多水| 国产男人的电影天堂91| 我的女老师完整版在线观看| 久久精品国产亚洲av香蕉五月| 久久精品国产自在天天线| 国产精品久久久久久亚洲av鲁大| 色5月婷婷丁香| 日韩欧美在线乱码| 久久久a久久爽久久v久久| 免费黄网站久久成人精品| 毛片一级片免费看久久久久| 亚洲综合色惰| 少妇丰满av| 久久精品夜夜夜夜夜久久蜜豆| 精品熟女少妇av免费看| 久久久久久久久久成人| 桃色一区二区三区在线观看| 欧美丝袜亚洲另类| 国产av在哪里看| 此物有八面人人有两片| 色噜噜av男人的天堂激情| 男女下面进入的视频免费午夜| 村上凉子中文字幕在线| 免费无遮挡裸体视频| 国产亚洲精品av在线| 成人高潮视频无遮挡免费网站| 中国美白少妇内射xxxbb| 狠狠狠狠99中文字幕| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| 男女边吃奶边做爰视频| 嫩草影院入口| 青春草国产在线视频 | 99久久精品一区二区三区| 亚洲中文字幕日韩| 亚洲成人中文字幕在线播放| 少妇的逼好多水| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线播| 亚洲国产日韩欧美精品在线观看| 日本黄色视频三级网站网址| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久av| 99久久无色码亚洲精品果冻| 婷婷色av中文字幕| 亚洲在线自拍视频| 亚洲av二区三区四区| 亚洲av中文av极速乱| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清| 给我免费播放毛片高清在线观看| 午夜福利成人在线免费观看| 99久久精品一区二区三区| 成年版毛片免费区| 天天躁夜夜躁狠狠久久av| 我的女老师完整版在线观看| 欧美xxxx黑人xx丫x性爽| 一进一出抽搐动态| 国产69精品久久久久777片| 级片在线观看| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 国产高清激情床上av| 免费大片18禁| 国产精品一区www在线观看| 一本精品99久久精品77| 精品少妇黑人巨大在线播放 | 在线天堂最新版资源| 亚洲美女视频黄频| 国产老妇伦熟女老妇高清| 天堂av国产一区二区熟女人妻| 国产精品无大码| 嫩草影院入口| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 性欧美人与动物交配| 国产精品1区2区在线观看.| avwww免费| 国内精品宾馆在线| 中文字幕人妻熟人妻熟丝袜美| 高清午夜精品一区二区三区 | 级片在线观看| 99久久久亚洲精品蜜臀av| 一个人免费在线观看电影| 免费看日本二区| a级一级毛片免费在线观看| 国产免费一级a男人的天堂| 99热只有精品国产| 日韩亚洲欧美综合| 亚洲第一电影网av| 国产精品国产高清国产av| 久久国产乱子免费精品| 搡老妇女老女人老熟妇| 热99re8久久精品国产| 黄色欧美视频在线观看| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 嫩草影院入口| 国产激情偷乱视频一区二区| 日日啪夜夜撸| 久久久久久大精品| 精品人妻熟女av久视频| 国产色婷婷99| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 久久久色成人| 国产 一区 欧美 日韩| 国产黄片美女视频| www日本黄色视频网| 一区二区三区四区激情视频 | 久久久久国产网址| 日韩一本色道免费dvd| 亚洲国产欧美在线一区| 好男人视频免费观看在线| 国产v大片淫在线免费观看| 久久亚洲国产成人精品v| 波多野结衣高清无吗| 久久精品综合一区二区三区| 午夜福利视频1000在线观看| 搞女人的毛片| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 久久午夜福利片| 蜜桃久久精品国产亚洲av| 国产精品乱码一区二三区的特点| 99久久精品热视频| 性插视频无遮挡在线免费观看| 亚洲不卡免费看| 91狼人影院| 久久99蜜桃精品久久| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 国产在视频线在精品| 看十八女毛片水多多多| 国产真实伦视频高清在线观看| 国产成年人精品一区二区| 一本一本综合久久| 久久久a久久爽久久v久久| 欧美最新免费一区二区三区| 男人舔女人下体高潮全视频| av在线天堂中文字幕| 99热6这里只有精品| a级一级毛片免费在线观看| av在线蜜桃| 久久精品影院6| 简卡轻食公司| 精品久久久噜噜| 亚洲一区二区三区色噜噜| av又黄又爽大尺度在线免费看 | 2021天堂中文幕一二区在线观| 舔av片在线| 日本黄色片子视频| 欧美日本视频| 久久99精品国语久久久| 男女边吃奶边做爰视频| 乱系列少妇在线播放| 国产亚洲精品av在线| 国产精品福利在线免费观看| 欧美一区二区亚洲| 桃色一区二区三区在线观看| 欧美日韩国产亚洲二区| 国产精品无大码| 丝袜美腿在线中文| 内地一区二区视频在线| 国产精品1区2区在线观看.| 男人舔女人下体高潮全视频| 久久韩国三级中文字幕| 国产精品永久免费网站| 女同久久另类99精品国产91| 久久久久久伊人网av| 搡老妇女老女人老熟妇| 精品日产1卡2卡| www.av在线官网国产| 国产高清激情床上av| 亚洲婷婷狠狠爱综合网| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 精品人妻视频免费看| 欧美在线一区亚洲| 久久草成人影院| 婷婷亚洲欧美| 中文精品一卡2卡3卡4更新| 如何舔出高潮| 天堂中文最新版在线下载 | 在线a可以看的网站| 亚洲18禁久久av| 少妇熟女欧美另类| 欧美日韩国产亚洲二区| 精品久久久久久久久亚洲| 丝袜美腿在线中文| 天堂影院成人在线观看| 成年女人看的毛片在线观看| 色综合站精品国产| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| 偷拍熟女少妇极品色| 欧洲精品卡2卡3卡4卡5卡区| 插逼视频在线观看| 精品久久久久久久久av| 日本撒尿小便嘘嘘汇集6| 免费av不卡在线播放| 国产精品一区二区三区四区久久| 在线免费观看不下载黄p国产| 成人永久免费在线观看视频| www.色视频.com| 精品欧美国产一区二区三| 两性午夜刺激爽爽歪歪视频在线观看| 男女做爰动态图高潮gif福利片| 国内精品宾馆在线| 日韩成人伦理影院| 午夜a级毛片| 毛片女人毛片| 在线国产一区二区在线| www日本黄色视频网| 18禁在线无遮挡免费观看视频| 成人美女网站在线观看视频| 3wmmmm亚洲av在线观看| av女优亚洲男人天堂| 亚洲无线观看免费| 丰满的人妻完整版| 一进一出抽搐动态| 亚洲色图av天堂| 亚洲av成人av| 国产一级毛片在线| 九九在线视频观看精品| 国产一区二区亚洲精品在线观看| 国产精品伦人一区二区| 在线天堂最新版资源| 久久久精品欧美日韩精品| 欧美另类亚洲清纯唯美| 国产成人精品久久久久久| 丰满乱子伦码专区| 欧美极品一区二区三区四区| 国产精品1区2区在线观看.| 国国产精品蜜臀av免费| 麻豆乱淫一区二区| 三级男女做爰猛烈吃奶摸视频| 国产一区二区激情短视频| 午夜激情福利司机影院| 老熟妇乱子伦视频在线观看| 国产男人的电影天堂91| 国产v大片淫在线免费观看| 精品一区二区三区人妻视频| 日日干狠狠操夜夜爽| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 一本久久中文字幕| 欧美日韩国产亚洲二区| 成人特级黄色片久久久久久久| 边亲边吃奶的免费视频| 国产一区二区亚洲精品在线观看| 直男gayav资源| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 日本黄大片高清| 成人漫画全彩无遮挡| 久久久精品大字幕| 久久久久久久久久黄片| 久久久久久久久久久丰满| 五月伊人婷婷丁香| a级毛色黄片| 亚洲成人久久性| 亚洲av免费高清在线观看| 变态另类成人亚洲欧美熟女| 一区二区三区四区激情视频 | 久久久久久久久大av| 亚洲av不卡在线观看| 最好的美女福利视频网| 99热全是精品| 国产爱豆传媒在线观看| 久久久久九九精品影院| 九九在线视频观看精品| 久久午夜福利片| 婷婷精品国产亚洲av| 美女内射精品一级片tv| 99久久九九国产精品国产免费| 久久久精品欧美日韩精品| 联通29元200g的流量卡| 欧美精品国产亚洲| 国产色爽女视频免费观看| 久久这里只有精品中国| 嘟嘟电影网在线观看| 久久人人精品亚洲av| 99热这里只有是精品在线观看| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说 | 亚洲自拍偷在线| 热99re8久久精品国产| 在线观看av片永久免费下载| 亚洲欧美日韩高清专用| 国产老妇女一区| 最后的刺客免费高清国语| 九九在线视频观看精品| 一级毛片我不卡| 波野结衣二区三区在线| av卡一久久| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 国产精品99久久久久久久久| 久久久久久国产a免费观看| 国产精品麻豆人妻色哟哟久久 | 久久精品国产鲁丝片午夜精品| 国产极品天堂在线| 在线观看午夜福利视频| 老熟妇乱子伦视频在线观看| 日日摸夜夜添夜夜爱| 国产伦在线观看视频一区| 有码 亚洲区| 级片在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 日韩高清综合在线| 欧美+日韩+精品| 日韩强制内射视频| 中文字幕久久专区| 欧美精品国产亚洲| 亚洲欧美日韩高清在线视频| 中文精品一卡2卡3卡4更新| 精品久久久噜噜| 麻豆国产97在线/欧美| 啦啦啦观看免费观看视频高清| 日韩欧美一区二区三区在线观看| 女人被狂操c到高潮| 国产一区二区三区av在线 | 亚洲精品亚洲一区二区| 久久精品夜色国产| 中文字幕av成人在线电影| 午夜精品在线福利| 国语自产精品视频在线第100页| 最近中文字幕高清免费大全6| 一个人看视频在线观看www免费| 69av精品久久久久久| 国产精品一区二区在线观看99 | 日韩视频在线欧美| 天堂√8在线中文| 麻豆一二三区av精品| 国产精品爽爽va在线观看网站| 久久久久久久久中文| 亚洲av第一区精品v没综合| 网址你懂的国产日韩在线| 欧美xxxx黑人xx丫x性爽| 国产成人精品久久久久久| 欧美xxxx性猛交bbbb| 中文欧美无线码| 中文字幕制服av| 日韩精品有码人妻一区| 天堂影院成人在线观看| 国产一区亚洲一区在线观看| 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 亚洲成av人片在线播放无| 一区二区三区四区激情视频 | 一个人观看的视频www高清免费观看| 免费看光身美女| 日日摸夜夜添夜夜爱| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 精品人妻偷拍中文字幕| 韩国av在线不卡| 免费观看a级毛片全部| 久久精品国产亚洲av天美| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 久久久精品94久久精品| 少妇熟女aⅴ在线视频| 国产精品嫩草影院av在线观看| 亚洲精品日韩av片在线观看| 成人综合一区亚洲| 久久韩国三级中文字幕| 国产极品天堂在线| 亚洲在线自拍视频| 少妇猛男粗大的猛烈进出视频 | 直男gayav资源| 欧美性感艳星| 99久久久亚洲精品蜜臀av| 别揉我奶头 嗯啊视频| 欧美性感艳星| 日韩欧美 国产精品| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频,在线免费观看| 亚洲国产高清在线一区二区三| 精品日产1卡2卡| a级毛片a级免费在线| 九九在线视频观看精品| 91精品国产九色| 久久久精品94久久精品| 成人特级黄色片久久久久久久| 人妻久久中文字幕网| 少妇的逼好多水| 欧美日韩综合久久久久久| 亚洲精品456在线播放app| 国产黄a三级三级三级人| 一个人看的www免费观看视频| 麻豆av噜噜一区二区三区| 床上黄色一级片| 99视频精品全部免费 在线| 欧美色欧美亚洲另类二区| 久久人人爽人人爽人人片va| 欧美最新免费一区二区三区| 一级av片app| 综合色av麻豆|