• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CVD生長多壁碳納米管的拉曼光譜徑向呼吸振動模式觀察

    2015-03-15 07:24:58ValeriyBolotovVasiliyKanEgorKnyazevPeterKorusenkoSergeyNesovYuriyStenkinViktorSachkovIrinaPonomareva
    新型炭材料 2015年5期
    關(guān)鍵詞:能譜儀透射電鏡曼光譜

    Valeriy V.Bolotov, Vasiliy E.Kan, Egor V.Knyazev, Peter M.Korusenko, Sergey N.Nesov, Yuriy A.Sten`kin, Viktor A.Sachkov, Irina V.Ponomareva

    (Omsk Scientific Center of Siberian Branch Russian Academy of Sciences,Karl Marx Avenue,15,Omsk 644024,Russian Federation)

    CVD生長多壁碳納米管的拉曼光譜徑向呼吸振動模式觀察

    Valeriy V.Bolotov, Vasiliy E.Kan, Egor V.Knyazev, Peter M.Korusenko, Sergey N.Nesov, Yuriy A.Sten`kin, Viktor A.Sachkov, Irina V.Ponomareva

    (Omsk Scientific Center of Siberian Branch Russian Academy of Sciences,Karl Marx Avenue,15,Omsk 644024,Russian Federation)

    采用拉曼光譜儀、透射電鏡、俄歇能譜儀、X射線光電子能譜儀等研究在SiO2/Si基底上化學(xué)沉積的多壁碳納米管(MWCNTs)經(jīng)390℃的空氣中熱處理120 min前后與HCl溶液化學(xué)處理前后的結(jié)構(gòu)變化情況。拉曼光譜集中測試低頻(250-300 cm-1)帶。結(jié)果表明,經(jīng)熱處理和化學(xué)處理后,在250-300 cm-1形成的拉曼帶在峰位和半寬幾乎沒變。由透射電鏡可知,小直徑碳納米管的內(nèi)徑值與拉曼光譜測試結(jié)果一致。這些結(jié)果表明,低頻帶產(chǎn)生于小直徑碳納米管的內(nèi)壁中碳原子的徑向呼吸振動。

    碳納米管;徑向振動模式;拉曼;化學(xué)氣相沉積;顯微鏡

    1 Introduction

    The properties of CNT layers are in many respects defined by the properties of graphene layers forming CNT walls.Yet,the 1D structure of carbon nanotubes brings about additional individual features. For instance,the Raman spectrum of single-walled CNTs(SWCNTs)normally exhibits a characteristic intricately shaped G-band,and it also points to the presence of the so-called Radial Breathing Mode (RBM)in the CNT oscillation spectrum[1].In the previously reported studies,the RBM Raman band of SWCNTs was given special attention.This band,originating from the silent A1gtangential mode of graphene,becomes Raman-active in curved graphene sheets and in particular,in graphene sheets rolled up in nanotubes.Theoretical calculations and experimental studies show that the spectral position of the band varies in inverse proportion to nanotube diameter[1]. The RBM band appears not only in the Raman spectra of SWCNTs,but it was also observed in the Raman spectra of multi-walled carbon nanotubes(MWCNTs)[2-5].

    RBM band has been observed in the Raman spectra of high quality MWCNTs grown by arc-discharge for example[2,3].However,the low-frequency band originating from radial modes has been observed also in the Raman spectra of MWCNTs grown by chemical vapor deposition(CVD)[4,5].At present, the interest to understanding of the origin and properties of the radial modes in MWCNT still remains[6].

    We detected the low-frequency band at 250-300 cm-1in the Raman spectra of an oriented CVD-grown MWCNTs.Our samples were grown using iron as catalyst.It is known that the CVD-grown MWCNTs are more defective as compared with those grown by arc-discharge ones.Moreover,characteristic Raman peaks of iron oxides lie in the same spectral region.This fact impedes analysis of the MWCNT Raman spectra.The earlier investigations devoted to the study of the low-frequency band in the MWCNT Raman spectra[2-5]were performed with the MWCNT grown by arc-discharge,or didn`t take into account of a presence of catalyst particles,or used the individual purified MWCNT.

    The purpose of the present study was to examine the nature of the 250-300 cm-1Raman band in CVD-grown nitrogen-doped MWCNT layers with complex composition of MWCNTs,iron catalyst and contaminants.

    2 Experimental

    The MWCNT layers were grown on SiO2/Si substrates with CVD method that was proposed by Kudashov et al.at the Nikolaev Institute of Inorganic Chemistry SB RAS.Detailed experimental procedures are given elsewhere[7].In this method,acetonitrile was used as the carbon and nitrogen precursor,and Fe particles obtained via ferrocene decomposition as the catalysts.As-grown MWCNT layers were doped with nitrogen up to a concentration of 1-2 at.%[7].

    A thermal annealling was performed in a tubefurnace in air ambient at 390℃.A chemical treatment was used to purify the MWCNTs by immersing them in a concentrated HCl acid solution(30%)for 60 h,followed by rinsing with distilled water and drying in air.

    The Raman spectra of the samples were obtained from a Bruker RFS 100/S Fourier spectrometer(Nd: YAG laser,excitation wavelength λ=1.064 μm). The measurement was performed with 3 cm-1spectral resolution in a backscattering mode at room temperature.In analysing the low-frequency region of the spectra,the spectra were normalized by the intensity of the most intense peak at 287 cm-1.

    The morphology and structure of the MWCNT layers were investigated using a JEOL JSM 6610-LV scanning electron microscope(SEM)and a JEOL JEM 2100 transmission electron microscope(TEM). Energy-dispersive spectra(EDS)were obtained using an INKA-250 Oxford Instruments equipped with a JEOL JEM 2100 microscope.

    2.1 兩組營養(yǎng)指標(biāo)變化情況 術(shù)后第4 d、第7 d ERAS組白蛋白值較傳統(tǒng)組高,且差異具有統(tǒng)計學(xué)意義(P<0.05)。術(shù)后第4 d ERAS組前白蛋白值較傳統(tǒng)組高,且差異具有統(tǒng)計學(xué)意義(P<0.05)。兩組病人的血紅蛋白值,差異無統(tǒng)計學(xué)意義(P>0.05)。具體見表2~表4。

    The element analysis was performed under ultrahigh vacuum conditions on an OPC 200 Auger spectrometer and on an EA-150 X-ray photoelectron spectrometer(XPS)with AlKα-radiation.Both spectrometers were component parts of a Riber analytical complex.

    3 Results and discussion

    The SEM image taken from our samples shows the presence of 10 to 15 μm thick CNT layers formed by CNTs oriented normal to the substrates.The diameters of CNTs are from 5 to 100 nm(Fig.1).

    Fig.1 SEM image of an as-grown MWCNT layer.

    The high-resolution TEM(HR-TEM)image reveals a bamboo-like multi-walled structure of the nanotubes(Fig.2).This structure is characteristic for nitrogen-doped CNTs[8].The outer surface of the MWCNTs is covered by amorphous carbon uniformly distributed over the nanotube surface.Also,a large amount of round particles is observed at the ends of MWCNTs(Fig.2).The EDA analysis of the particles has proved the presence of iron in them.So the catalyst iron particles are involved in the CNT growth process.

    Apart from the 250-300 cm-1Raman band,the Raman spectra of MWCNT layers exhibit the socalled D-and G-bands at 1 270 and 1 592 cm-1,respectively,in the 1 000-3 000 cm-1region,and the defect-induced M-band at 1 740 cm-1and G′-band at 2 540 cm-1(Fig.3)[9,10]are also observed.In the middle range of the spectrum,a broad band at 1 070 cm-1is observed in Fig.3,this band is not shown as it is subtracted from the measured spectrum for making other features visible more distinctly.Most likely,the band at 1 070 cm-1is due to the presence of amorphous carbon in the MWCNT layers[11], and also to the presence of contaminating products from an incomplete pyrolysis of precursor[12,13].In the low-frequency region,a sharp band at 250-300 cm-1is detected.The Raman spectra of the heat-treated samples exhibit a sharp peak at 303 cm-1due to light scattering by acoustic phonons in silicon substrate[14].

    Fig.2 HR-TEM image of an as-grown MWCNT.

    There are many peaks involved in the low frequency range(250-350 cm-1)of the spectrum.The most prominent one is located at about 287 cm-1(Fig. 3 and Table 1).It should be noted here that the RBM is normally manifested in the Raman spectra of singlewalled CNTs[1]while our samples,according to SEM and TEM data,are multi-walled CNTs with outer CNT diameters ranging from 5 to 100 nm(Fig.2). It is known,however,that the RBM band can be observed in the Raman spectrum of MWCNT layers, too.In the latter case,this band is due to radial oscillations of inner or outer CNT walls[2],which allows an estimation for the diameter of single-walled nanotubes with the equation:

    Where ω0iis the spectral position of the RBM peak and diis the nanotube diameter.

    Fig.3 Raman spectrum of an as-grown

    MWCNT layer.Symbol*indicates the investigated band.

    In the model yielding the latter relation,oscillations of an SWCNT are adopted as a basis for the description of the oscillations of the inner graphene wall in isolated MWCNTs.The impact of other graphene layers on the oscillations of the inner MWCNT wall is assumed to be roughly the same as the impact produced on such oscillations by the neighboring nanotubes in SWCNT bundles.This assumption yields a diameter estimation error of 0.3 nm[1].

    The RBM band in the Raman spectra of MWCNT layers was previously observed in good-quality samples obtained by the arc-discharge method[2].The structure of arc-discharge grown MWCNTs noticeably differs from the CVD grown ones.The CVD grown ones contain a significant amount of defects and contaminants.Furthermore the nitrogen-doping of MWCNTs result in a characteristic bamboo-like structure of the walls[15].Since our MWCNT samples were obtained with CVD method,they could also contain iron particles.Iron and iron oxides display characteristic peaks in the low-frequency range ofthe spectrum[16-18].Below,we discuss the origin of the 250-300 cm-1Raman band in our samples based on the following experimental observations:

    The component peaks forming the 250-300 cm-1band are sharp,with their full-widths at half maximum(FWHM)varying between 5 and 10 cm-1(Table 1)and with their spectral positions clearly differing from the spectral position of the Raman peaks due to iron oxide(hematite,α-Fe2O3)at 245,294 and 299 cm-1[16-18].The iron oxide peak positions differ from the peak positions in the band under study (Table 1).

    The TEM images demonstrate the presence of catalyst iron particles coated with amorphous carbon in our samples(Fig.2).The Auger and XPS study of as-grown MWCNT layers reveals the presence of carbon(92.5 at.%),iron(5.0 at.%),nitrogen (1.8 at.%)and oxygen(0.7 at.%).It also reveals the presence of non-oxidized iron in the MWCNT layers(Table 2).Since iron is a very active element prone to easily activated migration,this observation can be explained by the confinement and isolation of iron particles within carbon layers from the ambient.

    The Auger and XPS spectra of MWCNT layers annealed at 390℃ for 120 min in air show an increase of oxygen concentration from 0.7 up to 4.1 at.%,and a shift of iron-induced peaks.This shift points to an iron oxide formation in the annealed samples(Table 2).Indeed,Raman spectra of such samples were found to display new peaks at 249 and294 cm-1due to iron oxides[17,18].Simultaneously, the low-frequency band at 250-300 cm-1retains its position(within the spectral resolution of 3 cm-1)and FWHM value after the annealing in the Raman spectra (Fig.4 and Table 1).

    Table 1 Low-frequency peaks in the Raman spectra of annealed and chemically treated MWCNT layers(Fig.4).

    Table 2 Results of analysis of Fe peak in the XPS spectra of the thermo-treated MWCNT layer.

    Fig.4 Raman spectra of(a)an as-grown MWCNT layer,(b) an annealed MWCNT layer,and(c)an MWCNT layer treated in HCl.Symbols*mark the Raman peaks due to iron oxides[13,14].

    The chemical treatment of the MWCNT layers with HCl(30%)for 60 h led to a removal of catalyst particles from the walls and end faces of nanotubes (TEM data,Figs.2&5).Yet,the Raman spectra of the HCl-treated MWCNT layers exhibit the same peak position and FWHM in the low-frequency band (Fig.4 and Table 1).

    The above experimental data are indicative of substantial modifications in the amount and state of iron impurities contained in the annealed MWCNTs. So the spectral positions of the 250-300 cm-1band keep essentially unchanged after the modifications with HCl treatment or annealing.We can therefore conclude that the 250-300 cm-1band very probably originates from the RBM of nanotubes,and it depends neither on the presence or absence of catalyst iron in our samples,nor on the particular state of the iron particles.This conclusion permits an estimation of the diameter of CNTs in the examined samples from the spectral position of RBM peaks(Table 1)and the estimation yields values of 0.8 to 0.9 nm.Since the low-frequency Raman spectra exhibit a band at 250-300 cm-1only,with no other bands observed at higher frequencies,we can put forward a hypothesis that this band could originate from the RBM of carbon atoms forming the inner walls of the small-diameter MWCNTs.The occurrence of the small-diameter MWCNTs with inner diameters of 1 nm in our samples is confirmed by TEM images.Indeed,the HRTEM image of Fig.6 shows a small-diameter(about 5 nm)MWCNT with its inner diameter in accordance with that of the estimated one from the spectral position of the RBM peaks(0.8-0.9 nm,Fig.3,6 and Table 1).Since the outer diameter of the small-diameter MWCNTs in our samples is about 5 nm and the inter-wall separation is about 3.4 nm[1],it can easily be deduced from here that such MWCNTs are formed by 6 to 7 graphene layers.

    The intensity of the component peaks forming the RBM band is defined by the amount of defects and impurities contained on the outer surface of nanotubes and in between their walls.This fact points to an insignificant change of defect and impurity concentrations in CNT walls and in the inter-wall space of CNTs after the annealing or HCl treatment.The data in Table 1 indicate invariable position of the peaks in our samples after the annealing or HCl treatment (Fig.4,Table 1).From the data,however,the integral intensities of component peaks clearly change after the treatments(peaks 2 and 3 in Fig.4 and Table 1).This is probably related to the removal of amorphous carbon from the MWCNT layers duringthe annealing and to the removal of metal particles from the MWCNT inter-wall space during the HCl treatment[19,20].

    Fig.5 HR-TEM image of an MWCNT after treatment in HCl(30%,60 h).

    Fig.6 HR-TEM image of an as-grown multi-walled carbon nanotubes.A small-diameter MWCNT with 5 nm outer diameter is indicated.

    4 Conclusions

    The low-frequency(250-300 cm-1)band in the Raman spectra of CVD-grown MWCNTs was investigated before and after the annealing at 390℃ for 120 min in air or the HCl treatment.The annealing has a profound influence on the state of catalyst iron particles in the samples,while the HCl treatment removes the majority of such particles from MWCNTs. The Raman spectra of MWCNT layers are independent of the spectral position of the low-frequency band of the state of catalyst iron particles in our samples. Simultaneously,TEM data prove the presence of small-diameter MWCNTs in the examined MWCNT layers,which agree well with the estimated inner diameter of the small-diameter MWCNTs from Raman spectroscopy.We therefore put forward a hypothesis that the observed 250-300 cm-1Raman band is probably originated from the radial breathing oscillations of carbon atoms in the inner walls of small-diameter MWCNTs.

    Acknowledgements

    This work was partly supported by the Russian Foundation for Basic Research(15-48-04134-r-Sibira,14-08-31448-md-a).

    [1] Dresselhaus M S,Eklund P C.Phonons in carbon nanotubes[J].Adv Phys,2000,49(6):705-814.

    [2] Benoit J M,Buisson J P,Chauvet O,et al.Low-frequency Raman studies of multiwalled carbon nanotubes:Experiments and theory[J].Phys Rev,2002,66:073417(1)-073417(4).

    [3] Zhao X,Ando Y,Qin L C,et al.Radial breathing modes of multiwalled carbon nanotubes[J].Chem Phys Lett,2002,361: 169-174.

    [4] Spudat C,Muller M,Houben L,et al.Observation of Breathinglike Modes in an Individual Multiwalled Carbon Nanotube[J]. Nano Lett,2010,10:4470-4474.

    [5] Gupta R,Singh B P,Singh V N,et al.Origin of radial breathing mode in multiwall carbon nanotubes synthesized by catalytic chemical vapor deposition[J].Carbon,2014,66:724-726.

    [6] Sbai K,Rahmani A,Fakrach B,et.al.Modelling and simulation of vibrational breathing-like modes in individual multiwalled carbon nanotubes[J].Physica E,2014,56:312-318.

    [7] Kudashov A G,Okotrub A V,Yudanov N F,et al.Gas-phasesynthesis of nitrogen-containing carbon nanotubes and their electronic properties[J].Phys Sol State,2002,44(4):652-655.

    [8] Ninga G,Xua C,Zhua X,et al.MgO-catalyzed growth of N-doped wrinkled carbon nanotubes[J].Carbon,2013,56:38-44.

    [9] Jorio A,Pimenta M A,Souza Filho A G,et al.Characterizing carbon nanotube samples with resonance Raman scattering[J]. New J Phys,2003,5:139.1-139.17.

    [10] Jorio A,Saito R,Dresselhaus G,et al.Raman Spectroscopy in Graphene-related Systems[M].Willey-VCH,Berlin,2011.

    [11] Ferrari A C,Robertson J.Resonant Raman spectroscopy of disordered,amorphous,and diamondlike carbon[J].Phys Rev B,2001,64:075414(1)-075414(14).

    [12] Yoon O J,Kang S M,Moon S M.Deposition of iron nanoparticles onto multiwalled carbon nanotubes by helicon plasma-enhanced,chemical vapor deposition[J].Journal of Non-Crystalline Solids,2007,353(11-12):1208-1211.

    [13] Fantini C,Jorio A,Souza M,et al.Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes[J].Phys Rev B,2005,72: 085446-1-085446-5.

    [14] Temple P A,Hathaway C E.Multiphonon Raman spectrum of silicon[J].Phys Rev B,1973,7:3685-3697.

    [15] Zhang Y,Liu C,Wen B,et al.Preparation and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes. Materials Lett,2011,65:49-52.

    [16] Jorge J,Flahaut E,Gonzalez-Jimenez F,et al.Preparation and characterization of α-Fe nanowires located inside double wall carbon nanotubes[J].Chem Phys Lett,2008,457:347-351.

    [17] Wang S,Wang W,Wang W,et al.Characterization and gassensing properties of nanocrystalline iron(III)oxide films prepared by ultrasonic spray pyrolysis on silicon[J].Sens Actuat B,2000,69:22-27.

    [18] de Faria D L A,Silva S V,de Oliveira M T.Raman microspectroscopy of some iron oxides and oxyhydroxides[J].J Raman Spect,1997,28(11):873-878.

    [19] Okotrub A V,Yudanov N F,Chuvilin A L,et al.Fluorinated cage multiwall carbon nanoparticles[J].Chem Phys Lett, 2000,322(3-4):231-236.

    [20] Bolotov V V,Kan V E,Korusenko P M,et al.Formation mechanisms of nanocomposite layers based on multiwalled carbon nanotubes and non-stoichiometric tin oxide[J].Phys Sol State,2012,54(1):166-173.

    An observation of the radial breathing mode in the Raman spectra of CVD-grown multi-wall carbon nanotubes

    Valeriy V.Bolotov, Vasiliy E.Kan, Egor V.Knyazev, Peter M.Korusenko, Sergey N.Nesov, Yuriy A.Sten`kin, Viktor A.Sachkov, Irina V.Ponomareva
    (Omsk Scientific Center of Siberian Branch Russian Academy of Sciences,Karl Marx Avenue,15,Omsk 644024,Russian Federation)

    MWCNTs grown by chemical vapor deposition on SiO2/Si substrates were investigated by Raman spectroscopy,transmission electron microscopy(TEM),Auger spectroscopy,and X-ray photoelectron spectroscopy before and after an annealing at 390℃ for 120 min in air or chemical treatment with a HCl solution.The Raman spectroscopy was focused on the low-frequency (250-300 cm-1)band.It is found that the positions and full widths at half maximum of the peaks forming the 250-300 cm-1Raman band change little with the annealing or chemical treatment.The measured inner diameters of small-diameter CNTs from TEM agree well with those from Raman spectroscopy.These indicate that the low-frequency band originates from the radial breathing oscillations of carbon atoms in the inner walls of small-diameter MWCNTs.

    Carbon nanotube;Radial breathing mode;Raman;Chemical vapor deposition;Microscopy

    Vasiliy E.Kan.E-mail:kan@obisp.oscsbras.ru.

    TQ127.1+1

    A

    Vasiliy E.Kan.E-mail:kan@obisp.oscsbras.ru.

    1007-8827(2015)05-0385-06

    10.1016/S1872-5805(15)60197-4

    Received date:2015-05-08; Revised date:2015-10-10

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    能譜儀透射電鏡曼光譜
    基于車載伽馬能譜儀的土壤放射性元素識別研究
    電子顯微學(xué)專業(yè)課的透射電鏡樣品制備實習(xí)課
    透射電子顯微鏡在實驗教學(xué)研究中的應(yīng)用
    山東化工(2020年15期)2020-02-16 01:00:12
    HFETR放射性核素監(jiān)測的反康普頓γ能譜儀蒙特卡羅模擬研究①
    移動γ能譜儀電源系統(tǒng)設(shè)計及性能研究
    基于大數(shù)據(jù)的透射電鏡開放共享實踐與探索
    透射電鏡中正空間—倒空間轉(zhuǎn)換教學(xué)探討
    隨鉆伽馬能譜儀在錄井中的應(yīng)用研究
    河南科技(2014年10期)2014-02-27 14:09:08
    BMSCs分化為NCs的拉曼光譜研究
    便攜式薄層色譜-拉曼光譜聯(lián)用儀重大專項獲批
    天天一区二区日本电影三级| 成人特级av手机在线观看| 成人亚洲欧美一区二区av| 久久精品国产亚洲av天美| 99久久无色码亚洲精品果冻| 亚洲av.av天堂| 日本-黄色视频高清免费观看| 欧美成人免费av一区二区三区| 一个人观看的视频www高清免费观看| 久久精品国产自在天天线| 婷婷精品国产亚洲av| 黄色欧美视频在线观看| 日韩 亚洲 欧美在线| 超碰av人人做人人爽久久| av国产免费在线观看| 国产日韩欧美在线精品| 欧美成人a在线观看| 国产一区二区在线观看日韩| 久久精品国产亚洲av涩爱 | 亚洲成人中文字幕在线播放| 亚洲人成网站在线播| 亚洲欧洲国产日韩| 国产精品久久电影中文字幕| 日韩制服骚丝袜av| 一个人观看的视频www高清免费观看| 国产白丝娇喘喷水9色精品| 一区二区三区免费毛片| 亚洲成人久久性| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 大型黄色视频在线免费观看| 欧美三级亚洲精品| 亚洲人成网站在线观看播放| 校园春色视频在线观看| 好男人在线观看高清免费视频| or卡值多少钱| 久久精品国产亚洲av香蕉五月| 寂寞人妻少妇视频99o| 国产精品不卡视频一区二区| 亚洲精品乱码久久久v下载方式| 能在线免费观看的黄片| 丝袜美腿在线中文| 国产国拍精品亚洲av在线观看| 蜜臀久久99精品久久宅男| 天天一区二区日本电影三级| 久久久久久久久中文| 特大巨黑吊av在线直播| 99久久精品国产国产毛片| 免费看美女性在线毛片视频| 久久精品国产亚洲av香蕉五月| 亚洲色图av天堂| 精品国内亚洲2022精品成人| 国产v大片淫在线免费观看| 国产精品久久久久久精品电影小说 | 日本免费一区二区三区高清不卡| 国产伦在线观看视频一区| 亚洲美女搞黄在线观看| 久久久国产成人免费| 日日干狠狠操夜夜爽| 国产亚洲91精品色在线| 神马国产精品三级电影在线观看| 九草在线视频观看| 久久久国产成人免费| 亚洲自拍偷在线| 精品人妻一区二区三区麻豆| 欧美性感艳星| 亚洲电影在线观看av| 久久草成人影院| 精品久久久久久久久av| 国产精品一区二区在线观看99 | 国产男人的电影天堂91| 赤兔流量卡办理| av卡一久久| 亚洲成人久久性| 男人狂女人下面高潮的视频| 99久久中文字幕三级久久日本| 亚洲人成网站在线观看播放| 一级毛片我不卡| 国产精品女同一区二区软件| 亚洲av.av天堂| 国产不卡一卡二| 久久精品人妻少妇| 夜夜看夜夜爽夜夜摸| 日韩国内少妇激情av| 精品国内亚洲2022精品成人| 亚洲国产精品久久男人天堂| 久久精品国产亚洲网站| 一边摸一边抽搐一进一小说| 啦啦啦观看免费观看视频高清| 免费看av在线观看网站| 最近手机中文字幕大全| 中国国产av一级| 国产精品一区二区三区四区久久| av免费观看日本| 欧美+亚洲+日韩+国产| 中文亚洲av片在线观看爽| 免费av观看视频| 午夜精品一区二区三区免费看| 欧美潮喷喷水| 国产在线精品亚洲第一网站| 如何舔出高潮| 一本一本综合久久| 亚洲精品国产av成人精品| 亚洲七黄色美女视频| 我要搜黄色片| 我要看日韩黄色一级片| 国产国拍精品亚洲av在线观看| 久久久久久久久久黄片| 久久中文看片网| 久久婷婷人人爽人人干人人爱| 欧美日韩在线观看h| 日韩av不卡免费在线播放| 成人三级黄色视频| 国产女主播在线喷水免费视频网站 | 网址你懂的国产日韩在线| 久久久久久久久久成人| 在线国产一区二区在线| 成人一区二区视频在线观看| 又爽又黄a免费视频| 99热这里只有精品一区| 欧美极品一区二区三区四区| 亚洲成人久久爱视频| 亚洲婷婷狠狠爱综合网| av视频在线观看入口| 欧美性感艳星| 欧美一区二区国产精品久久精品| 在线免费观看的www视频| 日日撸夜夜添| 亚洲av.av天堂| 精品一区二区免费观看| 热99在线观看视频| 91av网一区二区| 国产亚洲5aaaaa淫片| 国内少妇人妻偷人精品xxx网站| 22中文网久久字幕| 日日撸夜夜添| 又粗又硬又长又爽又黄的视频 | 亚洲人成网站在线播| 国产精品99久久久久久久久| 国产高潮美女av| 热99在线观看视频| 日本爱情动作片www.在线观看| 欧美xxxx性猛交bbbb| 国产在线精品亚洲第一网站| 亚洲欧美日韩东京热| 男人舔奶头视频| av免费在线看不卡| 亚洲七黄色美女视频| 国产视频内射| 国产高清三级在线| 日韩,欧美,国产一区二区三区 | 亚洲成人精品中文字幕电影| 长腿黑丝高跟| videossex国产| 欧美成人免费av一区二区三区| 在线播放无遮挡| 悠悠久久av| 丰满的人妻完整版| 亚洲av第一区精品v没综合| 国产淫片久久久久久久久| 久久人妻av系列| 中文亚洲av片在线观看爽| 久久99热这里只有精品18| 一个人观看的视频www高清免费观看| 国产精品久久久久久久久免| 亚洲欧美成人精品一区二区| 欧美一区二区精品小视频在线| 久久久久久伊人网av| 毛片一级片免费看久久久久| 成年av动漫网址| 亚洲在久久综合| 91aial.com中文字幕在线观看| 国产精品日韩av在线免费观看| 日本欧美国产在线视频| 老师上课跳d突然被开到最大视频| 久久久久久久久久久免费av| 看非洲黑人一级黄片| 久久久午夜欧美精品| 亚洲精品色激情综合| 性插视频无遮挡在线免费观看| 晚上一个人看的免费电影| 国内久久婷婷六月综合欲色啪| 亚洲精品456在线播放app| 三级毛片av免费| 乱系列少妇在线播放| 亚洲欧美中文字幕日韩二区| 久久午夜亚洲精品久久| 99久久无色码亚洲精品果冻| 搡老妇女老女人老熟妇| 午夜精品在线福利| 国产片特级美女逼逼视频| 嫩草影院入口| 久久草成人影院| 国产色婷婷99| 国产精品乱码一区二三区的特点| 亚洲欧美日韩高清在线视频| 女人被狂操c到高潮| 亚洲最大成人手机在线| 最近手机中文字幕大全| 丝袜美腿在线中文| www.色视频.com| 亚洲欧美日韩东京热| 中文字幕精品亚洲无线码一区| 在线免费观看的www视频| 老熟妇乱子伦视频在线观看| 成熟少妇高潮喷水视频| 狠狠狠狠99中文字幕| 少妇被粗大猛烈的视频| 精品一区二区三区人妻视频| 欧美最新免费一区二区三区| 国产高清不卡午夜福利| 夫妻性生交免费视频一级片| 91精品一卡2卡3卡4卡| 日韩,欧美,国产一区二区三区 | 国产午夜精品论理片| 97超碰精品成人国产| 国产精品久久久久久久电影| 久久99精品国语久久久| 免费不卡的大黄色大毛片视频在线观看 | 少妇裸体淫交视频免费看高清| 日本一二三区视频观看| 免费看av在线观看网站| 级片在线观看| 欧美+日韩+精品| 亚洲中文字幕日韩| 黄片无遮挡物在线观看| 国产精品久久久久久精品电影| 一级二级三级毛片免费看| 99久久精品国产国产毛片| 成熟少妇高潮喷水视频| a级一级毛片免费在线观看| 黄色日韩在线| 久久99蜜桃精品久久| 欧美性猛交黑人性爽| 久久九九热精品免费| 校园春色视频在线观看| 美女被艹到高潮喷水动态| 亚洲av二区三区四区| 2021天堂中文幕一二区在线观| 日韩欧美一区二区三区在线观看| 哪里可以看免费的av片| 长腿黑丝高跟| 欧美成人一区二区免费高清观看| 成人午夜高清在线视频| 成人午夜高清在线视频| 嫩草影院新地址| av视频在线观看入口| 久99久视频精品免费| 简卡轻食公司| 国产精品野战在线观看| 欧美潮喷喷水| 全区人妻精品视频| 我的老师免费观看完整版| 日本黄大片高清| 日本成人三级电影网站| 在线播放无遮挡| 国产成人午夜福利电影在线观看| 啦啦啦观看免费观看视频高清| 国产高清三级在线| 男女那种视频在线观看| 久久精品国产鲁丝片午夜精品| 老司机福利观看| 欧美另类亚洲清纯唯美| 午夜福利成人在线免费观看| 国产精品久久电影中文字幕| 一级黄片播放器| 三级毛片av免费| a级毛色黄片| 精品久久久久久久久久久久久| 国产乱人偷精品视频| 精品久久久噜噜| 国产高清三级在线| 国产成人a∨麻豆精品| 国产精品女同一区二区软件| 国产一区二区激情短视频| 国产亚洲91精品色在线| 精华霜和精华液先用哪个| 边亲边吃奶的免费视频| 国产精品福利在线免费观看| 波多野结衣高清作品| 夜夜爽天天搞| 久久99热6这里只有精品| 日韩大尺度精品在线看网址| 高清午夜精品一区二区三区 | av卡一久久| 久久久久性生活片| 女的被弄到高潮叫床怎么办| 国产av麻豆久久久久久久| 91久久精品电影网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品女同一区二区软件| 国产精品久久久久久精品电影小说 | 天堂av国产一区二区熟女人妻| 一级黄色大片毛片| 日韩欧美精品v在线| 丰满人妻一区二区三区视频av| 女人十人毛片免费观看3o分钟| 久久久国产成人精品二区| 麻豆一二三区av精品| 人体艺术视频欧美日本| 男女下面进入的视频免费午夜| 亚洲国产欧美人成| 99久久无色码亚洲精品果冻| 一级黄片播放器| 国产精品野战在线观看| 高清午夜精品一区二区三区 | 精品久久久久久久末码| 女的被弄到高潮叫床怎么办| 欧美高清成人免费视频www| 日本黄色视频三级网站网址| 男女下面进入的视频免费午夜| 国产黄片视频在线免费观看| 亚洲五月天丁香| 给我免费播放毛片高清在线观看| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 日韩一本色道免费dvd| 国产极品天堂在线| 少妇人妻一区二区三区视频| www.色视频.com| 亚洲自偷自拍三级| 精品免费久久久久久久清纯| 日本一二三区视频观看| 又爽又黄无遮挡网站| 高清在线视频一区二区三区 | av女优亚洲男人天堂| 日韩大尺度精品在线看网址| 日本黄色视频三级网站网址| 久久久久久久久大av| 97热精品久久久久久| 内地一区二区视频在线| 国产毛片a区久久久久| 97人妻精品一区二区三区麻豆| or卡值多少钱| 久久久国产成人免费| 国产探花在线观看一区二区| 亚洲色图av天堂| 亚洲欧美成人精品一区二区| 麻豆一二三区av精品| 天堂av国产一区二区熟女人妻| 日本熟妇午夜| 99视频精品全部免费 在线| 国内精品美女久久久久久| 久久久久久九九精品二区国产| 成年女人看的毛片在线观看| 91久久精品电影网| 亚洲av电影不卡..在线观看| 麻豆成人av视频| 性色avwww在线观看| 国产成人精品婷婷| 久久国产乱子免费精品| 我的老师免费观看完整版| 全区人妻精品视频| 三级经典国产精品| 免费av不卡在线播放| 不卡视频在线观看欧美| 欧美人与善性xxx| 久久鲁丝午夜福利片| 麻豆av噜噜一区二区三区| 国产精品一二三区在线看| 少妇熟女欧美另类| 欧美丝袜亚洲另类| 欧美激情国产日韩精品一区| 看片在线看免费视频| 成人性生交大片免费视频hd| a级毛片a级免费在线| 噜噜噜噜噜久久久久久91| 偷拍熟女少妇极品色| 偷拍熟女少妇极品色| 精品免费久久久久久久清纯| 国产高清有码在线观看视频| 免费搜索国产男女视频| 18禁在线无遮挡免费观看视频| 日日摸夜夜添夜夜爱| 国产成人a∨麻豆精品| 一本久久精品| 老师上课跳d突然被开到最大视频| 国产精品一区二区性色av| 狠狠狠狠99中文字幕| 免费看av在线观看网站| 一级av片app| 麻豆av噜噜一区二区三区| 丝袜喷水一区| 老熟妇乱子伦视频在线观看| 婷婷色综合大香蕉| 爱豆传媒免费全集在线观看| 一级毛片电影观看 | 亚洲精品色激情综合| 久久精品综合一区二区三区| 国产精品人妻久久久影院| 久久久精品欧美日韩精品| 嫩草影院入口| 乱系列少妇在线播放| 蜜桃亚洲精品一区二区三区| 国产乱人偷精品视频| 亚洲欧美日韩高清在线视频| 中国美白少妇内射xxxbb| 亚洲国产精品sss在线观看| 欧美zozozo另类| 中国美白少妇内射xxxbb| 床上黄色一级片| 亚洲在线自拍视频| 高清午夜精品一区二区三区 | 色5月婷婷丁香| 久久人人爽人人爽人人片va| 国产乱人偷精品视频| 91av网一区二区| 国产精品美女特级片免费视频播放器| 插逼视频在线观看| 久久久久久久午夜电影| 国产精品永久免费网站| 亚洲精品日韩av片在线观看| 简卡轻食公司| 亚洲色图av天堂| 久久久久久久午夜电影| 精品久久久久久久久久免费视频| 日韩一本色道免费dvd| 国产精品久久视频播放| 中文资源天堂在线| 久久精品国产清高在天天线| 三级毛片av免费| 白带黄色成豆腐渣| 欧美性感艳星| 国产精品麻豆人妻色哟哟久久 | 国产亚洲av片在线观看秒播厂 | 色视频www国产| av在线蜜桃| 美女内射精品一级片tv| 久久久久久久久中文| 少妇丰满av| 色视频www国产| 久久精品人妻少妇| 日本欧美国产在线视频| 国产免费男女视频| 男女边吃奶边做爰视频| 精品日产1卡2卡| 2022亚洲国产成人精品| 精品欧美国产一区二区三| 色综合色国产| 舔av片在线| 亚洲最大成人中文| 精品一区二区三区人妻视频| 亚洲国产精品成人综合色| 啦啦啦韩国在线观看视频| 高清日韩中文字幕在线| 老司机影院成人| 一级黄色大片毛片| а√天堂www在线а√下载| 国产探花在线观看一区二区| 国产精品久久久久久精品电影| 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 深夜a级毛片| 色噜噜av男人的天堂激情| 国产中年淑女户外野战色| av.在线天堂| 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 久久久成人免费电影| 国产精品一二三区在线看| 我的老师免费观看完整版| videossex国产| 人妻制服诱惑在线中文字幕| 久久久精品94久久精品| 国产成人a区在线观看| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 国产精品一区二区性色av| 午夜福利视频1000在线观看| 少妇高潮的动态图| 欧美激情在线99| 国产精品乱码一区二三区的特点| 一级毛片电影观看 | 国产亚洲欧美98| 日日啪夜夜撸| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 18禁在线无遮挡免费观看视频| 国产探花极品一区二区| 亚洲精品粉嫩美女一区| 国产色爽女视频免费观看| 成人国产麻豆网| 如何舔出高潮| 亚洲真实伦在线观看| 亚洲人与动物交配视频| 国产精品一区二区性色av| 毛片女人毛片| 三级男女做爰猛烈吃奶摸视频| а√天堂www在线а√下载| 久久久久久久久久成人| 亚洲最大成人av| 少妇的逼水好多| 久久精品影院6| 欧美潮喷喷水| 天美传媒精品一区二区| 国产老妇女一区| 日韩 亚洲 欧美在线| 免费观看a级毛片全部| 精品久久久久久久久久久久久| 国产国拍精品亚洲av在线观看| 人人妻人人看人人澡| 欧美激情在线99| 三级国产精品欧美在线观看| 成年免费大片在线观看| 国产成人91sexporn| 久久这里有精品视频免费| 日本爱情动作片www.在线观看| 成人亚洲欧美一区二区av| 国产片特级美女逼逼视频| 欧美日韩在线观看h| 中文字幕人妻熟人妻熟丝袜美| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪| 99热全是精品| 国产精品福利在线免费观看| 美女高潮的动态| 精华霜和精华液先用哪个| 成人二区视频| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| 亚洲精品成人久久久久久| 午夜精品国产一区二区电影 | 寂寞人妻少妇视频99o| 国产亚洲av嫩草精品影院| .国产精品久久| 六月丁香七月| 小说图片视频综合网站| 一级毛片我不卡| 欧美区成人在线视频| 国内精品宾馆在线| 又粗又爽又猛毛片免费看| 美女高潮的动态| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 99在线人妻在线中文字幕| 欧美日本视频| 午夜福利在线观看吧| 日日啪夜夜撸| 别揉我奶头 嗯啊视频| 国产av不卡久久| 亚洲欧美日韩东京热| 亚洲最大成人手机在线| 国产三级在线视频| 又黄又爽又刺激的免费视频.| 欧美性猛交黑人性爽| 亚洲经典国产精华液单| 麻豆成人午夜福利视频| 精华霜和精华液先用哪个| 大又大粗又爽又黄少妇毛片口| 欧美日韩乱码在线| 不卡一级毛片| 亚洲av不卡在线观看| 亚洲av成人av| 看免费成人av毛片| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 99久久人妻综合| 久久久久久久久大av| 日韩在线高清观看一区二区三区| 高清毛片免费观看视频网站| 只有这里有精品99| 国产成人精品一,二区 | 日韩欧美在线乱码| 欧美性感艳星| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 99久国产av精品国产电影| 好男人在线观看高清免费视频| 亚洲人成网站在线播放欧美日韩| 六月丁香七月| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| 精品久久久久久成人av| 99热只有精品国产| 国产激情偷乱视频一区二区| 国产精品三级大全| 在线播放无遮挡| 在线观看美女被高潮喷水网站| 夫妻性生交免费视频一级片| 精品欧美国产一区二区三| 91久久精品电影网| 一级黄片播放器| 久久国产乱子免费精品| 欧美另类亚洲清纯唯美| av免费观看日本| 别揉我奶头 嗯啊视频| 色吧在线观看| 国产色婷婷99| 色哟哟·www| 看黄色毛片网站| 中文精品一卡2卡3卡4更新| 成人综合一区亚洲| 丰满乱子伦码专区| 国产精品人妻久久久久久| 国产视频首页在线观看| 伦精品一区二区三区| 偷拍熟女少妇极品色| 天天一区二区日本电影三级| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 三级男女做爰猛烈吃奶摸视频| 欧美bdsm另类| av卡一久久| 99视频精品全部免费 在线| 我要搜黄色片| 国产毛片a区久久久久| 天天躁日日操中文字幕| 少妇高潮的动态图| 男人的好看免费观看在线视频| 国产高潮美女av| 好男人在线观看高清免费视频| 久久久久久九九精品二区国产|