胡洋 王居里** 王建其 楊猛,2 袁攀 令偉偉
HU Yang1,WANG JuLi1**,WANG JianQi1,YANG Meng1,2,YUAN Pan3 and LING WeiWei1
1. 大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室,西北大學(xué)地質(zhì)學(xué)系,西安 710069
2. 西北有色地質(zhì)勘查局,西安 710054
3. 陜西省地質(zhì)礦產(chǎn)勘查開發(fā)局漢中地質(zhì)大隊(duì),漢中 723000
1. State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China
2. Northwest Mining and Geology Group Co. ,Ltd for Nonferrous Metals (NWME),Xi’an 710054,China
3. Hanzhong Geological Team,Bureau of Geology and Mineral Resources of Shaanxi,Hanzhong 723000,China
2014-06-15 收稿,2014-12-23 改回.
新疆西準(zhǔn)噶爾地區(qū)發(fā)育著一系列NE-NNE 向的斷裂,其中沿大型的達(dá)拉布特?cái)嗔逊植贾蟠笮⌒〕蕩r基狀的花崗巖體,如斷裂以北的著名巖體有廟爾溝、阿克巴斯陶、哈圖和鐵廠溝巖體;斷裂以南的是包古圖、紅山、克拉瑪依巖體。這些巖體大都侵位于泥盆-石炭系中(高山林等,2006)。韓寶福等(2006)根據(jù)該地區(qū)花崗巖的鋯石U-Pb 年代學(xué)資料認(rèn)為,后碰撞深成巖漿時限為340 ~275Ma,高峰期為310 ~295Ma。目前對于該區(qū)花崗巖的構(gòu)造環(huán)境有不同的認(rèn)識:俯沖有關(guān)的島弧環(huán)境(Feng et al.,1989;高山林等,2006;肖文交等,2006;張連昌等,2006)、洋脊俯沖環(huán)境(Geng et al.,2009;唐功建等,2009;Yin et al.,2010;Tang et al.,2010,2012a,b;尹繼元等,2012;Yang et al.,2012a,b;Ma et al.,2012)和后碰撞環(huán)境(Wang et al.,2003;Chen and Jahn,2004;Chen and Arakawa,2005;韓寶福等,2006;蘇玉平等,2006;范裕等,2007;Zhou et al.,2008;Chen et al.,2010;陳家富等,2010;高睿等,2013)。
前人對廟爾溝巖體做了許多工作。蘇玉平等(2006)通過地球化學(xué)和年代學(xué)研究得出廟爾溝巖體成巖年齡為305 ±2Ma,巖石類型屬于A2 型,形成于后碰撞張性環(huán)境中,可能來自于年輕地殼部分熔融;伍建機(jī)和陳斌(2004)用微量元素和Sr-Nd 同位素證據(jù)得出廟爾溝后碰撞花崗巖由年輕的下地殼發(fā)生部分熔融而成,不同的巖石類型代表不同的分離結(jié)晶產(chǎn)物;張立飛等(2004)根據(jù)對廟爾溝含橄欖石的紫蘇花崗巖體巖石學(xué)和地球化學(xué)特征的研究,得出紫蘇花崗巖的母巖漿來自下部地殼,并混入了一些來自地幔的融體,且該區(qū)堿長花崗巖的母巖也分異于同一巖漿源,只是結(jié)晶深度較淺,先于堿長花崗巖結(jié)晶;Geng et al. (2009)分別對廟爾溝堿長花崗巖和紫蘇花崗巖的地球化學(xué)、Sr-Nd 和U-Pb-Hf 同位素進(jìn)行研究,認(rèn)為其都來自年輕的下地殼的分離結(jié)晶,但是可能來自不同的源區(qū),形成于洋脊俯沖環(huán)境。
筆者注意到廟爾溝巖體是一個由多種巖性組成的復(fù)合巖體,分別對其中的堿長花崗巖、紫蘇花崗巖和堿長花崗巖脈進(jìn)行了地質(zhì)、地球化學(xué)及年代學(xué)研究,以確定三者的時空關(guān)系、巖石類型、構(gòu)造環(huán)境,探討巖石成因,為西準(zhǔn)噶爾地區(qū)構(gòu)造演化提供新的證據(jù)。
何國琦等(2004)根據(jù)板塊構(gòu)造理論將新疆及鄰近地區(qū)的大地構(gòu)造單元主要劃分為西伯利亞板塊(Ⅰ)、哈薩克斯坦-準(zhǔn)噶爾板塊(Ⅱ)、塔里木-中朝板塊(Ⅲ)、青藏板塊(Ⅳ)和印度板塊(Ⅴ),每個板塊之間由板塊縫合構(gòu)造帶隔開。西準(zhǔn)噶爾地區(qū)屬于準(zhǔn)噶爾-巴爾喀什微板塊。由于受到了西伯利亞板塊以及塔里木板塊的影響,區(qū)內(nèi)斷裂構(gòu)造發(fā)育,主要發(fā)育了四條NE-NNE 向的斷裂(圖1a),自西向東依次是巴爾魯克斷裂、瑪依勒斷裂、哈圖斷裂、達(dá)拉布特?cái)嗔?朱寶清,1984)。
西準(zhǔn)噶爾南部地區(qū)主要分布有泥盆紀(jì)、石炭紀(jì)的海相火山-沉積地層(圖1b)。泥盆紀(jì)的地層主要分布于瑪依勒斷裂西側(cè),東側(cè)零星出露。石炭紀(jì)的地層主要分布于達(dá)拉布特?cái)嗔训膬蓚?cè),為哈圖-包古圖地區(qū)出露最廣泛的地層。另外,該地區(qū)還有奧陶紀(jì)、志留紀(jì)和二疊紀(jì)的地層(周良仁等,1987)。泥盆系自上到下依次為庫魯木迪組(D3k)、喀依爾巴依組(D2k)、巴爾魯克組(D2b)、馬拉蘇組(D1ml),其巖性主要為凝灰質(zhì)粉砂巖、凝灰質(zhì)砂巖、凝灰質(zhì)砂礫巖和層凝灰?guī)r等。其中庫魯木迪組主要出露于托里縣的南部地區(qū),巴爾魯克組主要出露于西緣的巴爾魯克山中。石炭系為一套巨厚的半深海-大陸坡相火山活動-碎屑沉積建造,主要由希貝庫拉斯組、包古圖組、太勒古拉組組成,其巖性主要為凝灰?guī)r、層凝灰?guī)r、凝灰質(zhì)粉砂巖、凝灰質(zhì)粉砂質(zhì)泥巖、中基性噴出巖、凝灰質(zhì)砂巖、砂巖、硅質(zhì)巖等(郭麗爽等,2010)。
哈圖-包古圖地區(qū)廣泛發(fā)育大規(guī)模近似圓形的晚古生代花崗巖類的巖基(圖1b),主要侵位于下石炭統(tǒng)中(黨飛鵬等,2011)。在達(dá)拉布特構(gòu)造帶周圍出露由堿長花崗巖組成的巖基,代表巖體有廟爾溝巖體、克拉瑪依巖體、鐵廠溝巖體、哈圖巖體、阿克巴斯陶巖體和紅山巖體等,巖體年齡在327 ~287Ma之間(金成偉和張秀棋,1993;Xian et al.,2002;蘇玉平等,2006;韓寶福等,2006;Geng et al.,2009);巖體成分復(fù)雜,主要以鉀長花崗巖、二長花崗巖、花崗閃長巖和堿長花崗巖為主(高山林等,2006;韓寶福等,2006;尹繼元等,2011)。
圖1 西準(zhǔn)噶爾地區(qū)地質(zhì)簡圖(a,據(jù)Tang et al.,2010 修改;b,據(jù)尹繼元等,2011;張立飛等,2004 修改)Fig.1 Simplified geological map of the West Junggar (a,modified after Tang et al.,2010;b,modified after Yin et al.,2011;Zhang et al.,2004)
廟爾溝巖體(圖1b)位于西準(zhǔn)噶爾扎伊爾山中段塔城地區(qū)托里縣廟爾溝鎮(zhèn)一帶,地理坐標(biāo)為E83°35′ ~84°05′,N45°30′ ~45°50′。巖體侵位于石炭系火山-沉積建造中。整體位于達(dá)拉布特?cái)嗔训谋蔽鱾?cè),呈巖基狀產(chǎn)出,平面展布呈近似圓形,約為700km2(李宗懷等,2004),是該地區(qū)出露面積最大的巖體。巖體主體由中-粗粒堿長花崗巖組成,其東南緣有紫蘇花崗巖出露,在局部地區(qū)細(xì)晶堿長花崗巖脈穿插于堿長花崗巖和紫蘇花崗巖中,細(xì)脈寬2 ~15cm,粗脈寬1 ~3m 不等(圖2)。
堿長花崗巖 大部分為肉紅色,少量為淺灰色,塊狀構(gòu)造,中-粗粒半自形粒狀結(jié)構(gòu),局部見顯微文象結(jié)構(gòu)。主要礦物為堿性長石(以鉀長石為主,少量的條紋長石和反條紋長石)(60% ~65%)、斜長石(5% ~7%)、石英(25% ~30%),次要礦物為黑云母(2% ~3%)、角閃石(3% ~4%),副礦物為鋯石、磷灰石、磁鐵礦(0.5% ~3%)。鉀長石為中粒半自形板狀,粒徑為3 ~5mm,主要由正長石(發(fā)育卡斯巴雙晶)和微斜長石(發(fā)育格子雙晶)組成,顆粒表面污濁,局部可見蠕英結(jié)構(gòu);條紋長石、反條紋長石呈板條狀,中粒半自形,粒徑為2 ~3mm;斜長石為細(xì)粒半自形板狀,粒徑為0.5 ~1.5mm,主要由奧長石(An10-17)組成,聚片雙晶發(fā)育;石英為他形粒狀,粒徑大小不等,填隙分布(圖3a,b)。
堿長花崗巖脈 巖石特征近同堿長花崗巖,只是其粒度較細(xì),為細(xì)粒半自形粒狀結(jié)構(gòu)。
圖2 廟爾溝巖體露頭照片F(xiàn)ig.2 Outcrop photos of the Miaoergou granite pluton
圖3 廟爾溝巖體堿長花崗巖和紫蘇花崗巖顯微鏡下特征(a、b)堿長花崗巖(MG-17、MG-22);(c、d)紫蘇花崗巖(MG3-1、MG-14). 正交偏光. Q-石英;Bi-黑云母;Kfs 鉀長石;Hy-紫蘇輝石;Pl-斜長石;Hb-角閃石Fig.3 Microscopic photos of the alkali-feldspar granite (a,b)and charnockite (c,d)in the Miaoergou granite pluton
圖4 廟爾溝巖體SiO2-K2O 圖(a,實(shí)線據(jù)Peccerillo and Taylor,1976;虛線據(jù)Middlemost,1985)和A/CNK-A/NK 圖(b,據(jù)Maniar and Piccoli,1989)Fig.4 SiO2-K2O diagram (a,real line is after Peccerillo and Taylor,1976;and broken line after Middlemost,1985)and A/CNK vs. A/NK diagram (b,after Maniar and Piccoli,1989)of the Miaoergou granite pluton
紫蘇花崗巖 呈深灰色,塊狀構(gòu)造,中-細(xì)?;◢徑Y(jié)構(gòu)。主要礦物為紫蘇輝石(14% ~16%)、斜長石(40% ~45%)、鉀長石(9% ~11%)、條紋長石和反條紋長石(9% ~10%)、石英(7% ~10%)、角閃石和黑云母(9% ~11%),副礦物為磁鐵礦、鋯石、榍石等(3% ~5%)。紫蘇輝石大體呈中粒自形粒狀,粒徑為2 ~3mm;斜長石(斜長石組分一般是An30-50的中長石)與他形石英共生,粒徑為1 ~2mm;鉀長石多為微斜長石,粒徑為3 ~4mm;條紋長石、反條紋長石呈中粒自形-半自形,粒徑為2 ~4mm(圖3c,d)。
巖石的主量和微量元素、Sr-Nd 同位素、鋯石陰極發(fā)光照相、鋯石U-Pb 同位素分析等均在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。主量元素用樣品的堿熔玻璃片在日本理學(xué)RIX2100 XRF 儀上測定,將樣品巖石粉末與亞硼酸鋰混合并熔融制成玻璃片分析,GBW07105 標(biāo)樣監(jiān)控,元素分析誤差<5%。微量元素在美國Perkin Elmer 公司Elan6100DRC型電感耦合等離子質(zhì)譜儀(ICP-MS)上分析測定,樣品經(jīng)BHVO-2、AGV-1、BCR-2、G-2 國際標(biāo)樣監(jiān)控,多數(shù)微量元素的分析精度優(yōu)于5%。
巖石Sr、Nd 同位素采用英國Nu Instrument 公司生產(chǎn)的Nu Plasma 多接收等離子體質(zhì)譜儀測定,儀器工作參數(shù)為Power 1300w、Nebulizer gas 0.1mL/min、Auxilliary gas 0.8mL/min、Plasma gas 13L/min。分析所用試劑HNO3、HF、HCl 均為由優(yōu)級純酸經(jīng)亞沸蒸餾裝置制得的高純試劑,水為18.2MΩ·cm-1的高純水(Millipore Element,Millipore Corporation,USA)。分析全程采用USGS 標(biāo)準(zhǔn)物質(zhì)BHVO-2、BCR-2、AGV-2 進(jìn)行質(zhì)量監(jiān)控。儀器測試?yán)?6Sr/88Sr =0.1194、146Nd/144Nd=0.7219 按照指數(shù)法則進(jìn)行內(nèi)部校正,質(zhì)量監(jiān)控樣品分別選用NBS 987(87Sr/86Sr =0.710248)及La Jolla(143Nd/144Nd=0.511859),全流程過程本底<20pg。
在巖相學(xué)觀察的基礎(chǔ)上,定年所選用的鋯石樣品按照常規(guī)重力和磁選方法分選,并將分選出的鋯石在雙目鏡下選擇晶形較好、透明、無裂隙、沒有包體的具有代表性的鋯石顆粒用環(huán)氧樹脂固定,待其充分固化后拋光至鋯石露出核部,然后進(jìn)行鋯石的CL 顯微圖像及LA-ICP-MS 分析。鋯石的UPb 同位素組成用德國Microlas 公司的Geolas200M 激光剝蝕系統(tǒng)與Elan6100DRC ICP-MS 聯(lián)機(jī)進(jìn)行測定,分析采用的激光束直徑為30μm,激光脈沖為10Hz,能量在32 ~36mJ,激光剝蝕樣品的深度為20 ~40μm。鋯石年齡測定采用國際標(biāo)準(zhǔn)鋯石91500 作外標(biāo)。年齡計(jì)算及協(xié)和圖用Isoplot(ver.3)程序(Ludwig,2003)完成。詳細(xì)分析步驟和數(shù)據(jù)處理方法見袁洪林等(2003)。
4.1.1 堿長花崗巖及巖脈
西準(zhǔn)噶爾廟爾溝地區(qū)堿長花崗巖及巖脈的主量及微量元素分析結(jié)果見表1。
主量元素分析結(jié)果顯示,廟爾溝堿長花崗巖及巖脈高硅(SiO2含量為72.22% ~77.15%)、富堿(Na2O + K2O =8.48% ~9.35%),CaO 含量0.44% ~1.01%,Al2O3含量12.37% ~13.76%,TiO2、Fe2O3T、MnO、MgO、P2O5含量低;里特曼指數(shù)(δ)=2.17 ~2.98,SiO2-K2O 圖中投點(diǎn)均落入高鉀鈣堿性系列區(qū)域(圖4a);A/CNK=0.96 ~1.03,A/NK=1.08~1.13,A/CNK-A/NK 圖中投點(diǎn)落入準(zhǔn)鋁質(zhì)-弱過鋁質(zhì)區(qū)域(圖4b)。
果結(jié)析 -6)分( ×10素元量微)及(wt%量主的脈巖及巖崗花長堿體巖溝爾廟1 表theMiaoergou pluton -6) ofalkali-feldspargraniteand dikesfrom ) and traceelements( ×10 Majorelements(wt%Table1 MG3-2 MG-7 MG-6 G-5 M MG-4 MG-3 MG-2 MG-1 MG3-3 MG2-4 MG2-3 MG2-2 MG-32 MG-29 MG-28 MG-24 MG-22 MG-19 MG-17 MG-15 號品樣脈巖崗花長堿巖崗花長堿性巖76.59 76.53 76.18 77.15 76.65 76.36 76.69 76.27 74.59 72.22 72.36 73.20 72.36 73.20 75.29 72.89 72.62 75.98 75.98 75.84 SiO2 0.08 0.08 0.09 0.08 0.08 0.07 0.08 0.08 0.22 0.32 0.32 0.27 0.32 0.27 0.14 0.29 0.32 0.13 0.12 0.13 TiO2 12.66 12.49 12.66 12.62 12.54 12.72 12.37 12.62 13.10 13.69 13.76 13.26 13.76 13.26 12.78 13.38 13.39 12.68 12.61 12.49 O3 Al2 0.95 0.93 0.91 0.86 0.90 0.86 0.85 0.96 1.97 2.32 2.32 2.36 2.32 2.36 1.57 2.41 2.61 1.22 1.20 1.43 T O3 Fe2 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.02 0.03 0.02 0.03 0.02 0.04 0.04 0.02 0.02 0.02 MnO 0.07 0.06 0.07 0.06 0.06 0.07 0.07 0.07 0.16 0.33 0.34 0.17 0.34 0.17 0.16 0.30 0.33 0.10 0.09 0.09 MgO 0.43 0.47 0.46 0.44 0.51 0.49 0.47 0.48 0.61 0.87 0.88 0.68 0.88 0.68 0.67 0.97 1.01 0.63 0.55 0.53 CaO 3.82 3.78 3.78 3.75 3.76 3.82 3.75 3.81 4.17 4.61 4.63 4.23 4.63 4.23 4.03 4.11 4.19 3.74 3.75 3.66 O Na2 4.83 4.76 4.89 4.86 4.79 4.85 4.82 4.81 4.78 4.73 4.73 4.93 4.73 4.93 4.45 4.69 4.59 4.76 4.75 4.93 O K2 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.04 0.07 0.07 0.04 0.07 0.04 0.06 0.06 0.06 0.02 0.02 0.02 O5 P2 0.42 0.46 0.45 0.39 0.38 0.34 0.42 0.41 0.38 0.34 0.36 0.42 0.36 0.42 0.36 0.37 0.39 0.26 0.43 0.36 LOI 99.88 99.60 99.53 100.24 99.69 99.61 99.55 99.54 100.05 99.52 99.79 99.59 99.79 99.59 99.53 99.51 99.55 99.54 99.52 99.50 Total 8.65 8.54 8.67 8.61 8.55 8.67 8.57 8.62 8.95 9.34 9.36 9.16 9.36 9.16 8.48 8.8 8.78 8.50 8.50 8.59 O O+K2 Na2 0.79 0.79 0.77 0.77 0.78 0.79 0.78 0.79 0.87 0.97 0.98 0.86 0.98 0.86 0.91 0.88 0.91 0.79 0.79 0.74 O O/K2 Na2 2.23 2.18 2.27 2.17 2.17 2.25 2.18 2.23 2.54 2.99 2.98 2.78 2.98 2.78 2.23 2.59 2.6 2.19 2.19 2.25 δ 1.03 1.02 1.03 1.03 1.02 1.02 1.01 1.02 1.00 0.96 0.96 0.98 0.96 0.98 1.01 0.98 0.98 1.02 1.02 1.01 A/CNK 1.10 1.10 1.10 1.10 1.10 1.10 1.09 1.10 1.09 1.08 1.08 1.08 1.08 1.08 1.12 1.13 1.13 1.12 1.12 1.10 A/NK 19.5 19.0 19.8 19.3 25.1 22.2 20.8 24.5 19.3 22.4 25.1 29.6 32.5 23.7 31.5 36.2 44.1 26.2 44.8 39.4 Li 4.25 4.81 4.98 5.32 4.40 3.83 3.38 4.89 2.01 3.19 3.39 3.57 3.01 1.99 4.36 3.02 3.10 4.29 4.35 3.39 Be 1.83 1.95 1.78 2.00 1.75 1.74 1.65 1.78 4.63 3.81 3.99 4.12 6.12 7.24 2.74 6.19 6.64 3.36 3.18 3.02 Sc 3.29 3.95 3.83 2.97 3.27 4.38 4.17 3.67 7.49 15.3 16.4 18.5 14.9 9.61 7.42 13.1 14.3 4.69 4.32 4.77 V 1.20 4.28 3.10 4.70 2.82 1.65 8.64 1.20 2.53 7.75 4.31 5.59 2.99 2.34 1.91 4.16 6.12 0.99 1.15 2.04 Cr 60.4 151 154 150 149 109 142 134 44.1 1.51 1.29 1.37 76.7 111 111 114 116 138 146 112 Co 1.29 2.33 1.72 2.76 1.46 1.19 3.87 0.72 2.61 4.61 2.92 3.54 1.86 1.34 1.02 2.34 3.26 0.55 0.66 1.01 Ni 25.8 19.7 17.9 27.8 7.23 7.32 3.32 11.9 2.90 6.26 9.96 7.40 10.5 3.16 7.59 2.34 2.60 3.69 2.73 13.2 Cu 29.7 37.6 34.5 25.6 34.9 38.5 37.5 31.7 45.9 57.4 71.8 62.4 27.1 58.8 42.1 54.6 60.0 27.3 23.5 30.9 Zn 20.3 21.0 20.8 21.2 20.9 21.0 20.5 20.9 18.6 17.8 18.5 18.6 20.6 19.8 20.1 20 20.6 16.5 17.4 16.7 Ga 1.64 1.78 1.76 1.84 1.80 1.81 1.74 1.81 1.31 1.47 1.48 1.50 1.59 1.52 1.74 1.60 1.62 1.58 1.75 1.64 Ge 178 183 179 191 201 196 193 188 84.2 113 121 122 105 86.4 128 111 112 132 165 160 Rb 35.4 40.6 1 43.32.0 39.4 40.5 36.0 40.5 51.1 53.8 52.4 55.8 83.2 55.6 54.3 77.0 82.6 67.5 54.5 54.8 Sr
1表續(xù)C ontinued Table1 MG3-2 MG-7 MG-6 G-5 M MG-4 MG-3 MG-2 MG-1 MG3-3 MG2-4 MG2-3 MG2-2 MG-32 MG-29 MG-28 MG-24 MG-22 MG-19 MG-17 MG-15 號品樣脈巖崗花長堿巖崗花長堿性巖43.8 43.7 48.5 54.5 53.7 39.1 37.9 53.6 30.7 42.0 38.1 43.0 50.3 40.3 34.8 51.7 52.2 39.8 39.0 36.2 Y 128 114 122 107 108 117 102 111 328 345 324 340 346 478 178 418 370 118 122 124 Zr 10.7 8.76 8.22 8.87 7.93 9.59 3.58 8.90 7.21 9.85 10.1 10.5 9.64 8.00 8.50 9.82 10.4 9.94 9.96 8.71 Nb 4.96 7.03 5.58 5.11 7.75 12.1 9.79 6.44 3.01 5.34 4.94 4.36 2.05 3.99 2.27 4.01 4.30 3.79 6.60 5.01 Cs 171 191 212 149 176 200 171 194 602 655 733 728 586 686 236 558 550 499 407 408 Ba 5.29 4.45 4.75 4.51 4.17 4.52 3.93 4.29 8.35 9.31 8.82 9.32 8.89 11.3 6.33 10.5 9.56 4.07 4.23 4.08 Hf 2.37 1.53 1.54 1.47 1.33 2.09 0.59 1.79 0.64 0.76 0.82 0.88 0.82 0.61 1.36 0.88 0.93 1.85 1.84 1.56 Ta 16.8 15.7 14.7 17.1 18.9 19.9 18.5 16.4 13.7 17.7 19.5 18.8 12.9 14.7 13.8 15.8 15.8 15.6 13.9 16.5 Pb 26.8 24.6 25.8 38.5 22.9 26.7 26.3 23.3 6.77 8.97 9.42 11.0 8.89 6.92 18.4 9.82 9.68 20.8 25.5 26.2 Th 6.66 5.67 5.56 6.04 6.25 4.74 4.03 5.18 1.36 1.99 1.85 2.16 1.41 1.65 2.08 1.51 1.66 8.35 5.16 6.40 U 22.2 21.6 25.8 22.5 24.5 23.8 20.2 22.2 17.9 18.9 23.4 26.6 29.6 27.4 25.4 31.0 25.0 24.8 30.0 20.9 La 50.9 50.2 55.6 50.2 53.7 51.3 46.0 49.7 47.3 53.3 59.5 72.3 66.4 69.5 55.8 69.4 77.1 51.6 53.7 44.4 Ce 5.95 5.53 6.48 6.00 6.42 5.96 5.46 5.95 5.29 5.76 6.66 7.41 8.17 7.81 6.41 8.59 7.77 5.62 6.92 4.92 Pr 23.0 21.3 25.2 24.0 25.3 23.0 21.7 23.6 22.1 24.6 27.5 30.0 33.8 32.6 23.4 35.7 32.4 20.6 25.6 18.4 Nd 5.74 5.13 6.02 6.25 6.3 5.35 5.42 6.01 5.16 5.91 6.26 6.75 7.74 7.44 4.64 8.21 8.09 4.71 5.66 4.22 Sm 0.19 0.21 0.23 0.17 0.21 0.22 0.2 0.2 0.62 0.56 0.57 0.59 0.75 0.73 0.38 0.71 0.7 0.46 0.36 0.35 Eu 5.50 5.88 6.70 7.29 7.03 5.67 5.77 6.98 4.93 5.80 5.83 6.22 8.11 7.48 4.73 8.57 8.63 5.21 5.98 4.72 Gd 1.04 0.94 1.06 1.18 1.11 0.87 0.89 1.12 0.84 1.04 1.00 1.08 1.24 1.12 0.71 1.31 1.33 0.82 0.92 0.74 Tb 6.96 6.42 7.04 8.04 7.31 5.73 5.84 7.67 5.36 6.84 6.47 7.03 7.97 6.99 4.76 8.3 8.55 5.62 5.99 5.06 Dy 1.52 1.42 1.54 1.77 1.6 1.25 1.26 1.70 1.11 1.44 1.34 1.49 1.65 1.43 1.05 1.72 1.77 1.23 1.25 1.10 Ho 4.99 4.75 5.08 5.85 5.21 4.15 4.08 5.61 3.29 4.4 4.06 4.54 4.99 4.17 3.41 5.11 5.33 4.07 4.03 3.61 Er 0.89 0.85 0.87 1.03 0.87 0.72 0.7 0.95 0.51 0.68 0.62 0.71 0.77 0.63 0.6 0.79 0.83 0.73 0.71 0.63 Tm 6.78 6.44 6.47 7.63 6.22 5.42 5.06 6.93 3.45 4.57 4.19 4.83 5.1 4.14 4.36 5.13 5.42 5.45 5.23 4.67 Yb 1.03 1.01 1.01 1.20 0.96 0.84 0.78 1.08 0.50 0.68 0.64 0.73 0.76 0.62 0.70 0.77 0.80 0.85 0.81 0.73 Lu 136.7 131.6 149.1 143.1 146.8 134.3 123.4 139.7 118.4 134.6 148.0 170.2 177.0 172.0 136.2 185.2 183.7 131.7 147.2 114.4 REE!3.76 3.75 4.01 3.21 3.84 4.45 4.06 3.36 4.93 4.29 5.13 5.4 4.79 5.47 5.71 4.85 4.62 4.49 4.91 4.38 LREE/HREE 2.35 2.4 2.86 2.11 2.82 3.15 2.87 2.3 3.73 2.97 4.00 3.95 4.16 4.74 4.18 4.34 3.31 3.26 4.12 3.21(La/Yb)N 0.10 0.12 0.11 0.08 0.09 0.12 0.11 0.10 0.37 0.29 0.28 0.27 0.29 0.30 0.25 0.26 0.25 0.28 0.19 0.24 Eu δ 1.06 10 1.1.02 1.04 1.03 1.03 1.05 1.04 1.18 1.24 1.15 1.24 1.03 1.15 1.04 1.02 1.34 1.03 0.88 1.04 Ce δ 1/2]+Gd)N/(Sm Eu=[EuN O); δ O+K2/(Na2 O3) =Al2比爾O); A/NK(摩O+K2/(CaO+Na2 O3) =Al2比爾: A/CNK(摩注
圖5 廟爾溝巖體堿長花崗巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式圖(a)及原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.5 Chondrite-normalized REE patterns (a)and primitive mantle-normalized spider diagrams (b)for the alkali-feldsper granite of the Miaoergou granite pluton (normalization values after Sun and McDonough,1989)
圖6 廟爾溝巖體紫蘇花崗巖球粒隕石標(biāo)準(zhǔn)化稀土元素配分模式圖(a)及原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough,1989)Fig.6 Chondrite-normalized REE patterns (a)and primitive mantle-normalized spider diagrams (b)for charnockites of the Miaoergou granite pluton (normalization values after Sun and McDonough,1989)
微量元素分析結(jié)果顯示,廟爾溝堿長花崗巖及巖脈稀土總量較高,∑REE=114.4 ×10-6~185.2 ×10-6,輕重稀土分餾程度較低,LREE/HREE=3.21 ~5.71,(La/Yb)N=2.11 ~4.74,相對富集LREE,而虧損HREE,強(qiáng)烈的Eu 負(fù)異常,δEu=0.08 ~0.37,球粒隕石標(biāo)準(zhǔn)化配分模式圖中顯示輕稀土段較陡、重稀土段平坦的右傾“V”字型配分樣式(圖5a)。巖石的原始地幔標(biāo)準(zhǔn)化微量元素比值蛛網(wǎng)圖(圖5b)顯示Rb、Th、U、K、La、Ce、Zr、Hf 相對富集,Ba、Nb、Sr、P、Ti 相對虧損。
4.1.2 紫蘇花崗巖
紫蘇花崗巖的主量和微量元素分析結(jié)果見表2。紫蘇花崗巖的SiO2含量為60.88% ~62.06%,Al2O3含量為15.50% ~15.72%,里特曼指數(shù)(δ)=2.59 ~2.77,SiO2-K2O圖中投點(diǎn)均落入鈣堿性-高鉀鈣堿性系列過渡區(qū)域(圖4a);A/CNK=0.86 ~0.88,A/NK =1.50 ~1.53,A/CNK-A/NK 圖中投點(diǎn)落入準(zhǔn)鋁質(zhì)區(qū)域(圖4b)。
微量元素分析結(jié)果顯示,該巖體紫蘇花崗巖稀土總量較高,∑REE=156.0 ×10-6~173.6 ×10-6,輕重稀土分異程度較低,LREE/HREE =4.33 ~4.66,(La/Yb)N=3.93 ~4.29,相對富集LREE,而虧損HREE,較顯著的Eu 負(fù)異常,δEu =0.71 ~0.83,球粒隕石標(biāo)準(zhǔn)化配分模式圖中顯示稀土配分曲線為右傾的、總體斜率中等(圖6a)。巖石的原始地幔標(biāo)準(zhǔn)化微量元素比值蛛網(wǎng)圖(圖6b)顯示Rb、Th、U、K、相對富集,Ta、Nb、Sr、P、Ti 相對虧損。
表2 廟爾溝巖體紫蘇花崗巖的主量(wt%)及微量元素(×10 -6)分析結(jié)果Table 2 Major elements (wt%)and trace elements (×10 -6)of charnockites from Miaoergou pluton
廟爾溝巖體的Sr、Nd 同位素組成分析結(jié)果見表3。
表3 數(shù)據(jù)表明,廟爾溝巖體堿長花崗巖的(87Sr/86Sr)i=0.70370 ~0.70541(其中有些Sr 的初始值甚至低于玄武質(zhì)無球粒隕石初始比值0.699,可能是由于本區(qū)花崗巖具有較高放射成因的Sr 和高Rb/Sr 比值,這些數(shù)值難以準(zhǔn)確指示該區(qū)源巖的Sr 同位素特征,可以略去(蘇玉平等,2006)),(143Nd/144Nd)i= 0.51245 ~0.51259,εNd(t)= + 4.10 ~+6.79,fSm/Nd值為-0.31 ~-0.22,介于-0.6 ~-0.2 之間,表明這些花崗巖的一階段模式年齡很有意義,不會由于高度分離結(jié)晶使得tDM太年輕而不準(zhǔn)或沒有意義(高睿等,2013),一階段模式年齡tDM=0.57 ~0.99Ga;紫蘇花崗巖的(87Sr/86Sr)i= 0.70382 ~0.70388,(143Nd/144Nd)i= 0.51258 ~0.51260,εNd(t)= + 6.67 ~ + 6.98,fSm/Nd值 為- 0.26 ~-0.25,介于-0.6 ~-0.2 之間,一階段模式年齡tDM=0.59~0.62Ga。本文的測試結(jié)果與Geng et al. (2009)測得廟爾溝巖體堿長花崗巖Sr-Nd 同位素組成((87Sr/86Sr)i=0.7034~0.7045,εNd(t)= +7.5 ~+8.9)、紫蘇花崗巖Sr-Nd 同位素組成((87Sr/86Sr)i=0.7037 ~0.7039,εNd(t)= +5.2 ~+8.0)結(jié)果基本一致。
用于測年的鋯石選自樣品MG3-1(紫蘇花崗巖)、MG3-2(堿長花崗巖脈)和MG3-3(堿長花崗巖)。
陰極發(fā)光(CL)圖像(圖7a,b,c)顯示,鋯石以自形柱狀晶體為主,顆粒長100 ~200μm,寬50 ~100μm,邊界清晰、平直,柱面發(fā)育。鋯石內(nèi)部結(jié)構(gòu)多不均一,同一顆鋯石不同部位CL 發(fā)光強(qiáng)度不同,反映各晶域具有不同的U、Th、REE 含量。鋯石顆粒多核幔結(jié)構(gòu),且核部常不均一,可能為老的殘留鋯石,幔部常發(fā)育巖漿振蕩環(huán)帶,表明其具有巖漿鋯石特征(吳元保和鄭永飛,2004)。鋯石樣品的U-Pb 分析結(jié)果見表4。
表3 西準(zhǔn)噶爾廟爾溝巖體Sr、Nd 同位素組成Table 3 Sr and Nd isotopic compositions of the Miaoergou granite pluton in West Junggar
圖7 廟爾溝巖體鋯石CL 圖像(a)MG3-1 紫蘇花崗巖;(b)MG3-2 堿長花崗巖脈;(c)MG3-3 堿長花崗巖Fig.7 Zircon CL images of Miaoergou granite pluton(a)MG3-1 charnockites;(b)MG3-2 the alkali-feldsper granite dike;(c)MG3-3 the alkali-feldsper granite
由表4 可見,鋯石具有較高的U、Th 含量,Th/U 均較高(0.32 ~0.72),顯示巖漿鋯石特征。剔除不諧和年齡數(shù)據(jù)后,紫蘇花崗巖的年齡數(shù)據(jù)都落在諧和線及其附近,表觀年齡介于284.1 ~308.9Ma,206Pb/238U 加權(quán)平均年齡為302.1±2.1Ma(n=30,MSWD =2.3)(圖8a),代表西準(zhǔn)噶爾廟爾溝紫蘇花崗巖的結(jié)晶年齡;堿長花崗巖脈的大多數(shù)數(shù)據(jù)也都落在諧和線及其附近,表觀年齡介于290 ~305Ma,206Pb/238U加權(quán)平均年齡為301 ±2.0Ma(n =15,MSWD =0.77)(圖8b),代表西準(zhǔn)噶爾廟爾溝堿長花崗巖脈的結(jié)晶年齡;堿長花崗巖的年齡數(shù)據(jù)都落在諧和線及其附近,表觀年齡介于303~313Ma,206Pb/238U 加權(quán)平均年齡為309 ±1.4Ma(n =33,MSWD=0.22)(圖8c),代表西準(zhǔn)噶爾廟爾溝堿長花崗巖的結(jié)晶年齡,另外還有兩個點(diǎn)年齡為281 ±3Ma、267 ±7Ma,可能為蝕變鋯石年齡。
晚石炭世-早二疊世巖體在西準(zhǔn)噶爾地區(qū)尤為發(fā)育,主要分布在達(dá)拉布特?cái)嗔阎車瑤r石類型多樣,包括石英閃長巖、鉀長花崗巖、紫蘇花崗巖和堿長花崗巖等,大量的A 型花崗巖在該時期發(fā)育(Chen and Jahn,2004;蘇玉平等,2006;Geng et al.,2009;童英等,2010;陳家富等,2010;高睿等,2013;楊高學(xué)等,2013)。該時期的花崗巖具有較高的正εNd(t)值和年輕的一階段Nd 模式年齡tDM(伍建機(jī)和陳斌,2004;韓寶福等,2006;袁峰等,2006;蘇玉平等,2006;Geng et al.,2009;Chen et al.,2010)。西準(zhǔn)噶爾廟爾溝巖體主體以堿長花崗巖為主,另外還有少許的紫蘇花崗巖、堿長花崗巖脈等。
5.1.1 堿長花崗巖及巖脈
果結(jié)析LA-ICP-MS U-Pb 分石鋯體巖溝爾廟爾噶準(zhǔn)西4 表theWestJunggar LA-ICP-MS U-Pb isotopicdataoftheMiaoergou granitepluton from Table4 1σ 238U 206Pb/(Ma)1σ齡年素235 U位同207Pb/1σ 206Pb 207Pb/1σ 238U 206Pb/值1 σ比素位同235 U 207Pb/1σ 206Pb 207Pb/Th/U -6)232Th( ×10量238 U含素元206Pb號點(diǎn)測3 302 10 314 93 407 0.00057 0.0479 0.01383 0.3621 0.00236 0.05488 0.56 55.4 98.8 19.9 MG3-1-01 3 299 10 299 95 301 0.00055 0.0475 0.01308 0.34254 0.00225 0.05235 0.61 67.6 111.1 22.2 MG3-1-03 4 296 11 292 109 268 0.00058 0.0469 0.01501 0.33336 0.00255 0.0516 0.42 35.6 85.8 16.9 MG3-1-04 3 308 8 304 79 280 0.00051 0.04889 0.01038 0.34935 0.00184 0.05188 0.41 71.3 172.4 35.6 MG3-1-05 4 307 11 310 102 328 0.00059 0.04883 0.01504 0.35641 0.00248 0.05299 0.41 35.1 86.4 18.0 MG3-1-06 4 305 17 295 155 220 0.00072 0.04849 0.02263 0.3377 0.00356 0.05055 0.32 14.6 46.0 9.4 MG3-1-07 4 296 13 320 113 502 0.00065 0.04696 0.01807 0.37065 0.00304 0.05729 0.41 26.9 65.7 12.9 MG3-1-08 4 307 12 305 108 285 0.0006 0.04883 0.01552 0.34969 0.00253 0.05198 0.43 35.5 82.0 17.1 MG3-1-09 4 300 10 316 93 433 0.00057 0.04768 0.01393 0.36473 0.00239 0.05552 0.39 43.3 111.7 22.2 MG3-1-10 4 299 14 308 125 379 0.00068 0.04747 0.01913 0.35456 0.00314 0.0542 0.40 26.1 65.0 12.4 MG3-1-11 3 303 9 310 87 367 0.00054 0.04806 0.01236 0.35701 0.00214 0.05391 0.53 71.3 133.9 26.9 MG3-1-12 4 307 13 318 110 403 0.00064 0.04871 0.0172 0.36772 0.0028 0.05477 0.40 30.2 76.4 15.5 MG3-1-14 4 306 11 330 93 501 0.00059 0.04863 0.01476 0.38368 0.00248 0.05725 0.41 41.8 101.3 20.3 MG3-1-15 3 303 11 317 94 422 0.00057 0.04813 0.01423 0.36647 0.00241 0.05525 0.42 47.4 112.8 22.7 MG3-1-16 4 305 14 299 131 253 0.00068 0.04846 0.01897 0.34235 0.00304 0.05126 0.40 25.7 64.0 13.0 MG3-1-17 4 297 17 270 174 45 0.00073 0.0471 0.02237 0.30465 0.00359 0.04693 0.38 19.0 50.5 9.8 MG3-1-18 3 305 8 302 83 275 0.00052 0.04846 0.01099 0.34573 0.00192 0.05175 0.41 53.6 131.1 26.3 MG3-1-20 5 293 17 304 145 389 0.00075 0.04653 0.02247 0.34923 0.0037 0.05444 0.42 24.0 57.2 11.0 MG3-1-21 4 284 14 278 134 229 0.00064 0.04505 0.0179 0.31509 0.00307 0.05074 0.40 22.6 57.0 10.9 MG3-1-22 3 296 9 297 88 309 0.00053 0.04697 0.01182 0.34017 0.00209 0.05254 0.57 73.8 130.2 25.5 MG3-1-23 4 306 12 312 109 360 0.00064 0.04859 0.0165 0.36005 0.0027 0.05374 0.44 35.0 79.8 16.2 MG3-1-24 4 305 11 299 106 249 0.0006 0.04844 0.01483 0.34177 0.00244 0.05117 0.40 34.4 85.4 17.3 MG3-1-26 3 296 10 317 90 469 0.00055 0.04701 0.01329 0.36582 0.00233 0.05644 0.42 43.5 103.1 20.1 MG3-1-27 4 309 16 323 130 425 0.0007 0.04903 0.0213 0.37404 0.00336 0.05532 0.38 19.3 51.4 10.5 MG3-1-28 4 297 13 306 116 371 0.00064 0.04717 0.01742 0.35129 0.0029 0.05401 0.44 28.8 65.0 12.9 MG3-1-29 4 302 12 299 114 272 0.00063 0.04798 0.01622 0.34207 0.00267 0.0517 0.48 36.8 77.3 15.4 MG3-1-30 4 308 11 308 101 305 0.0006 0.04897 0.01452 0.35417 0.00239 0.05244 0.41 39.8 97.1 20.1 MG3-1-31 4 305 15 332 119 528 0.00069 0.0484 0.02013 0.38686 0.00325 0.05796 0.39 22.3 57.1 11.3 MG3-1-32 4 307 14 318 116 396 0.00065 0.04883 0.01823 0.36779 0.00293 0.05461 0.38 23.1 60.4 12.6 MG3-1-33 4 309 13 317 111 376 0.00065 0.04908 0.0172 0.36644 0.00277 0.05413 0.43 29.9 69.9 14.4 MG3-1-35 7 318 4 300 98 348 0.00061 0.04766 0.01416 0.35136 0.00239 0.05345 0.62 230.4 368.9 71.9 MG3-2-01 11 300 5 299 133 322 0.00076 0.04754 0.01986 0.34649 0.00322 0.05284 0.44 62.2 141.1 28.9 MG3-2-02 5 288 3 304 76 339 0.00052 0.04823 0.01019 0.35409 0.00183 0.05324 0.72 174.9 241.3 48.7 MG3-2-03 17 361 6 291 177 446 0.00102 0.04612 0.02857 0.35512 0.00469 0.05584 0.46 108.6 238.3 48.1 MG3-2-04 6 291 4 301 90 309 0.00057 0.04779 0.01234 0.34617 0.00213 0.05254 0.52 145.1 277.9 60.1 MG3-2-05 5 307 3 302 73 323 0.0005 0.04794 0.00945 0.34943 0.00174 0.05287 0.50 136.7 272.6 55.3 MG3-2-06 12 312 5 290 140 379 0.00081 0.04608 0.02114 0.34427 0.00353 0.05419 0.43 152.7 358.5 71.5 MG3-2-07 17 340 6 302 210 309 0.00105 0.04797 0.03317 0.34742 0.00518 0.05254 0.59 27.4 46.7 9.9 MG3-2-08 4 287 3 301 65 335 0.00047 0.04773 0.00783 0.34969 0.00154 0.05315 0.65 328.1 505.3 99.1 MG3-2-09 9 333 4 2 30 116 411 0.00072 0.04788 0.01799 0.36269 0.00295 0.05496 0.67 177.1 266.0 51.5 MG3-2-10
4表續(xù)C ontinued Table4 1σ 238U 206Pb/(Ma)1σ齡年素235 U位同207Pb/1σ 206Pb 207Pb/1σ 238U 206Pb/值1 σ比素位同235 U 207Pb/1σ 206Pb 207Pb/Th/U -6)232Th( ×10量238 U含素元206Pb號點(diǎn)測6 325 3 303 84 332 0.00056 0.04818 0.01163 0.3525 0.00203 0.05308 0.58 240.3 416.7 87.9 MG3-2-11 6 292 4 303 90 342 0.00057 0.04813 0.01273 0.35371 0.00218 0.05332 0.48 63.9 132.5 26.8 MG3-2-13 12 598 4 278 62 1926 0.00059 0.04411 0.02097 0.71763 0.00418 0.11802 0.44 155.9 355.1 79.4 MG3-2-14 10 323 5 303 133 368 0.00079 0.04819 0.02083 0.35832 0.00334 0.05394 0.48 61.9 129.5 26.6 MG3-2-16 7 304 4 305 91 510 0.00061 0.04842 0.01445 0.38382 0.00244 0.05749 0.59 76.2 128.7 26.9 MG3-2-18 9 299 4 301 108 369 0.00067 0.04784 0.01616 0.35605 0.00268 0.05397 0.59 156.0 262.7 71.8 MG3-2-20 5 309 15 308 128 303 0.00077 0.04909 0.01935 0.35474 0.00306 0.0524 0.45 166.5 365.9 76.9 MG3-3-01 4 312 14 315 117 338 0.00073 0.04953 0.01813 0.36351 0.00287 0.05322 0.46 124.1 267.0 52.9 MG3-3-02 3 306 8 306 78 304 0.00052 0.04867 0.01038 0.35184 0.00184 0.05242 0.44 114.1 261.4 50.6 MG3-3-03 7 307 25 309 209 326 0.00111 0.04876 0.03394 0.35597 0.00521 0.05294 0.55 33.4 60.2 12.1 MG3-3-04 7 267 25 286 217 441 0.00111 0.04228 0.03277 0.32487 0.00582 0.05572 0.33 33.8 102.4 87.7 MG3-3-05 6 307 19 368 135 776 0.00092 0.04875 0.02758 0.43735 0.00436 0.06505 0.45 56.9 125.8 25.6 MG3-3-06 4 309 14 308 121 306 0.0007 0.04905 0.0183 0.35486 0.00291 0.05247 0.48 58.6 122.1 23.6 MG3-3-07 4 308 13 326 112 454 0.00071 0.04898 0.0181 0.37855 0.00291 0.05605 0.46 79.1 172.7 35.0 MG3-3-08 4 310 11 315 95 352 0.0006 0.04925 0.0141 0.36364 0.00232 0.05355 0.47 71.1 150.5 30.8 MG3-3-09 3 309 8 333 73 503 0.00052 0.04908 0.01075 0.38793 0.00192 0.05732 0.48 106.5 222.4 44.6 MG3-3-10 8 311 29 311 234 315 0.0013 0.04934 0.03853 0.35838 0.00584 0.05267 0.44 27.6 62.8 12.4 MG3-3-11 3 310 8 309 80 301 0.00054 0.04922 0.01087 0.35537 0.00189 0.05236 0.46 111.7 244.6 48.4 MG3-3-12 4 308 9 311 89 334 0.00059 0.04889 0.01266 0.35819 0.00214 0.05313 0.50 222.4 441.1 87.7 MG3-3-13 4 313 12 332 98 469 0.00064 0.0497 0.01585 0.3868 0.00257 0.05643 0.51 69.1 136.8 27.2 MG3-3-14 3 309 7 312 69 333 0.0005 0.04911 0.00899 0.35966 0.00166 0.05311 0.44 142.2 321.1 63.6 MG3-3-15 6 312 22 312 184 310 0.00092 0.04955 0.02983 0.3592 0.00452 0.05257 0.58 30.9 53.2 10.4 MG3-3-16 6 307 22 319 175 409 0.001 0.0487 0.02929 0.36876 0.00455 0.05491 0.44 40.3 91.1 17.9 MG3-3-17 3 308 9 308 87 306 0.00056 0.04889 0.01202 0.35371 0.00205 0.05246 0.49 94.5 192.5 38.0 MG3-3-18 7 306 25 335 186 545 0.00117 0.04855 0.03388 0.39108 0.00528 0.05842 0.53 126.4 239.3 46.4 MG3-3-19 10 311 35 332 257 479 0.00157 0.0495 0.04734 0.38706 0.00714 0.0567 0.48 59.2 123.2 23.4 MG3-3-20 6 305 22 309 184 339 0.00104 0.04847 0.02949 0.35581 0.00459 0.05323 0.68 69.2 101.1 19.3 MG3-3-22 3 311 8 328 77 453 0.00054 0.04941 0.01135 0.38164 0.00198 0.05601 0.47 102.0 218.3 42.9 MG3-3-23 9 307 34 331 255 505 0.00153 0.04869 0.04688 0.38513 0.00719 0.05736 0.53 50.2 95.5 20.6 MG3-3-24 3 309 6 320 66 400 0.00049 0.04915 0.00868 0.37084 0.00164 0.05472 0.41 162.9 394.5 77.1 MG3-3-25 4 307 12 323 105 439 0.00067 0.04875 0.01647 0.3742 0.0027 0.05567 0.42 146.0 344.5 65.8 MG3-3-26 4 311 13 331 107 476 0.00067 0.04938 0.01749 0.38559 0.00281 0.05662 0.46 47.5 103.2 20.7 MG3-3-27 8 311 29 316 229 357 0.00126 0.04935 0.03854 0.3653 0.00584 0.05368 0.47 28.0 59.9 11.6 MG3-3-28 3 281 9 285 88 312 0.00053 0.04461 0.01138 0.32362 0.00212 0.05261 0.65 171.4 263.6 49.3 MG3-3-29 4 310 13 333 108 492 0.00067 0.04931 0.01797 0.38779 0.00288 0.05703 0.44 41.8 94.7 19.0 MG3-3-30 6 311 22 311 185 309 0.001 0.04941 0.02972 0.35805 0.00453 0.05255 0.41 24.3 59.8 11.6 MG3-3-31 5 308 16 321 131 416 0.00075 0.04894 0.02124 0.37181 0.00335 0.05509 0.48 35.3 73.8 14.7 MG3-3-32 3 308 7 306 74 297 0.00051 0.04887 0.00954 0.35229 0.00173 0.05227 0.49 155.4 314.1 63.0 MG3-3-33 4 308 11 331 92 501 0.00062 0.04888 0.01452 0.38598 0.00243 0.05726 0.43 176.3 407.7 78.4 MG3-3-34 4 311 12 311 107 311 0.00063 0.0494 0.01599 0.35821 0.00257 0.05258 0.52 52.8 101.7 20.5 MG3-3-35 4 310 15 318 126 374 0.00073 0.04931 0.02003 0.36762 0.00315 0.05407 0.38 24.6 65.0 13.2 MG3-3-36
圖8 廟爾溝巖體U-Pb 定年結(jié)果(a)MG3-1 紫蘇花崗巖;(b)MG3-2 堿長花崗巖脈;(c)MG3-3 堿長花崗巖Fig.8 Zircon U-Pb dating concordia ages of Miaoergou granite pluton(a)MG3-1 charnockites;(b)MG3-2 the alkali-feldsper granite dike;(c)MG3-3 the alkali-feldsper granite
圖9 西準(zhǔn)噶爾廟爾溝巖體(Na2O+K2O)/CaO 比值(a)和Zr (b)與10000 ×Ga/Al 圖解(據(jù)Whalen et al.,1987)Fig.9 (Na2O+K2O)/CaO (a)and Zr (b)vs. 10000 ×Ga/Al diagrams for the Miaoergou granite pluton in West Junggar (after Whalen et al.,1987)
巖相學(xué)和地球化學(xué)研究發(fā)現(xiàn),堿長花崗巖及巖脈礦物學(xué)上以堿性長石和石英為其主要礦物相,次要礦物以黑云母、角閃石等為特征。巖石高硅、富堿、貧鈣,稀土總量較高(∑REE=114.4 × 10-6~185.2 × 10-6),強(qiáng)烈Eu 負(fù)異常(δEu=0.08 ~0.37),明顯富集Rb、K、Th 等大離子親石元素和Zr、Hf 等高場強(qiáng)元素,強(qiáng)烈虧損Ba、Sr、Eu、Nb、Ti,具有較高的10000 ×Ga/Al 比值(>2.44)。顯示堿長花崗巖及巖脈具有A 型花崗巖的特點(diǎn),(Na2O + K2O)/CaO 比值與Zr-10000 ×Ga/Al 圖解中大部分都落入A 型花崗巖區(qū)域,少量落入A 型與I&S 的交界處(圖9)。再根據(jù)Eby(1992)把A型花崗巖分為A1 和A2 兩種類型,廟爾溝巖體堿長花崗巖及巖脈屬于典型的A2 型(圖10)。
5.1.2 紫蘇花崗巖
廟爾溝紫蘇花崗巖的地球化學(xué)特征為:SiO2含量為60.88% ~62.06%,Al2O3含量為15.50% ~15.72%,里特曼指數(shù)(δ)=2.59 ~2.77,稀土總量較高(∑REE =156.0 ×10-6~173.6 ×10-6),相對富集LREE,而虧損HREE,較顯著的Eu 負(fù)異常(δEu =0.71 ~0.83),Rb、Th、U、K 相對富集,Ta、Nb、Sr、P、Ti 相對虧損。這些地球化學(xué)特征類似于Ardey紫蘇花崗巖侵入體(Kilpatrick and Ellis,1992),屬于典型的巖漿成因紫蘇花崗巖。在(Na2O + K2O)/CaO 比值與Zr-10000 ×Ga/Al 圖解中都落入A 型花崗巖區(qū)域(圖9),表明該區(qū)紫蘇花崗巖具有A 型花崗巖的地球化學(xué)特征(彭松柏等,2004)。
圖10 西準(zhǔn)噶爾廟爾溝花崗巖巖石源區(qū)Ce/Nb-Y/Nb 及Yb/Ta-Y/Nb 判別圖解(據(jù)Eby,1992)IAB-島弧玄武巖;OIB-洋島玄武巖Fig.10 Ce/Nb vs. Y/Nb and Yb/Ta vs. Y/Nb discrimination diagrams for the Miaoergou granite pluton in West Junggar (after Eby,1992)TAB-island arc basalt;OIB-ocean island basalt
前人對西準(zhǔn)噶爾地區(qū)在晚古生代所處構(gòu)造環(huán)境的認(rèn)識尚存爭議(引言已述)。爭論的焦點(diǎn)主要在于晚石炭世-早二疊世是島弧環(huán)境,還是洋脊俯沖環(huán)境,抑或是后碰撞擠壓-伸展環(huán)境。有學(xué)者認(rèn)為西準(zhǔn)噶爾地區(qū)在晚石炭世早期仍處于洋殼/洋盆俯沖消減的島弧環(huán)境,以產(chǎn)出石炭世(-早二疊世)埃達(dá)克巖-高鎂安山巖-富Nb 玄武質(zhì)巖組合、阿拉斯加型基性-超基性雜巖和大量的與俯沖相關(guān)的鈣堿性巖漿活動與成礦作用為代表(Feng et al.,1989;高山林等,2006;肖文交等,2006;張連昌等,2006)。此外,還有學(xué)者依據(jù)對區(qū)內(nèi)具有典型特征巖石(A 型花崗巖、紫蘇花崗巖、I 型花崗巖、埃達(dá)克巖、富鎂閃長巖)的研究結(jié)果(西準(zhǔn)噶爾晚石炭世俯沖作用仍然存在,并可能持續(xù)到早二疊世早期),提出西準(zhǔn)噶爾地區(qū)晚石炭世-二疊紀(jì)存在洋脊俯沖,可能處于洋脊俯沖環(huán)境(Geng et al.,2009;唐功建等,2009;Yin et al.,2010;Tang et al.,2010,2012a,b;尹繼元等,2012;Yang et al.,2012a,b;Ma et al.,2012)。然而,另一些學(xué)者認(rèn)為在晚石炭世晚期西準(zhǔn)噶爾已經(jīng)進(jìn)入后碰撞環(huán)境,且持續(xù)到早二疊世(韓寶福等,2006;Zhou et al.,2008;Chen et al.,2010;陳家富等,2010;童英等,2010;高睿等,2013)。新近在西準(zhǔn)噶爾地區(qū)發(fā)現(xiàn)最年輕的達(dá)拉布特蛇綠巖(帶),形成于泥盆紀(jì)-早石炭世(辜平陽等,2009;陳石和郭召杰,2010),該蛇綠巖被也格孜卡拉花崗巖體(308Ma)(陳石和郭召杰,2010)切割,具有韓寶福等(2010)所定義的的“釘合巖體”的特征,說明在晚石炭世俯沖增生作用已經(jīng)結(jié)束。并且區(qū)內(nèi)普遍出露的早石炭世地層和早石炭世-早二疊世花崗巖類巖基(體)在時間、空間上集中分布的特征不同于具有較明顯區(qū)域側(cè)向分帶特征、形成于洋殼/洋盆的俯沖消減體制的花崗巖(蘇玉平等,2006;周濤發(fā)等,2006;韓寶福等,2010;黨飛鵬等,2011)。再者,具有埃達(dá)克特征的巖石產(chǎn)出于后碰撞階段的實(shí)例在西藏、土耳其等地均有發(fā)現(xiàn)(Gao et al.,2003;Topuz et al.,2005)。
筆者認(rèn)為西準(zhǔn)噶爾廟爾溝巖體形成于后碰撞拉張環(huán)境,西準(zhǔn)噶爾在晚石炭世-早二疊世處于后碰撞環(huán)境。主要有以下證據(jù):(1)經(jīng)過野外調(diào)研以及巖相學(xué)研究,發(fā)現(xiàn)廟爾溝巖體跟達(dá)拉布特?cái)嗔迅浇钠渌麕r體相似,大都呈近橢圓狀或扇狀分布,沒有發(fā)生明顯的擠壓變形;另外,巖體周圍的基性巖墻群具有張性特點(diǎn)(李辛子等,2004),這都反映巖體形成于拉張環(huán)境。(2)根據(jù)Pearce 提出的Y +Nb-Rb、Yb-Ta 構(gòu)造環(huán)境判別圖解,該巖體不同類型巖石均落入火山弧花崗巖和板內(nèi)花崗巖交界處(圖11),顯示具有后碰撞花崗巖的特征(Pearce,1996)。(3)前人研究表明,西準(zhǔn)噶爾早石炭世(340~320Ma)發(fā)生俯沖-增生作用(Geng et al.,2009;Xiao et al.,2009,2010;Tang et al.,2010,2012a,b),可能并未進(jìn)入后造山階段(陳家富等,2010)。晚石炭世-早二疊世(310~290Ma)是西準(zhǔn)噶爾花崗巖漿活動最強(qiáng)的時期,Geng et al.(2009)認(rèn)為晚石炭世可能存在洋脊俯沖,并有可能延續(xù)到二疊紀(jì),這與區(qū)內(nèi)大量未變形的A 型花崗巖的特點(diǎn)不相符(蘇玉平等,2006;周濤發(fā)等,2006;韓寶福等,2010),同時西準(zhǔn)噶爾地區(qū)到晚二疊世巖漿活動明顯減弱,并且區(qū)內(nèi)并沒有出現(xiàn)與俯沖相關(guān)的變質(zhì)作用,都表明西準(zhǔn)噶爾在該時期已轉(zhuǎn)入后碰撞伸展階段(蘇玉平等,2006;周濤發(fā)等,2006;Chen et al.,2010;韓寶福等,2010)。本文獲得廟爾溝巖體堿長花崗巖的年齡為309 ±1.4Ma,紫蘇花崗巖的年齡為302.1 ±2.1Ma,堿長花崗巖脈的年齡為301 ±2.0Ma,在時代上屬于晚石炭世,應(yīng)該處于后碰撞伸展階段。
圖11 西準(zhǔn)噶爾廟爾溝巖體的構(gòu)造環(huán)境判別圖解(據(jù)Pearce,1996)VAG-火山弧花崗巖;syn-COLG-同碰撞花崗巖;WPG-板內(nèi)花崗巖;ORG-洋中脊花崗巖Fig.11 Tectonic discrimination diagrams for the Miaoergou gianite pluton in West Junggar (after Pearce,1996)VAG:Volcano Arc Granite;Syn-COLG:Syn-collisional Granite;WPG:Intraplate granite;ORG:Ocean Ridge Granite
A 型花崗巖的形成過程較復(fù)雜,源巖具有多樣性,關(guān)于其成因模式有多種說法:地幔玄武質(zhì)巖漿高度結(jié)晶分異(Han et al.,1997);殼幔物質(zhì)混合(Konopelko et al.,2007);不同源巖的部分熔融(Creaser et al.,1991;King et al.,1997)。西準(zhǔn)地區(qū)并未出現(xiàn)與廟爾溝堿長花崗巖時空關(guān)系密切的基性超基性巖(不排除基性巖漿底侵的可能),因此其直接來源于地幔玄武巖漿高度結(jié)晶分異的可能性不大(蘇玉平等,2006)。本區(qū)堿長花崗巖及巖脈的Y/Nb =3.8 ~10.6,均大于1.2,屬于典型A2 型花崗巖,顯示其可能來源于大陸地殼或板下地殼,且跟陸-陸碰撞或島弧巖漿作用有關(guān)(Eby,1992)。高場強(qiáng)元素(Nb、Ta、P、Ti)的虧損指示存在有島弧物質(zhì),強(qiáng)烈Eu 負(fù)異常,是由玄武巖在下地殼發(fā)生部分熔融的過程中斜長石往往在源區(qū)殘留所致。從A 型花崗巖源區(qū)判別圖解(圖10)可以看出,該區(qū)花崗巖大都落入島弧玄武巖(IAB)區(qū)域附近,表明其源區(qū)可能具典型的島弧玄武巖特征。Sr-Nd 同為素?cái)?shù)據(jù)顯示,廟爾溝堿長花崗巖及巖脈具有低的初始Sr 比值((87Sr/86Sr)i=0.70370 ~0.70541),較高的正εNd(t)值(εNd(t)= +4.10 ~+6.79),年輕的一階段模式年齡(tDM=0.57 ~0.99Ga)。綜上所述,該區(qū)堿長花崗巖及巖脈不是殼幔物質(zhì)混合成因,可能是源自幔源物質(zhì)的年輕下地殼部分熔融的產(chǎn)物,這種下地殼可能由洋殼和島弧建造組成。
紫蘇花崗巖是麻粒巖相區(qū)的一類特殊巖石,一般發(fā)育于前寒武紀(jì),在古生代以來的造山帶中出露很少(沈其韓和吉成林,1992;陳斌和莊育勛,1994;彭松柏等,2004)。其成因類型爭議很大,目前認(rèn)識主要有兩種:一種變質(zhì)成因;另一種是巖漿成因(Kilpatrick and Ellis,1992;Newton,1992)。巖漿成因的紫蘇花崗巖一般與非造山環(huán)境相關(guān)(Duchesne and Wilmart,1997;Markl,1998)。關(guān)于廟爾溝地區(qū)的紫蘇花崗巖,張立飛等(1998,2004)研究認(rèn)為其形成于后造山巖漿作用環(huán)境,與該區(qū)堿長花崗巖分異于同一個巖漿源,且先于該地區(qū)堿長花崗巖結(jié)晶而成。本文研究得出該區(qū)紫蘇花崗巖具有A 型花崗質(zhì)巖石的地球化學(xué)特征,其形成的構(gòu)造環(huán)境與堿長花崗巖相同,屬于后碰撞環(huán)境。Sr、Nd 同位素顯示,紫蘇花崗巖具有低的初始Sr 比值((87Sr/86Sr)i= 0.70382 ~0.70388),較高的正εNd(t)值(εNd(t)= +6.67 ~+6.98),年輕的一階段模式年齡(tDM=0.59 ~0.62Ga)。其與該區(qū)堿長花崗巖的εNd值和模式年齡比較接近,表明其可能來自同一個巖漿源區(qū)。而偏基性的紫蘇花崗巖形成卻晚于堿長花崗巖,與張立飛等(1998,2004)的認(rèn)識有出入。筆者認(rèn)為可能是在后碰撞環(huán)境下,巖石圈伸展促使軟流圈地幔上涌并加熱年輕的下地殼物質(zhì),導(dǎo)致發(fā)生了俯沖的洋殼和底侵島弧的部分熔融,形成了具有島弧印跡的A2 型堿長花崗巖,隨著巖石圈進(jìn)一步伸展,可能在局部有更多偏基性物質(zhì)的加入形成了紫蘇花崗巖。
(1)廟爾溝堿長花崗巖形成年齡為309.8 ±1.7Ma、紫蘇花崗巖形成年齡為302.1 ±2.1Ma、堿長花崗巖脈的形成年齡301 ±2.0Ma,成巖時代均屬于晚石炭世。
(2)廟爾溝堿長花崗巖及巖脈屬于典型的A2 型花崗巖,同期的紫蘇花崗巖是具有A 型地球化學(xué)特征的花崗質(zhì)巖石。
(3)廟爾溝巖體堿長花崗巖和紫蘇花崗巖成于后碰撞環(huán)境,來自相同源區(qū),可能是源自幔源物質(zhì)的年輕下地殼部分熔融的產(chǎn)物,先形成堿長花崗巖,隨著巖石圈進(jìn)一步伸展,可能在局部有更多偏基性物質(zhì)的加入形成紫蘇花崗巖。
致謝 感謝審稿人對完善本文提出的意見和建議!
Chen B and Zhuang YX. 1994. The petrology and petrogenesis of Yunlu chamockite and its granulite inclusion,West Guangdong,South China. Acta Petrologica Sinica,10(2):139 -150 (in Chinese with English abstract)
Chen B and Jahn BM. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane,NW China:Nd-Sr isotope and trace element evidence. Journal of Asian Earth Sciences,23(5):691 -703
Chen B and Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China),with implications for Phanerozoic continental growth.Geochimica et Cosmochimica Acta,69(5):1307 -1320
Chen JF,Han BF,Ji JQ,Zhang L,Xu Z,He GQ and Wang T. 2010.Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar,North Xinjiang,China. Lithos,115(1 -4):137 -152
Chen JF,Han BF and Zhang L. 2010. Geochemistry,Sr-Nd isotopes and tectonic implications of two generations of Late Paleozoic plutons in northern West Junggar,Northwest China. Acta Petrologica Sinica,26(8):2317 -2335 (in Chinese with English abstract)
Chen S and Guo ZJ. 2010. Time constraints,tectonic setting of Dalabute ophiolitic complex and its significance for Late Paleozoic tectonic evolution in West Junggar. Acta Petrologica Sinica,26(8):2336 -2344 (in Chinese with English abstract)
Creaser RA,Price RC and Wormald RJ. 1991. A-type granites revisited:Assessment of a residual-source model. Geology,19(2):163 -166
Dang FP,Wang JL,Yang M and Song ZS. 2011. Characteristics and tectonic setting of Late Paleozoic plutons in the south of western Junggar. Geology and Resources,20(6):440 -451 (in Chinese with English abstract)
Duchesne JC and Wilmart E. 1997. Igneous charnockites and related rocks from the Bjerkreim-Sokndal layered intrusion (Southwest Norway):A jotunite (Hypersthene Monzodiorite)derived A-type granitoid suite. Journal of Petrology,38(3):337 -369
Eby GN. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications. Geology,20(7):641 -644
Fan Y,Zhou TF,Yuan F,Tan LG,Cooke D,Meffre S,Yang WP and He LX. 2007. LA-ICP MS zircon age of Tasite pluton in Sawuer region of West Junggar,Xinjiang. Acta Petrologica Sinica,23(8):1901 -1908 (in Chinese with English abstract)
Feng Y,Coleman RG,Tilton G and Xiao X. 1989. Tectonic evolution of the West Junggar region,Xinjiang,China. Tectonics,8(4):729 -752
Gao R,Xiao L,Wang GC,He XX,Yang G and Yan SW. 2013.Paleozoic magmatism and tectonic setting in West Junggar. Acta Petrologica Sinica,29(10):3413 -3434 (in Chinese with English abstract)
Gao SL,He ZL and Zhou ZY. 2006. Geochemical characteristics of the Karamay granitoids and their significance in West Junggar,Xinjiang.Xinjiang Geology,24(2):125 - 130 (in Chinese with English abstract)
Gao YF,Hou ZQ,Wei RH and Zhao RS. 2003. Post-collisional adakitic porphyries in Tibet:Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geologica Sinica,77(2):194 -203
Geng HY,Sun M,Yuan C,Xiao WJ,Xian WS,Zhao GC,Zhang LF,Wong K and Wu FY. 2009. Geochemical,Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism in the West Junggar,Xinjiang:Implications for ridge subduction?Chemical Geology,266(3 -4):364 -389
Gu PY,Li YJ,Zhang B,Tong LL and Wang JN. 2009. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite,western Junggar,China. Acta Petrologica Sinica,25(6):1364 -1372 (in Chinese with English abstract)
Guo LS,Liu YL,Wang ZH,Song D,Xu FJ and Su L. 2010. The zircon U-Pb LA-ICP-MS geochronology of volcanic rocks in Baogutu areas,western Junggar. Acta Petrologica Sinica,26(2):471 -477 (in Chinese with English abstract)
Han BF,Wang SG,Jahn BM,Hong DW,Kagami H and Sun YL. 1997.Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang,China:Geochemistry and Nd-Sr isotopic evidence,and implications for Phanerozoic crustal growth. Chemical Geology,138(3 -4):135 -159
Han BF,Ji JQ,Song B,Chen LH and Zhang L. 2006. Late Paleozoic vertical growth of continental crust around the Junggar Basin,Xinjiang,China(part I):Timing of post-collisional plutonism. Acta Petrologica Sinica,22(5):1077 -1086 (in Chinese with English abstract)
Han BF,Guo ZJ and He GQ. 2010. Timing of major suture zones in North Xinjiang,China:Constraints from stitching plutons. Acta Petrologica Sinica,26(8):2233 -2246 (in Chinese with English abstract)
He GQ,Chen SD,Xu X,Li JY and Hao J. 2004. An Introduction to the Explanatory Text of the Map of Tectonics of Xinjiang and Its Neighboring Area 1 ∶1500000. Beijing:Geological Publishing House,1 -65 (in Chinese)
Jin CW and Zhang XQ. 1993. A geochronology and geneses of the western Junggar granitoids,Xinjiang,China. Scientia Geologica Sinica,28(1):28 -36 (in Chinese with English abstract)
Kilpatrick JA and Ellis DJ. 1992. C-type magmas:Igneous charnockites and their extrusive equivalents. Transactions of the Royal Society of Edinburgh:Earth Sciences,83(1 -2):155 -164
King PL, White AJR, Chappell BW and Allen CM. 1997.Characterization and origin of aluminous A-type granites from the Lachlan fold belt,Southeastern Australia. Journal of Petrology,38(3):371 -391
Konopelko D,Biske G,Seltmann R,Eklund O and Belyatsky B. 2007.Hercynian post-collisional A-type granites of the Kokshaal Range,Southern Tien Shan,Kyrgyzstan. Lithos,97(1 -2):140 -160
Li XZ,Han BF,Ji JQ,Li ZH,Liu ZQ and Yang B. 2004. Geology,geochemistry and K-Ar ages of the Karamay basic-intermediate dyke swarm from Xinjiang,China. Geochimica,33(6):574 -584 (in Chinese with English abstract)
Li ZH,Han BF,Li XZ,Du W and Yang B. 2004. Microgranular dioritic enclaves in Junggar granites and their implications for the origin and evolution of post-collisional granitic magmatism in North Xinjiang.Acta Petrologica et Mineralogica,23(3):214 -226 (in Chinese with English abstract)
Ludwig KR. 2003. User’s Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronlogical Center Special Publication,No.4:1 -73
Ma C,Xiao WJ,Windley BF,Zhao GP,Han CM,Zhang JE,Luo J and Li C. 2012. Tracing a subducted ridge-transform system in a Late Carboniferous accretionary prism of the southern Altaids:Orthogonal sanukitoid dyke swarms in western Junggar,NW China. Lithos,140-141:152 -165
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids.Geological Society of America Bulletin,101(5):635 -643
Markl G,F(xiàn)rost BR and Bucher K. 1998. The origin of anorthosites and related rocks from the Lofoten Islands,Northern Norway:I. Field relations and estimation of intrinsic variables. Journal of Petrology,39(8):1425 -1452
Middlemost EAK. 1985. Magmas and Magmatic Rocks. London:Longman Group Ltd.,1 -266
Newton RC. 1992. An overview of charnockite. Precambrian Research,55(1 -4):399 -405
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes,19(4):120 -125
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey.Contributions to Mineralogy and Petrology,58(1):63 -81
Peng SB,Jin ZM,F(xiàn)u JM and Liu YH. 2004. Origin of charnockite and its tectonic significance. Geology and Mineral Resources of South China,(4):63 -70 (in Chinese with English abstract)
Shen QH and Ji CL. 1992. Basic characteristics of the Precambrian charnockites in North China. Acta Petrologica Sinica,8(1):61 -73 (in Chinese with English abstract)
Su YP,Tang HF,Hou GS and Liu CQ. 2006. Geochemistry of aluminous A-type granites along Darabut tectonic belt in West Junggar,Xinjiang. Geochimica,35(1):55 -67 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunder AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345
Tang GJ,Wang Q,Zhao ZH,Wyman DA,Chen HH,Jia XH and Jiang ZQ. 2009. Geochronology and geochemistry of the ore-bearing porphyries in the Baogutu area (western Junggar):Petrogenesis and their implications for tectonics and Cu-Au mineralization. Earth Science,34(1):56 -74 (in Chinese with English abstract)
Tang GJ,Wang Q,Wyman DA,Li ZX,Zhao ZH,Jia XH and Jiang ZQ.2010. Ridge subduction and crustal growth in the Central Asian Orogenic Belt:Evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region,northern Xinjiang (West China). Chemical Geology,277(3 -4):281 -300
Tang GJ,Wang Q,Wyman DA,Li ZX,Xu YG and Zhao ZH. 2012a.Recycling oceanic crust for continental crustal growth:Sr-Nd-Hf isotope evidence from granitoids in the western Junggar region,NW China. Lithos,128 -131:73 -83
Tang GJ,Wang Q,Wyman DA,Li ZX,Zhao ZH and Yang YH. 2012b.Late Carboniferous high εNd(t)-εHf(t)granitoids,enclaves and dikes in western Junggar,NW China:Ridge-subduction-related magmatism and crustal growth. Lithos,140 -141:86 -102
Tong Y,Wang T,Hong DW,Han BF,Zhang JJ,Shi XJ and Wang C.2010. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas,and its tectonic significance. Acta Petrologica et Mineralogica,29(6):618-641 (in Chinese with English abstract)
Topuz G,Altherr R,Schwarz WH,Siebel W,Sat?r M and Dokuz A.2005. Post-collisional plutonism with adakite-like signatures:The Eocene Sarayc?k granodiorite (Eastern Pontides, Turkey ).Contributions to Mineralogy and Petrology,150(4):441 -455
Wang FZ,Yang MZ and Zheng JP. 2002. Geochemical evidence of the basement assembled by island arc volcanics terranes in Junggar Basin. Acta Petrologica et Mineralogica,21(1):1 -10 (in Chinese with English abstract)
Wang ZH,Sun S,Li JL,Hou QL,Qin KZ,Xiao WJ and Hao J. 2003.Paleozoic tectonic evolution of the northern Xinjiang,China:Geochemical and geochronological constraints from the ophiolites.Tectonics,22(2):1 -15
Whalen JB,Currie KL and Chappell BW. 1987. A-type granites:Geochemical characteristics, discrimination and petrogenesis.Contributions to Mineralogy and Petrology,95(4):407 -419
Wu JJ and Chen B. 2004. Trace element and Nd-Sr isotope characteristics of the post-collisional granitoids from Miaoergou west Junggar,and implication for petrogenesis. Xinjiang Geology,22(1):29 -35 (in Chinese with English abstract)
Wu YB and Zheng YF. 2004. Zircon genetic mineralogy and its constraint on applications of zircon U-Pb dating result. Chinese Science Bulletin,49(16):1589 -1604 (in Chinese)
Xian WS,Sun M,Zhang LF,Zhao GC and Malpas J. 2002. Late Paleozoic vertical crustal growth of western Junggar,Xinjiang in China:Evidence from petrology and Nd isotope in charnockites and alkaline granites. In:Wu FY,Wilde S and Jahn BM (eds.).Continental Growth in the Phanerozoic:Evidence from Central Asia.Abstract and Excursion Guidebook,4thWorkshop of IGCP,420:127 -128
Xiao WJ,Han CM,Yuan C,Chen HL,Sun M,Lin SF,Li ZL,Mao QG,Zhang JE,Sun S and Li JL. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of northern Xinjiang (NW China):Constraints for the tectonics of the southern Paleoasain Domain. Acta Petrologica Sinica,22(5):1062 -1076 (in Chinese with English abstract)
Xiao WJ,Kr?ner A and Windley B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences,98(6):1185 -1188
Xiao WJ,Huang BC,Han CM,Sun S and Li L. 2010. A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens. Gondwana Research,18(2 -3):253 -273
Yang GX,Li YJ,Gu PY,Yang BK,Tong L and Zhang HW. 2012a.Geochronological and geochemical study of the Darbut ophiolitic complex in the West Junggar (NW China):Implications for petrogenesis and tectonic evolution. Gondwana Research,21(4):1037 -1049
Yang GX,Li YJ,Santosh M,Gu PY,Yang BK,Zhang B,Wang HB,Zhong X and Tong L. 2012b. A Neoproterozoic seamount in the Paleoasian Ocean:Evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar,NW China. Lithos,140 -141:53 -65
Yang GX,Li YJ,Zhang B,Wang YB,Liu ZW,Yan J and Tian ZX.2013. Geochronology, geochemistry and petrogenesis of the Jietebutiao A-type granites in West Junggar, Xinjiang. Acta Geoscientia Sinica,34(3):295 - 306 (in Chinese with English abstract)
Yin JY,Yuan C,Sun M,Long XP,Zhao GC,Wong KP,Geng HY and Cai KD. 2010. Late Carboniferous high-Mg dioritic dikes in western Junggar,NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research,17(1):145 -152
Yin JY,Yuan C,Wang YJ,Long XP and Guan YL. 2011. Magmatic records on the Late Paleozoic tectonic evolution of western Junggar,Xinjiang. Geotectonica et Metallogenia,35(2):278 - 291 (in Chinese with English abstract)
Yin JY,Yuan C,Sun M,Long XP,Qiu HN,Wang YJ,Ren JB and Guan YL. 2012. Age, geochemical features and possible petrogenesis mechanism of Early Permian magnesian diorite in Hatu,Xinjiang. Acta Petrologica Sinica,28(7):2171 -2182 (in Chinese with English abstract)
Yuan F,Zhou TF,Tan LG,F(xiàn)an Y,Yang WP,He LX and Yue SC.2006. Isotopic ages of the I-type granites in West Junggar Sawuer region. Acta Petrologica Sinica,22(5):1238 -1248 (in Chinese with English abstract)
Yuan HL,Wu FY,Gao S,Liu XM,Xu P and Sun DY. 2003. Zircon laser probe U-Pb dating and REE compositional analysis of Cenozoic pluton in Northeast China. Chinese Science Bulletin,48(14):1511-1520 (in Chinese)
Zhang LC,Wan B,Jiao XJ and Zhang R. 2006. Characteristics and geological significance of adakitic rocks in copper-bearing porphyry in Baogutu,western Junggar. Geology in China,33(3):626 -631(in Chinese with English abstract)
Zhang LF,Sun M,Yuan C and Jiang WB. 1998. Mela-enclaves and their host A-type granites in western Junggar,China:A petrological study. In:Jahn BM and Hong DW (eds.). IGCP 420 Continental Growth in the Phanerozoic:Evidence from East-Central Asia First Workshop,Schedule and Abstracts
Zhang LF,Xian WS and Sun M. 2004. Petrogenesis of charnockites from western Junggar,Xinjiang,China. Xinjiang Geology,22(1):36 -42 (in Chinese with English abstract)
Zhou LR,Zhao ZC and Zhang JS. 1987. The essential features of geotectonic development and magmatic evolution on the western Junggar area Xinjiang China. Northwest Geoscience,(2):3 -55,171 -176 (in Chinese with English abstract)
Zhou TF,Yuan F,F(xiàn)an Y,Tan LG and Yue SC. 2006. Geodynamic significance of the A-type granites in the Sawuer region in West Junggar,Xinjiang:Rock geochemistry and SHRIMP zircon age evidence. Science in China (Series D),49(2):113 -123
Zhou TF,Yuan F,F(xiàn)an Y,Zhang DY,Cooke D and Zhao GC. 2008.Granites in the Sawuer region of the West Junggar,Xinjiang Province,China:Geochronological and geochemical characteristics and their geodynamic significance. Lithos,106(3 -4):191 -206
Zhu BQ. 1984. Ancient oceanic crust and plate tectonics in southwestern section of western Junggar. Bulletin of the Chinese Academy of Geological Sciences,10:137 - 150 (in Chinese with English abstract)
附中文參考文獻(xiàn)
陳斌,莊育勛. 1994. 粵西云爐紫蘇花崗巖及其麻粒巖包體的主要特點(diǎn)和成因討論. 巖石學(xué)報,10(2):139 -150
陳家富,韓寶福,張磊. 2010. 西準(zhǔn)噶爾北部晚古生代兩期侵入巖的地球化學(xué)、Sr-Nd 同位素特征及其地質(zhì)意義. 巖石學(xué)報,26(8):2317 -2335
陳石,郭召杰. 2010. 達(dá)拉布特蛇綠巖帶的時限和屬性以及對西準(zhǔn)噶爾晚古生代構(gòu)造演化的討論. 巖石學(xué)報,26(8):2336 -2344
黨飛鵬,王居里,楊猛,宋子升. 2011. 西準(zhǔn)噶爾南部晚古生代侵入巖特征和構(gòu)造背景. 地質(zhì)與資源,20(6):440 -451
范裕,周濤發(fā),袁峰,譚綠貴,Cooke D,Meffre S,楊文平,何立新.2007. 新疆西準(zhǔn)噶爾地區(qū)塔斯特巖體鋯石LA-ICPMS 年齡及其意義. 巖石學(xué)報,23(8):1901 -1908
高睿,肖龍,王國燦,賀新星,楊剛,鄢圣武. 2013. 西準(zhǔn)噶爾晚古生代巖漿活動和構(gòu)造背景. 巖石學(xué)報,29(10):3413 -3434
高山林,何治亮,周祖翼. 2006. 西準(zhǔn)噶爾克拉瑪依花崗巖體地球化學(xué)特征及其意義. 新疆地質(zhì),24(2):125 -130
辜平陽,李永軍,張兵,佟麗莉,王軍年. 2009. 西準(zhǔn)達(dá)爾布特蛇綠巖中輝長巖LA-ICP-MS 鋯石U-Pb 測年. 巖石學(xué)報,25(6):1364 -1372
郭麗爽,劉玉琳,王政華,宋達(dá),許發(fā)軍,蘇犁. 2010. 西準(zhǔn)噶爾包古圖地區(qū)地層火山巖鋯石LA-ICP-MS U-Pb 年代學(xué)研究. 巖石學(xué)報,26(2):471 -477
韓寶福,季建清,宋彪,陳立輝,張磊. 2006. 新疆準(zhǔn)噶爾晚古生代陸殼垂向生長(I)-后碰撞深成巖漿活動的時限. 巖石學(xué)報,22(5):1077 -1086
韓寶福,郭召杰,何國琦. 2010. “釘合巖體”與新疆北部主要縫合帶的形成時限. 巖石學(xué)報,26(8):2233 -2246
何國琦,成守德,徐新,李錦軼,郝杰. 2004. 中國新疆及鄰區(qū)大地構(gòu)造圖(1∶2500000;附說明書). 北京:地質(zhì)出版社,1 -65
金成偉,張秀棋.1993.新疆西準(zhǔn)噶爾花崗巖類的時代及其成因.地質(zhì)科學(xué),28(1):28 -36
李辛子,韓寶福,季建清,李宗懷,劉志強(qiáng),楊斌. 2004. 新疆克拉瑪依中基性巖墻群的地質(zhì)地球化學(xué)和K-Ar 年代學(xué). 地球化學(xué),33(6):574 -584
李宗懷,韓寶福,李辛子,杜蔚,楊斌. 2004. 新疆準(zhǔn)噶爾地區(qū)花崗巖中微粒閃長質(zhì)包體特征及后碰撞花崗質(zhì)巖漿起源和演化. 巖石礦物學(xué)雜志,23(3):214 -226
彭松柏,金振民,付建明,劉云華. 2004. 紫蘇花崗巖成因及構(gòu)造意義. 華南地質(zhì)與礦產(chǎn),(4):63 -70
沈其韓,吉成林. 1992. 華北前寒武紀(jì)紫蘇花崗巖的基本特征和成因. 巖石學(xué)報,8(1):61 -73
蘇玉平,唐紅峰,侯廣順,劉叢強(qiáng). 2006. 新疆西準(zhǔn)噶爾達(dá)拉布特構(gòu)造帶鋁質(zhì)A 型花崗巖的地球化學(xué)研究. 地球化學(xué),35(1):55 -67
唐功建,王強(qiáng),趙振華,Wyman DA,陳海紅,賈小輝,姜子琦.2009. 西準(zhǔn)噶爾包古圖成礦斑巖年代學(xué)與地球化學(xué):巖石成因與構(gòu)造、銅金成礦意義. 地球科學(xué),34(1):56 -74
童英,王濤,洪大衛(wèi),韓寶福,張建軍,史興俊,王超. 2010. 北疆及鄰區(qū)石炭-二疊紀(jì)花崗巖時空分布特征及其構(gòu)造意義. 巖石礦物學(xué)雜志,29(6):619 -641
王方正,楊梅珍,鄭建平. 2002. 準(zhǔn)噶爾盆地島弧火山巖地體拼合基底的地球化學(xué)證據(jù). 巖石礦物學(xué)雜志,21(1):1 -10
伍建機(jī),陳斌. 2004. 西準(zhǔn)噶爾廟爾溝后碰撞花崗巖微量元素和Nd-Sr 同位素特征及成因. 新疆地質(zhì),22(1):29 -35
吳元保,鄭永飛. 2004. 鋯石成因礦物學(xué)研究及其對U-Pb 年齡解釋的制約. 科學(xué)通報,49(16):1589 -1604
肖文交,韓春明,袁超,陳漢林,孫敏,林壽發(fā),厲子龍,毛啟貴,張繼恩,孫樞,李繼亮. 2006. 新疆北部石炭紀(jì)-二疊紀(jì)獨(dú)特的構(gòu)造-成礦作用:對古亞洲洋構(gòu)造域南部大地構(gòu)造演化的制約. 巖石學(xué)報,22(5):1062 -1076
楊高學(xué),李永軍,張兵,汪雅兵,劉振偉,嚴(yán)鏡,田陟賢. 2013. 新疆西準(zhǔn)噶爾接特布調(diào)A 型花崗巖年代學(xué)、地球化學(xué)及巖石成因.地球?qū)W報,34(3):295 -306
尹繼元,袁超,王毓婧,龍曉平,關(guān)義立. 2011. 新疆西準(zhǔn)噶爾晚古生代大地構(gòu)造演化的巖漿活動記錄. 大地構(gòu)造與成礦學(xué),35(2):278 -291
尹繼元,袁超,孫敏,龍曉平,邱華寧,王毓婧,任江波,關(guān)義立.2012. 新疆哈圖早二疊世富鎂閃長巖的時代、地球化學(xué)特征和可能的成因機(jī)制,巖石學(xué)報,28(7):2171 -2182
袁峰,周濤發(fā),譚綠貴,范裕,楊文平,何立新,岳書倉. 2006. 西準(zhǔn)噶爾薩吾爾地區(qū)Ⅰ型花崗巖同位素精確定年及其意義. 巖石學(xué)報,22(5):1238 -1248
袁洪林,吳福元,高山,柳小明,徐平,孫德有. 2003. 東北地區(qū)新生代侵入體的鋯石激光探針U-Pb 年齡測定與稀土元素成分分析. 科學(xué)通報,48(14):1511 -1520
張連昌,萬博,焦學(xué)軍,張銳. 2006. 西準(zhǔn)包古圖含銅斑巖的埃達(dá)克巖特征及其地質(zhì)意義. 中國地質(zhì),33(3):626 -631
張立飛,冼偉勝,孫敏. 2004. 西準(zhǔn)噶爾紫蘇花崗巖成因巖石學(xué)研究. 新疆地質(zhì),22(1):36 -42
周良仁,趙志長,張金聲. 1987. 西準(zhǔn)噶爾地區(qū)地質(zhì)構(gòu)造發(fā)展及巖漿演化特征. 西北地質(zhì)科學(xué),(2):3 -55,171 -176
周濤發(fā),袁峰,范裕,譚綠貴,岳書倉. 2006. 西準(zhǔn)噶爾薩吾爾地區(qū)A 型花崗巖的地球動力學(xué)意義:來自巖石地球化學(xué)和鋯石SHRIMP 定年的證據(jù). 中國科學(xué)(D 輯),36(1):39 -48
朱寶清. 1984. 西準(zhǔn)噶爾西南地區(qū)古海洋地殼與板塊構(gòu)造. 中國地質(zhì)科學(xué)院院報,10:137 -150