• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    石墨片對環(huán)氧樹脂的熱學(xué)、力學(xué)和電學(xué)性能影響

    2015-03-15 07:25:02SubhraGantayatGyanaranjanPrustyDibyaRanjanRoutSaratSwain
    新型炭材料 2015年5期
    關(guān)鍵詞:熱學(xué)電學(xué)掃描電鏡

    Subhra Gantayat, Gyanaranjan Prusty, Dibya Ranjan Rout, Sarat K Swain

    (1.Department of Chemistry,Veer Surendra Sai University of Technology,Burla,Sambalpur768018,India;2.School of Applied Science(Physics),KIIT University,Bhubaneswar751024,India)

    石墨片對環(huán)氧樹脂的熱學(xué)、力學(xué)和電學(xué)性能影響

    Subhra Gantayat1,2, Gyanaranjan Prusty1, Dibya Ranjan Rout2, Sarat K Swain1

    (1.Department of Chemistry,Veer Surendra Sai University of Technology,Burla,Sambalpur768018,India;2.School of Applied Science(Physics),KIIT University,Bhubaneswar751024,India)

    采用溶液技術(shù)制備出膨脹石墨增強環(huán)氧樹脂復(fù)合材料。對石墨進(jìn)行化學(xué)改性以提高與環(huán)氧樹脂的相容性。采用XRD、FE-SEM和HR-TEM對環(huán)氧樹脂/膨脹石墨復(fù)合材料進(jìn)行表征。與環(huán)氧樹脂相比,添加質(zhì)量分?jǐn)?shù)9%膨脹石墨后,該復(fù)合材料的熱分解溫度從340℃升高至480℃,抗張應(yīng)力提高30%,導(dǎo)電率由10-15增加至10-5數(shù)量級。熱學(xué)、力學(xué)和電學(xué)性能的顯著提高,主要歸因于膨脹石墨納米片在環(huán)氧樹脂基體中的良好分散性,從而可用于廣泛的應(yīng)用領(lǐng)域。

    膨脹石墨;掃描電鏡;透射電鏡;導(dǎo)電率

    1 Introduction

    Polymer matrix composites are multi-phase materials produced by combining polymer resins with reinforcing fillers having improved properties in comparison with the matrix materials.Hence,different fillers are used to enhance the physical and mechanical properties of composites.Polymer matrix composites are of scientific and industrial interest because of their enhanced properties arising from the reinforceing function of nanofillers[1-4].Different conducting fillers such as carbon nanotubes and graphite have been extensively studied because of their ability to increase the mechanical,thermal and electrical properties of the native polymers[5,6].

    Epoxy resins are a class of thermoset materials available in various forms from low viscosity liquid to high melting solids,which are widely used as polymer matrices in composites,owing to their high strength,low shrinkage,excellent adhesion to substrates,chemical resistance and low cost.Most of polymers are generally electrical insulators with very low concentrations of free charge carriers.Thus they are non-conductive and transparent to electromagnetic radiations.This property made them incapable for the use as enclosures for electronic equipments.Hence, these limitations are the causes of growing research activities for electrically conducting polymers.Conducting polymers can be either inherently conductive or insulating polymers composited with conductive fillers.Conductive composites are used in light emitting devices,batteries,electromagnetic shielding andother functional applications[7-9].Conductive fillers such as carbon black,carbon nanotubes and graphite have been extensively investigated[10-16].These fillers effectively improve the electrical conductivity of the polymers.The significant increase in electrical conductivity with the filler content has been observed for most composites,which could be explained by the percolation transition from the formation of the conductive network[17].

    In comparison to carbon nanotubes,graphite continues to attract considerable attentions because of their mechanical and electrical properties,low density,easy processing and low cost.Graphite exists as a layered material and the layers are packed closely by Van der Waals′force.For an efficient utilization of graphite as filler in a polymer composite,its layers must be partly separated to obtain expanded graphite that is dispersed throughout the polymeric matrix. Also in its natural form,little reactive groups exist on the graphite and as a result,it is difficult to intercalate monomers into the graphite interlayer to form a composite.If the raw graphite is used as reinforcement,it is not possible to disperse graphite layers in epoxy matrix.The EG is prepared when raw graphite exposed to strong oxidizers such as nitric acid(HNO3), sulphuric acid(H2SO4)or potassium permanganate (KMnO4).In comparison to raw graphite,the EG sheets are heavily oxygenated having hydroxyl and epoxide functional groups on their basal planes,in addition to carbonyl and carboxyl groups located at the sheet edges.The presence of these functional groups makesthem strongly hydrophilic.EG can be readily dispersed in water and incorporated into polymer matrices with a help of these functional groups for the preparation of composites.Chen et al.[18]measured the tensile strength of the EG/polystyrene composite and found that its tensile strength is a little higher that of the pure polystyrene.Kim et al.[19]compared the thermal property of virgin polylactic acid withthat of the EG/polylactic acidcomposites,and found that the thermal stability of the composites increased with the EG content.Xiao et al.[20]measured the thermal property of the polystyrene/graphite composite and reported a thermal degradation temperature of the composite 20℃ higher than that of pure polystyrene.

    Though graphite was extensively investigated as filler in polymer matrix composites,EG was paid less attention.In the present study,the dispersion of EG in epoxy matrix to prepare EG/epoxy composites was investigated to reveal its influence on the mechanical, thermal and electrical properties of EG/epoxy composites.

    2 Experimental

    2.1 Materials

    Epoxy resin was purchased from Merck,India. Concentrated H2SO4and HNO3were analytical grade chemicals and used directly without any further purification.Graphite fine powder with an average diameter of 500 μm was purchased from Loba chemical Pvt.Ltd.,India for preparing the EG.

    2.2 Preparation of EG

    Raw graphite was first dried in a vacuum oven for 24 h at 100℃.Then a mixture of concentrated H2SO4and HNO3with a volume ratio of 4∶1 was added slowly to a glass flask containing graphite powder with vigorous stirring.After 24 h of reaction,the acid treated graphite powder was filtered and washed with deionised water until the pH value of the filtrate reached 6.4.After drying at 100℃ for 24 h,the resulting graphite intercalation compound was subjected to a thermal shock at 900℃ for one minute in a furnace to form the EG.

    2.3 Synthesis of EG/epoxy composites

    EG/epoxy composites were synthesized to have different contents of EG(3,6,and 9 wt%based on epoxy weight)by a solution mixing method.Calculated amount of epoxy and EG were separately dispersed in deionised water at ambient temperature via stirring for 0.5 h.The EG suspension was added to the epoxy solution and stirring was continued for 3 h. The resulting solution was centrifuged for 15 min and the resulting sample was dried in an oven at 50℃. The detail synthetic process is illustrated in Fig.1.

    Fig.1 Schematic representation for the preparation of EG/epoxy composite.

    2.4 Characterization

    X-ray diffraction(XRD)of the composites was carried out by a Rigaku X-ray diffractometer(Model No.P.DD966)with Cu Kα radiation at 40 kV and 150 mA.The morphology and dispersion of the EG in epoxy resin were investigated by using a field emission scanning electron microscope (JEOL-JSM-5800).A high resolution transmission electron microscope(Tec-nai 12,Philips)operating at 120 kV was used to study the dispersion of EG in epoxy matrix.Mechanical properties of the EG/epoxy composites were measured with ASTM-D-638-00 using an Instron testing machine(Model-5 567)and the test was performed at a rate of 50 mm/min with a load of 0.5 ton.The five specimens for each composition were used for measurement and average values are reported.The TGA analysis was carried out by taking the sample in the pan(8-10 mg)and the temperature was increased by 10℃ per minute and heated up to 800℃.Conducting measurment was carried out using LCR-Hi Tester,HOIKI after the sample being processed into petlet form.

    3 Results and discussion

    3.1 Structural Analysis

    The XRD patterns of raw graphite(RG),epoxy and the EG/epoxy composites are shown in Fig.2. The raw graphite exhibits a sharp diffraction peak at 2θ value of 26.36°.The peaks at 2θ values of 77°, 54°and 44°belong to epoxy resin and the peak at 2θ values of 26.36°is ascribed to graphite.All the above peaks of epoxy and graphite are present in the EG/epoxy composites confirm the formation of composites.Similarly,the FE-SEM image of EG is shown in Fig.3a.It is found that the EG changes into sheets with thickness about 60-70 nm.Fig.3b,c and d show the FE-SEM images of the EG/epoxy composites at 3%,6%and 9%of EG respectively. In all these micrographs,the white spots indicate the epoxy matrix,whereas,the dark spots represent the EG sheets.The good dispersion of EG sheet in epoxy matrix directly correlates with its effectiveness for improving mechanical,thermal and electrical properties, which is another indirect evidence for a better interfacial adhesion between epoxy resin and EG.The similar results have been reported in the earlier literatures[21,22].Due to the delamination nature of EG layers,epoxy molecules easily enter into the graphite layers to form an exfoliated structure.Fig.4a shows the HR-TEM image of the EG.The dispersion state of EG sheets in the HR-TEM of epoxy resin is shown in Fig.4b.Further,it is noticed that the EG sheets are distributed in the epoxy resin with some local agglomerations.

    3.2 Thermal properties

    Thermogravimetric analysis(TGA)is used to study the thermal properties of EG,epoxy and the EG/epoxy composites as shown in Fig.5.It is found that the thermal decomposition temperatures of the composites in all samples shift towards high temperatures as compared with that of virgin epoxy.The thermal degradation temperature for epoxy resin is 340℃ while those of the EG/epoxy composites are 360,440 and 480℃ at 3%,6%and 9%of EG respectively. So the addition of EG lowers the thermal degradation rate of epoxy matrix.The residual weight of the EG/ epoxy composites is higher than that of epoxy resin. The residual weight of the EG/epoxy composites are 8%,24%and 30%for the composites containing 3%,6%and 9%of EG respectively,whereas,in case of epoxy no residue is left.The high residual mass of the composites is due to strong compatibility and interaction of EG with epoxy resin.Thus,the increased thermal degradation temperature for the EG/ epoxy composites indicate the enhancement of thermal stability of epoxy resin by EG.Otherwise,EG is acting as a thermal stabilizer[23-25]for epoxy resin,which could have a wide range of potential applications.

    Fig.2 XRD patterns of Epoxy and EG/epoxy composite at different percentage of EG concentration and XRD of raw graphite(Inset).

    3.3 Mechanical properties

    Mechanicalpropertiesincluding extension at break,load at break,tensile stress and tensile strain of epoxy resin and its composites with different EG percentages are compared in Fig.6.The extension at break of the EG/epoxy composites decreases with the EG percentages(Fig.6(a)).It is interesting to note that extension at break is reduced by 3 times with an addition of 3%of EG.The load at break of the composites increases monotonically with the EG percentages.From Fig.6(b),load at break of the composites increases by approximately 6 times as compared with that of raw epoxy resin.It may be due to strong interfacial adhesion between EG and epoxy matrix. Further,it is observed that tensile stress increases with ithe EG percentages(Fig.6(c)).However,the tensile strain of the EG/epoxy composite at 9%of EG is reduced by 9 times in comparison with that of epoxy resin.A sudden fall of tensile strain of the composites is noticed by an addition of 3%of EG(Fig.6(d)). It may be due to the uniform dispersion of EG sheets within the epoxy matrix.Hence due to the rigidity of epoxy,EG sheets cannot be deformed by external stressin the composite specimen but act as stress concentration during the deformation process of the composites.From the results of mechanical properties,it is remarked that the dispersion state of EG sheetsin epoxy matrix played a vital role in decreasing the strain at break and increasing the tensile strength of the composites.

    Fig.3 FE-SEM images of(a)expanded graphite and EG/epoxy composite at graphite concentration of(b)3%,(c)6%,(d)9%.

    Fig.4 HR-TEM images of(a)expanded graphite(b)EG/epoxy composite at 9%of EG concentration.

    Fig.5 TGA curves of(a)epoxy,(b)EG/epoxy,3% (c)EG/epoxy,6%(d)EG/epoxy,9%(e)expanded graphite.

    3.4 Electrical conductivity

    Electrical conductivity of a composite generally depends upon the particle size,extent of dispersion and structure of conducting nanofillers as well as the properties of host polymers.The addition of conductive nanofillers to an insulating polymer can result in an electrically conductive composite,if the filler concentration exceeds the percolation threshold,which is defined as the minimum amount of filler required for the formation of a three dimensional conductive network within the polymer matrix.The EG/polymer composites exhibit a very low percolation threshold for electrical conductivity because of a large aspectratio and the nanoscale dimension of the EG in polymer matrix.

    Fig.6 Mechanical properties of EG/epoxy composites as a function of EG concentration for study of(a)extension at break(b)load at break(c)tensile stress at break(d)tensile strain at break.

    Fig.7 shows the variation of the electrical conductivity of the EG/epoxy composites as a function of EG content.The addition of EG within epoxy improves its conductivity significantly with a sharp transition from an electrical insulator to an electrical conductor.The conductivity as a function of EG content is plotted at constant frequency and it is found that the conductivity increases with the EG content from 3% to 9%.The increase in conductivity with EG content from 3%to 6%is used to determine the percolation threshold,a critical value at which a three dimensional conductive network is formed.The conductivity of epoxy is about 2.3×10-15S/cm in the initial stage, which is regarded as a typical insulator.The conductivity of the composites is about 2.1×10-5S/cm at 9% of EG,which is nearly a typical conductor. Hence,an incorporation of EG into epoxy resin increases the electrical conductivity significantly due to a good dispersion.The observations in this paper are in good agreement with those of our earlier reports[26,27].The epoxy resin composites reinforced by EG are good antistatic materials(conductivity~10-5S·cm-1).

    Fig.7 Electrical conductivities of the EG/epoxy composites as a function of EG content.

    4 Conclusions

    A series of EG/epoxy composites were prepared by a solution mixing method.The interaction of EG with epoxy matrix was investigated.The structure and morphology of the composites were studied by XRD and electron microscopy.The thermal,mechanical and electrical properties of epoxy resin are improved with increasing EG contents.In the EG/epoxy composites,EG sheets plays a vital role in decreasing the strain at break and increasing the tensile strength of the composites as compared with those of epoxy res-in.The thermal stability of epoxy resin is enhanced with increasing the EG percentages.The mechanical and thermal properties of epoxy are improved due to the strong interfacial adhesion of the EG with epoxy matrix.Moreover,the epoxy resin is converted into electrically conductive materials by dispersing EG sheets into epoxy matrix.

    Acknowledgements

    The authors are thankful to Department of Atomic Energy,BRNS,and Government of India for providing financial support under Grant OM#2008/20/ 37/5/BRNS/1936.Authors are also thankful to Dr. D.Das of Inter University Consortium,Kolkata,India for analysis of XRD.

    [1] Swain S K,Isayev A I.PA6/clay nano-composites by continuous sonication process[J].Appl Polym Sci,2009,114:2378-2387.

    [2] Sahoo P K,Samal R,Swain S K,et al.Synthesis of poly(butyl acrylate)/sodium silicate nanocomposite fire retardant[J]. Eur Polym J,2008,44:3522-3528.

    [3] Lapshine S,Swain S K,Isayev A I.Ultrasound aided extrusion process for preparation of polyolefin-clay nanocomposites[J]. Polym Eng Sci,2008,48:1584-1591.

    [4] Swain S K,Isayev A I.Effect of ultrasound on HDPE/clay nanocomposites:Rheology,structure and properties[J].Polymer, 2007,48:281-289.

    [5] Prusty G,Swain S K.Synthesis and characterization of conducting gas barrier polyacrylonitrile/graphite nanocomposites[J]. Polym Compos,2011,32:1336-1342.

    [6] Prusty G,Swain S K.Dispersion of expanded graphite as nanoplatelets in a copolymer matrix and its effect on thermal stability, electrical conductivity and permeability[J].New Carbon Materials,2012,27:271-277.

    (Prusty G,Swain S K.納米石墨片/共聚物復(fù)合材料及其耐熱、導(dǎo)電和氣密性[J].新型炭材料,2012,27:271-277.)

    [7] Ishigure Y,Iijima S,Ito H,et al.Electrical and elastic properties of conductor-polymer composites[J].J Mater Sci,1999, 34:2979-2985.

    [8] Pinto G,Martin A J.Conducting aluminium-filled nylon 6 composites[J].Polym Compos,2001,22:65-70.

    [9] Roldughin V I,Vysotskii V V.Percolation properties of metal filled polymer films,structure and mechanisms of conductivity[J].Prog Org Coat,2000,39:81-100.

    [10] Gabriel P,Cipriano L G,Ana J M.Polymer composites prepared by compression molding of a mixture of carbon black and nylon 6 powder[J].Polym Comp,1999,20:804-808.

    [11] Du F,Scogna R C,Zhou W,et al.Nanotube networks in polymer nanocomposites:Rheology and electrical conductivity[J].Macromolecules,2004,37:9048-9055.

    [12] EI-Tantawy F,Abdel-Aal N,Al-Hajry A,et al.New antistatic charge and electromagnetic shielding effectiveness from conductive epoxy resin/plasticized carbon black composites[J]. Polym Compos,2008,29:125-132.

    [13] EI-Tantawy F.Plasticized/graphite reinforced phenolic resin composites and their application potential[J].J Appl Polym Sci,2007, 104:697-709.

    [14] EI-Tantawy F.Development of novel functional conducting elastomer blends containing butyl rubber and low-density polyethylene for current switching,temperature sensor,and EMI shielding effectiveness applications[J].J Appl Polym Sci, 2005,97:1125-1138.

    [15] Chen G,Weng W,Wu D,et al.Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J].Carbon,2004,42:753-759.

    [16] Chen G,Weng W,Wu D C.PMMA/graphite nanosheets composite and its conducting properties[J].Eur Polym J,2003, 39:2329-2335.

    [17] Mamunya E P,Davidenko V V,Lebedev E V.Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black[J].Compos Inter, 1996,4:169-176.

    [18] Chen G H,Wu D J,Weng W G,et al.Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization[J].Polym Int,2001,50:980-985.

    [19] Kim I H,Jeong Y G.Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability,mechanical modulus, and electrical conductivity[J].J Polym Sci:Part B Phys, 2010,48:850-858.

    [20] Xiao M,Sun L,Liu J,et al.Synthesis and properties of polystyrene/graphite nanocomposites[J].Polymer,2002,43: 2245-2248.

    [21] Aiping Yu,Palanisamy R,Mikhail E I,et al.Graphite nanoplatelet-epoxy composite thermal interface materials[J].The Journal of Physical Chemistry C,2007,111:7565-7569.

    [22] Swain S K,Prusty G,Ray A S,et al.Dispersion of nanoplatelets of graphite on PMMA matrix by in situ polymerisation technique[J].Journal of Experimental Nanoscience,2014,9:240-248.

    [23] Kisku S K,Swain S K.Synthesis and characterization of chitosan/boron nitride composite[J].Journal of the American Ceramic Society,2012,95:2753-2757.

    [24] Prusty G,Das R,Swain S K.Influence of functionalized single-walled carbon nanotubes on morphology,conducting and oxygen barrier properties of poly(acrylonitrile-co-starch)[J]. Composites:Part B,2014,62:236-241.

    [25] Xiao P,Xiao M,Gong K.Preparation of exfoliated graphite/ polystyrene composite by polymerization-filling technique[J]. Polymer,2001,42:4813-4816.

    [26] Prusty G,Swain S K.Dispersion of ZrO2nanoparticles in polyacrylonitrile:Preparation of thermally-resistant electrically-conductive oxygen barrier nanocomposites[J].Material Science in Semiconductor Processing,2013,16:2039-2043.

    [27] Ma P C,Siddiqui N A,Marom G,et al.Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:A review[J].Composites:Part A,2010,41:1345-1367.

    Expanded graphite as a filler for epoxy matrix composites to improve their thermal,mechanical and electrical properties

    Subhra Gantayat1,2, Gyanaranjan Prusty1, Dibya Ranjan Rout2, Sarat K Swain1
    (1.Department of Chemistry,Veer Surendra Sai University of Technology,Burla,Sambalpur768018,India; 2.School of Applied Science(Physics),KIIT University,Bhubaneswar751024,India)

    Expanded graphite(EG)-reinforced epoxy composites were prepared by a solution mixing method.The structure and morphology of the EG/epoxy composites were investigated by XRD,FE-SEM and HR-TEM.The EG prepared by acid oxidation and thermal expansion shows good compatibility with the epoxy resin that enters the EG layers to decrease their thickness to 60-70 nm,owing to its abundant oxygen-containing functional groups.With the addition of 9 wt%EG,the thermal decomposition temperature of the composite increases from 340 to 480℃,the electrical conductivity from 10-15 to 10-5 S/cm and the tensile stress is increased by more than 30%.These improvements are attributed to the good dispersion of EG sheets in the epoxy matrix.

    Expanded graphite;FE-SEM;HR-TEM;Conductivity

    Sarat K Swain.E-mail:swainsk2@yahoo.co.in

    TB332

    A

    Sarat K Swain.E-mail:swainsk2@yahoo.co.in

    1007-8827(2015)05-0432-06

    10.1016/S1872-5805(15)60200-1

    Received date:2015-03-05; Revised date:2015-10-08

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    熱學(xué)電學(xué)掃描電鏡
    電學(xué)
    熱學(xué)
    第2講 熱學(xué)專題復(fù)習(xí)
    對一個電學(xué)故障題的思考
    第2講 熱學(xué)知識專題復(fù)習(xí)
    掃描電鏡能譜法分析紙張的不均勻性
    智富時代(2018年7期)2018-09-03 03:47:26
    第2講 熱學(xué)知識專題復(fù)習(xí)
    掃描電鏡在雙金屬層狀復(fù)合材料生產(chǎn)和研究中的應(yīng)用
    電線電纜(2017年4期)2017-07-25 07:49:48
    Lesson Seventy-four An atypical presentation of a typical arrhythmia
    巧用電學(xué)知識 妙解環(huán)保問題
    成人特级av手机在线观看| 亚洲在线观看片| 欧美色视频一区免费| 亚洲内射少妇av| 欧美精品国产亚洲| 亚洲成人中文字幕在线播放| 精品人妻偷拍中文字幕| 亚洲人成网站在线播放欧美日韩| 国语自产精品视频在线第100页| 亚洲,欧美,日韩| 91在线观看av| 在线国产一区二区在线| 国产亚洲精品av在线| 免费一级毛片在线播放高清视频| 国产综合懂色| 一本精品99久久精品77| 久久久久久久久久久丰满 | 在线免费观看的www视频| 免费无遮挡裸体视频| 中文字幕人妻熟人妻熟丝袜美| 人妻久久中文字幕网| 如何舔出高潮| 欧美丝袜亚洲另类 | 校园春色视频在线观看| 午夜激情福利司机影院| 美女xxoo啪啪120秒动态图| 国产一区二区三区在线臀色熟女| 中文字幕熟女人妻在线| 乱人视频在线观看| 成年女人永久免费观看视频| 国产一区二区激情短视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久午夜电影| 热99在线观看视频| 久久精品影院6| 丰满的人妻完整版| 欧美三级亚洲精品| 成年女人看的毛片在线观看| 亚洲一区二区三区色噜噜| 日韩欧美国产一区二区入口| 男人舔奶头视频| 日本免费一区二区三区高清不卡| 免费观看在线日韩| 动漫黄色视频在线观看| 成人av一区二区三区在线看| 波多野结衣高清无吗| ponron亚洲| av天堂在线播放| 午夜福利高清视频| 悠悠久久av| 久久人妻av系列| 在线观看午夜福利视频| 99久久精品热视频| 亚洲欧美日韩东京热| 18禁黄网站禁片午夜丰满| 欧美性猛交黑人性爽| 日韩人妻高清精品专区| 欧洲精品卡2卡3卡4卡5卡区| 高清毛片免费观看视频网站| 真人一进一出gif抽搐免费| 男插女下体视频免费在线播放| 一个人观看的视频www高清免费观看| 欧美性感艳星| 久久久久久大精品| 国产精品精品国产色婷婷| 精品久久国产蜜桃| 色综合站精品国产| 国产免费av片在线观看野外av| 中文亚洲av片在线观看爽| 黄色丝袜av网址大全| 国模一区二区三区四区视频| 五月伊人婷婷丁香| 搡老熟女国产l中国老女人| 99久国产av精品| 午夜精品久久久久久毛片777| 国产一区二区激情短视频| 一a级毛片在线观看| 国产男靠女视频免费网站| 嫩草影视91久久| 一进一出抽搐gif免费好疼| 天天一区二区日本电影三级| 内射极品少妇av片p| 亚洲无线观看免费| 日韩在线高清观看一区二区三区 | 日本欧美国产在线视频| 婷婷丁香在线五月| 国产高清不卡午夜福利| 国产精品,欧美在线| 日本一二三区视频观看| 黄色欧美视频在线观看| 色在线成人网| 日韩高清综合在线| 赤兔流量卡办理| 日韩欧美国产一区二区入口| 欧美在线一区亚洲| 精品国内亚洲2022精品成人| 91午夜精品亚洲一区二区三区 | 看十八女毛片水多多多| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| av在线老鸭窝| 网址你懂的国产日韩在线| 人人妻人人澡欧美一区二区| 久久久久久久午夜电影| 美女cb高潮喷水在线观看| 亚洲人成网站在线播| 特级一级黄色大片| 99国产极品粉嫩在线观看| 国产精品,欧美在线| 97热精品久久久久久| 午夜福利成人在线免费观看| 熟妇人妻久久中文字幕3abv| 久久国产乱子免费精品| 欧美性感艳星| 久久草成人影院| 国产在线男女| 亚洲精品亚洲一区二区| 毛片女人毛片| 91麻豆av在线| 天天一区二区日本电影三级| 亚洲乱码一区二区免费版| 国产亚洲91精品色在线| 午夜精品久久久久久毛片777| 九色国产91popny在线| 亚洲精品一卡2卡三卡4卡5卡| 少妇人妻一区二区三区视频| 最近中文字幕高清免费大全6 | 日韩欧美国产在线观看| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 亚洲欧美精品综合久久99| 联通29元200g的流量卡| 日日啪夜夜撸| 亚洲欧美日韩卡通动漫| 麻豆av噜噜一区二区三区| 久久久久久久久中文| 亚洲一区二区三区色噜噜| 亚洲av免费在线观看| 久久久久久久精品吃奶| 国产久久久一区二区三区| 又黄又爽又免费观看的视频| 午夜福利18| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩东京热| 美女大奶头视频| 精品久久久久久久久av| 午夜福利视频1000在线观看| 久久人妻av系列| 国产精品98久久久久久宅男小说| 亚洲国产精品合色在线| 亚洲第一区二区三区不卡| 亚洲第一区二区三区不卡| 91麻豆精品激情在线观看国产| 亚洲黑人精品在线| 免费看日本二区| 久久精品国产亚洲av涩爱 | 少妇裸体淫交视频免费看高清| 国产人妻一区二区三区在| 特大巨黑吊av在线直播| av在线亚洲专区| 神马国产精品三级电影在线观看| 国产精品国产三级国产av玫瑰| 亚洲五月天丁香| 女人被狂操c到高潮| 国产亚洲精品综合一区在线观看| av在线蜜桃| 亚洲av免费在线观看| 日本 欧美在线| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱 | 久久久久久大精品| 亚洲成a人片在线一区二区| 亚洲人成网站高清观看| 亚洲av五月六月丁香网| 午夜a级毛片| a级毛片免费高清观看在线播放| 国产精华一区二区三区| 美女被艹到高潮喷水动态| 人妻夜夜爽99麻豆av| 国产精品国产三级国产av玫瑰| 中国美女看黄片| 欧美极品一区二区三区四区| 色综合色国产| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| 久久草成人影院| 欧美精品啪啪一区二区三区| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 韩国av在线不卡| 亚洲成av人片在线播放无| 国产精品综合久久久久久久免费| 超碰av人人做人人爽久久| 久久精品国产亚洲网站| 人妻久久中文字幕网| 欧美最新免费一区二区三区| 国产精品女同一区二区软件 | 黄色女人牲交| 成人二区视频| 欧美一区二区精品小视频在线| 欧美日韩中文字幕国产精品一区二区三区| 中文在线观看免费www的网站| 神马国产精品三级电影在线观看| 亚洲最大成人手机在线| 亚洲,欧美,日韩| 99热只有精品国产| 性欧美人与动物交配| 亚洲电影在线观看av| 欧美一区二区亚洲| 内射极品少妇av片p| 热99在线观看视频| 色视频www国产| 小说图片视频综合网站| 狠狠狠狠99中文字幕| 亚洲三级黄色毛片| 香蕉av资源在线| 很黄的视频免费| 一个人看的www免费观看视频| 国产一区二区在线av高清观看| 美女高潮的动态| 夜夜看夜夜爽夜夜摸| 超碰av人人做人人爽久久| 国产高清三级在线| 国产真实伦视频高清在线观看 | 99国产极品粉嫩在线观看| 97热精品久久久久久| 在线观看舔阴道视频| 亚洲av美国av| 干丝袜人妻中文字幕| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 亚洲三级黄色毛片| 久久中文看片网| 色视频www国产| 动漫黄色视频在线观看| а√天堂www在线а√下载| 成人综合一区亚洲| 久久99热这里只有精品18| 97超级碰碰碰精品色视频在线观看| 又紧又爽又黄一区二区| 嫩草影院新地址| 啦啦啦观看免费观看视频高清| 在线观看一区二区三区| 色视频www国产| av在线蜜桃| 91久久精品国产一区二区成人| 日日夜夜操网爽| 国产高清激情床上av| 99热6这里只有精品| 小说图片视频综合网站| 亚洲av一区综合| 淫妇啪啪啪对白视频| 日韩中字成人| 色视频www国产| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 欧美人与善性xxx| 长腿黑丝高跟| 国产又黄又爽又无遮挡在线| 最新中文字幕久久久久| 男人狂女人下面高潮的视频| 神马国产精品三级电影在线观看| 午夜爱爱视频在线播放| 色哟哟哟哟哟哟| 亚洲黑人精品在线| 免费看光身美女| 亚洲av日韩精品久久久久久密| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 色视频www国产| 国产免费一级a男人的天堂| 啪啪无遮挡十八禁网站| 内射极品少妇av片p| 99在线人妻在线中文字幕| 国产精品永久免费网站| 国产不卡一卡二| 无人区码免费观看不卡| 日韩欧美 国产精品| 一边摸一边抽搐一进一小说| 精品福利观看| 两个人视频免费观看高清| 色综合婷婷激情| 国产免费av片在线观看野外av| 夜夜夜夜夜久久久久| 一进一出抽搐gif免费好疼| 久久久久国内视频| 欧美不卡视频在线免费观看| 欧美日韩乱码在线| 日日摸夜夜添夜夜添av毛片 | 亚洲精华国产精华液的使用体验 | 搡女人真爽免费视频火全软件 | 蜜桃久久精品国产亚洲av| 国产亚洲精品久久久久久毛片| 精品午夜福利在线看| 男人的好看免费观看在线视频| 一本精品99久久精品77| 亚洲经典国产精华液单| 搡老岳熟女国产| 少妇的逼好多水| 毛片女人毛片| 中文字幕久久专区| 国产极品精品免费视频能看的| 丰满的人妻完整版| 99久久无色码亚洲精品果冻| 国产视频内射| 免费看光身美女| 亚洲av.av天堂| 舔av片在线| 日本撒尿小便嘘嘘汇集6| 国产探花极品一区二区| 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 精品人妻一区二区三区麻豆 | 男人的好看免费观看在线视频| 午夜福利成人在线免费观看| 尾随美女入室| 男人舔奶头视频| 成年女人永久免费观看视频| 免费在线观看成人毛片| 国产欧美日韩精品一区二区| 此物有八面人人有两片| 欧美日韩乱码在线| 日韩欧美在线二视频| 永久网站在线| 91久久精品国产一区二区三区| 久久久国产成人精品二区| 国产毛片a区久久久久| 亚洲av.av天堂| 国产精品一区www在线观看 | 天堂√8在线中文| 国产麻豆成人av免费视频| 18+在线观看网站| 免费看a级黄色片| 最近中文字幕高清免费大全6 | 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 国产女主播在线喷水免费视频网站 | 日韩精品中文字幕看吧| 亚洲精品亚洲一区二区| 日本a在线网址| 日韩欧美在线二视频| 九九在线视频观看精品| 久久人人爽人人爽人人片va| 一边摸一边抽搐一进一小说| 性欧美人与动物交配| 日本-黄色视频高清免费观看| 3wmmmm亚洲av在线观看| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 国产男人的电影天堂91| 干丝袜人妻中文字幕| 亚洲电影在线观看av| 亚洲狠狠婷婷综合久久图片| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 精品久久久久久久末码| 国产精品野战在线观看| 日韩一本色道免费dvd| 免费观看人在逋| 亚洲人成网站高清观看| 国产真实伦视频高清在线观看 | 欧美最新免费一区二区三区| 成年女人永久免费观看视频| 欧美成人免费av一区二区三区| 看十八女毛片水多多多| 女生性感内裤真人,穿戴方法视频| 91精品国产九色| 91久久精品电影网| 成人午夜高清在线视频| 少妇的逼水好多| 亚洲综合色惰| 男人狂女人下面高潮的视频| 老熟妇仑乱视频hdxx| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| 免费av毛片视频| 久久久精品欧美日韩精品| 国产精品一区二区免费欧美| 久久久国产成人免费| 欧美最黄视频在线播放免费| 国内揄拍国产精品人妻在线| 99在线视频只有这里精品首页| 亚洲av二区三区四区| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件 | 国产精品自产拍在线观看55亚洲| 老女人水多毛片| 美女免费视频网站| 日本 欧美在线| 国产亚洲精品av在线| 国产精品av视频在线免费观看| 亚洲人与动物交配视频| 又紧又爽又黄一区二区| 欧美一区二区亚洲| 国产av一区在线观看免费| 人人妻,人人澡人人爽秒播| 亚洲四区av| 少妇熟女aⅴ在线视频| 亚洲熟妇熟女久久| 免费黄网站久久成人精品| 神马国产精品三级电影在线观看| 午夜免费激情av| 黄色一级大片看看| a级毛片a级免费在线| 国产aⅴ精品一区二区三区波| 22中文网久久字幕| 岛国在线免费视频观看| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 俺也久久电影网| 亚洲无线观看免费| 亚洲国产欧洲综合997久久,| 亚洲欧美精品综合久久99| 久久热精品热| 在线观看午夜福利视频| 伦精品一区二区三区| 在线免费观看的www视频| 蜜桃亚洲精品一区二区三区| 亚洲成人久久性| 性插视频无遮挡在线免费观看| 亚洲中文日韩欧美视频| 精品一区二区免费观看| 色视频www国产| 两个人的视频大全免费| 丝袜美腿在线中文| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 老司机福利观看| 男人舔奶头视频| 99久久精品国产国产毛片| 欧美精品啪啪一区二区三区| 亚洲最大成人av| 免费人成在线观看视频色| 国产精品一区二区三区四区久久| 少妇的逼水好多| 天美传媒精品一区二区| 精品不卡国产一区二区三区| 能在线免费观看的黄片| 成人三级黄色视频| 亚洲天堂国产精品一区在线| 琪琪午夜伦伦电影理论片6080| 国产精品亚洲美女久久久| 少妇猛男粗大的猛烈进出视频 | 日日摸夜夜添夜夜添av毛片 | 身体一侧抽搐| aaaaa片日本免费| eeuss影院久久| 日本三级黄在线观看| 国产精品人妻久久久影院| 中文字幕高清在线视频| 久久6这里有精品| 99视频精品全部免费 在线| 成年人黄色毛片网站| 男人舔奶头视频| 91精品国产九色| 一进一出好大好爽视频| 联通29元200g的流量卡| 制服丝袜大香蕉在线| 国语自产精品视频在线第100页| 午夜福利视频1000在线观看| 午夜福利在线在线| 欧美日韩精品成人综合77777| 亚洲av免费高清在线观看| 在线观看av片永久免费下载| 又爽又黄无遮挡网站| 在线观看一区二区三区| 国产 一区 欧美 日韩| 成年女人永久免费观看视频| 欧美精品啪啪一区二区三区| 久久国内精品自在自线图片| 午夜福利高清视频| 精品日产1卡2卡| 97超视频在线观看视频| 亚洲成av人片在线播放无| 91久久精品国产一区二区成人| av.在线天堂| 非洲黑人性xxxx精品又粗又长| 国产 一区精品| 亚洲第一电影网av| 国产精品三级大全| 人妻制服诱惑在线中文字幕| 久久午夜亚洲精品久久| 亚洲真实伦在线观看| 国产久久久一区二区三区| 久久精品影院6| 亚洲,欧美,日韩| 最后的刺客免费高清国语| 国产乱人视频| 国产v大片淫在线免费观看| 免费av毛片视频| 精品久久久久久久人妻蜜臀av| 日日干狠狠操夜夜爽| 国产精品久久久久久久电影| 超碰av人人做人人爽久久| 成人一区二区视频在线观看| 91在线精品国自产拍蜜月| 亚洲成人免费电影在线观看| 中文字幕精品亚洲无线码一区| 亚洲成人中文字幕在线播放| 精品久久久久久久久久免费视频| 国产精品人妻久久久影院| 日日摸夜夜添夜夜添av毛片 | 大型黄色视频在线免费观看| 精品久久久久久成人av| 国产一区二区在线av高清观看| 欧美精品啪啪一区二区三区| 日韩亚洲欧美综合| 人人妻,人人澡人人爽秒播| 亚洲不卡免费看| 长腿黑丝高跟| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区精品| 国产真实伦视频高清在线观看 | 哪里可以看免费的av片| 欧美绝顶高潮抽搐喷水| 久久九九热精品免费| 男人舔奶头视频| 欧美另类亚洲清纯唯美| 国产精品三级大全| h日本视频在线播放| 成人av在线播放网站| 午夜福利欧美成人| 美女被艹到高潮喷水动态| 99国产精品一区二区蜜桃av| 成人av一区二区三区在线看| 校园春色视频在线观看| 国产一区二区亚洲精品在线观看| 精品福利观看| 午夜激情福利司机影院| 亚洲av.av天堂| 国产亚洲精品av在线| www.www免费av| 日本五十路高清| 级片在线观看| 一级毛片久久久久久久久女| 国产极品精品免费视频能看的| 性欧美人与动物交配| 欧美黑人欧美精品刺激| 日韩国内少妇激情av| 亚洲欧美日韩高清专用| 欧美bdsm另类| 国产在线男女| 久久久久国内视频| 村上凉子中文字幕在线| 国产高清三级在线| 69人妻影院| 一进一出抽搐gif免费好疼| 99热这里只有精品一区| 国产一区二区激情短视频| 国产乱人伦免费视频| 中文字幕精品亚洲无线码一区| 他把我摸到了高潮在线观看| 色5月婷婷丁香| 国内精品宾馆在线| 国产 一区精品| 国产探花在线观看一区二区| 一个人观看的视频www高清免费观看| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 淫秽高清视频在线观看| 欧美区成人在线视频| 干丝袜人妻中文字幕| 免费高清视频大片| 又黄又爽又免费观看的视频| 国产麻豆成人av免费视频| 久久久成人免费电影| 中国美白少妇内射xxxbb| 给我免费播放毛片高清在线观看| 亚洲成人中文字幕在线播放| 中文字幕久久专区| 国产精品久久久久久av不卡| av天堂在线播放| 精品久久久久久久久久免费视频| 亚洲av熟女| 97碰自拍视频| 国产高清三级在线| 亚洲av熟女| 久久欧美精品欧美久久欧美| 精品人妻一区二区三区麻豆 | 午夜免费激情av| 一级a爱片免费观看的视频| 国产精品野战在线观看| 日韩欧美精品免费久久| 亚洲国产精品sss在线观看| 欧美潮喷喷水| 日韩欧美精品免费久久| 日本色播在线视频| 欧美潮喷喷水| 日韩欧美精品免费久久| 一级a爱片免费观看的视频| a级一级毛片免费在线观看| 性色avwww在线观看| 一级a爱片免费观看的视频| 午夜视频国产福利| 午夜福利视频1000在线观看| 一a级毛片在线观看| 国产精品人妻久久久久久| 亚洲最大成人手机在线| 国内揄拍国产精品人妻在线| 亚洲国产日韩欧美精品在线观看| 男人和女人高潮做爰伦理| 搡女人真爽免费视频火全软件 | 小说图片视频综合网站| 观看免费一级毛片| 少妇裸体淫交视频免费看高清| 91久久精品电影网| 亚洲天堂国产精品一区在线| 91在线精品国自产拍蜜月| 久久欧美精品欧美久久欧美| 精品一区二区三区av网在线观看| 夜夜爽天天搞| 国产av在哪里看| 啦啦啦观看免费观看视频高清|