• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping the glaucousness suppressor Iw1 from wild emmer wheat“PI 481521”

    2015-03-13 05:51:38ZongchngXuCuilingYunJiruiWngDolinFuJijieWu
    The Crop Journal 2015年1期

    Zongchng Xu,Cuiling Yun,Jirui Wng,Dolin Fu,*,Jijie Wu,*

    aState Key Laboratory of Crop Biology,Shandong Key Laboratory of Crop Biology,Shandong Agricultural University,Tai'an 271018,China

    b Triticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China

    1.Introduction

    Epicuticular wax (EW) is an important surface structure on plants.In general,EW may affect water relations,protect plants from radiation,provide a physical barrier for toxic substances,enhance canopy reflectance,and increase grain yield [1–3].Epicuticular wax also plays important roles in plant defense against bacterial and fungal pathogens,and impacts plant–insect interactions[2,4].

    Plant EW contains a variety of long chain-length hydrocarbons,such as alcohols,aldehydes and alkanes,each of which also contains various homologues[5].When compounds accumulate in the wax layer,especially those compounds enriched in one single homologue,they form ordered microcrystalline structures,which cause light-scattering effects and glaucousness [6].Therefore,plant EW can be grouped into non-glaucous and glaucous epicuticular waxes[7].Glaucous EW is associated with high concentrations of β-diketones,C29and C31hydrocarbons,primary alcohols,triterpene ketones,and esters within the EW hydrocarbon matrix [7–9].In xeric or semiarid plants,the glaucous EW improve water status under drought stress conditions[10].

    In the Triticeae,many species have evolved with both glaucous and non-glaucous phenotypes,such as Aegilops tauschii [11],Hordeum vulgare [12,13],tetraploid wheat [14]and polyploid wheat[15,16].In wheat,major compounds such as β-diketones and hydroxy-β-diketones cause glaucousness[17,18].Glaucous phenotypes in wheat (Triticum aestivum L.)are mainly controlled by two wax production loci(W1 and W2)and closely associated inhibitor genes Iw1 and Iw2,that are epistatic to W1 and W2 [19].Wax composition was recently studied in six near-isogenic lines(NILs)varying in different W and Iw combinations in the genetic background of common wheat “S-615” [18].NILs W1W2iw1iw2,W1w2iw1iw2,and w1W2iw1iw2 are glaucous,whereas w1w2iw1iw2,W1W2Iw1iw2,and W1W2iw1Iw2 are non-glaucous.In general,the glaucous NILs are similar in wax load and wax composition,and β-diketones account for ca.60% of the total wax.However,the levels of β-diketones are dramatically reduced in the non-glaucous NILs,accounting for 8% of total wax in w1w2iw1iw2 and becoming undetectable in W1W2Iw1iw2 and W1W2iw1Iw2[18].

    The wax production genes as well as the inhibitors were mapped on wheat chromosome arms 2BS and 2DS [19].The Iw1 locus is ca.2 cM distal to the W1 locus,whereas the Iw2 locus is ca.131 cM distal to W2.However,Iw1 and Iw2 are likely orthologs in wheat homologous group 2 [19,20].In wheat,two Iw loci,potential equivalents of Iw1 and Iw2,were mapped on the distal ends of the short arms of chromosome 2B and 2D [21,22].More recently,Adamski et al.[23] mapped the Iw1 gene within a sub-cM interval containing a single colinear gene in Brachypodium and rice (Oryza sativa L.).It was shown that Iw1 inhibits formation of β-and hydroxy-β-diketones in wheat EW on peduncles and flag leaf tissues.

    In tetraploid wheat,several sets of chromosome substitution lines have been developed in durum cultivar “Langdon”(LDN,T.turgidum ssp.durum) [24–26].In the Langdon background,the substitution line LDNDIC521-2Bcarries a pair of 2B chromosomes from wild emmer wheat PI 481521 (T.turgidum ssp.dicoccoides,DIC) [26].Langdon has a glaucous phenotype,and LDNDIC521-2Bis non-glaucous.In this study,we report the mapping of the Iw1 locus using an F2population developed from Langdon and LDNDIC521-2B.

    2.Materials and methods

    2.1.Plant materials

    This study was conducted on tetraploid wheat Langdon and LDNDIC521-2B(T.turgidum L.,2n = 4x = 28,AABB).Langdon was released by the North Dakota Agricultural Experiment Station in 1956 [27].LDNDIC521-2Bis a substitution line,in which the chromosomes 2B pair of Langdon is replaced by the homologous pair from the wild emmer accession “PI 481521”[26].Reciprocal crosses were made between Langdon and LDNDIC521-2B,and F1,F2,and F3plants were used to analyze the visual EW phenotypes.The parental lines for the study were obtained from USDA-ARS,Fargo,ND,USA.

    2.2.Evaluation of glaucous and non-glaucous phenotypes

    The visual EW phenotypes on flag-leaf sheaths,peduncles,and glumes were evaluated at the plant booting and heading stages.Glaucous EW is visible waxiness that contributes to the bluish color of organs; the transparent non-glaucous EW allows a natural reflection of green light from the investigated tissue surfaces.

    2.3.Polymerase chain reaction

    Genomic DNA of leaf tissues was extracted from plants at the jointing stage using the Sarkosyl method [28].PCR amplifications were performed in 20 μL mixes containing 1×PCR buffer(1.5 mmol L-1MgCl2,0.2 mmol L-1each of dCTP,dGTP,dTTP,and dATP; Promega,Madison,USA),0.4 μmol L-1of both forward and reverse primers,100 ng DNA template,0.4 U of Taq DNA polymerase (Promega),and ddH2O.Amplifications were conducted in an ABI 9700 Thermal Cycler (Life Technologies,Grand Island,NY,USA).Amplification cycles included an initial denaturation (94 °C for 5 min); 40 cycles of denaturation(94 °C for 30 s),annealing(58 °C for 30 s)and extension(72 °C for 30 s); and a final extension (72 °C for 10 min).PCR products were separated on 6% PAGE gels and examined under UV light.

    2.4.Development of gene-based markers on wheat chromosome 2B

    Gene-based markers provide informative data for genetic mapping and comparative genomics.To develop this type of marker,we utilized DNA polymorphisms in the gene region,which normally corresponds to expressed sequence tags(EST)and transcriptome-derived single nucleotide polymorphisms(SNP).To differentiate the 2B chromosomes between durum and wild emmer,we genotyped Langdon and LDNDIC521-2Busing the wheat 90K iSelect SNP array,in which all SNP probes were generated from data mining of genomic sequences and wheat transcriptomes[29].PCR markers were developed from selected SNPs showing polymorphism between Langdon and LDNDIC521-2B.In addition,BE444541 and BE498396 were chosen to develop 2B-specific markers; these are two wheat ESTs belonging to the distal 6S deletion bin in the group 2 consensus map[30].Three closely linked EST markers recently developed for the Iw1 gene[23]were also integrated into current mapping effort.

    2.5.Construction of a genetic linkage map

    Data for the Langdon/LDNDIC521-2BF2population was used to construct a chromosome 2B linkage map.In addition to 10 gene-associated markers,40 simple sequence repeats (SSR)were chosen from those previously mapped to chromosome 2B [31–33].The resulting 19 polymorphic SSR markers were used to map the chromosome 2B inhibitor of wax production.The genetic map was created using JoinMap 4.0(Kyazma B.V.,Wageningen,Netherlands),with map distances being estimated by the Kosambi mapping function[34].

    3.Results

    3.1.Wild emmer “PI 481521” carries a dominant inhibitor of wax production

    Langdon and LDNDIC521-2Bwere both non-glaucous at the seedling stage.When plants reached the early booting stage or the Feekes Stages 9–10 [35],Langdon gradually became glaucous,but LDNDIC521-2Bremained non-glaucous until maturity(Fig.1).We investigated the phenotypes on F1plants generated from reciprocal crosses between Langdon and LDNDIC521-2B;the phenotypes were consistent among spikes,peduncles,and flag-leaf sheaths at the heading stage.All three organs were non-glaucous suggesting the presence of a dominant Iw allele in LDNDIC521-2B.Because Langdon and LDNDIC521-2Bdiffered only in respect of chromosomes 2B,an initial hypothesis was that LDNDIC521-2Band its 2B chromosome donor PI 481521 carried at least one Iw gene on chromosome 2B,completely negating the glaucous appearance.

    We further checked the phenotypes of F2plants and F3lines from the Langdon/LDNDIC521-2Bcross.In the F2generation,64 plants were non-glaucous whereas 21 were glaucous,fitting a single locus 3:1 Mendelian segregation ratio(χ2= 0.0039,df = 1,P >0.95).Among the 85 F3lines(15–20 plants per line),23 were homozygous non-glaucous,39 segregated and 20 were heavily glaucous like Langdon confirming segregation at a single genetic locus (χ21:2:1= 0.41,df = 2,P >0.80).Thus PI 481521 possesses a single dominant Iw allele on chromosome 2B,presumably Iw1 as reported in earlier studies in tetraploid wheat[14,20,23].

    3.2.Chromosome 2B-specific markers differentiate Langdon and PI 481521

    To map the dominant Iw allele from PI 481521,we initially screened 40 SSR markers associated chromosome 2B [31–33];19 were polymorphic between Langdon and PI 481521(Table 1).

    To better differentiate the 2B chromosomes of durum and wild emmer,Langdon and the 2B substitution line LDNDIC521-2Bwere analyzed using the wheat 90K iSelect array[29],revealing 345 polymorphic SNPs (Table 2).To check the applicability of the SNPs we also genotyped wild emmer accession “DIC479” [36].Of the 345 polymorphic SNPs,263 were also polymorphic between Langdon and DIC479.The wheat survey sequence was recently made publically accessible by the International Wheat Genome Sequencing Consortium(IWGSC)[37],and in addition wheat consensus maps containing 40,267 SNPs were constructed using the wheat 90K iSelect genotyping array [29].Based on the wheat survey sequence and wheat 90K consensus maps,158 SNPs were anchored to chromosome 2BS,and 174 were anchored to 2BL.Of the 345 polymorphic SNPs,257 were placed on the 2B consensus map,including 122 on each arm and 13 in the centromere region.Three SNPs,including IWA7120(CJ685558),IWA2116 (CJ858592),and IWA1359 (DR736025),were targeted to develop 2B-specific PCR markers(Tables 1–2,Fig.2).

    Fig.1-EW appearance on Langdon and LDNDIC521-2B.Only the spike(S),peduncle(P),and leaf sheath(LS)are shown.

    Seven wheat ESTs,including BE444541,BE498111,BE498396,BQ788707,CD893659,CD927782,and CD938589,were targeted to develop PCR markers from their genomic sequences.BE444541 and BE498396 were previously mapped to deletion bin 6S in the group 2 consensus map[30].BQ788707,CD893659,and CD927782,which were reported to co-segregate with the Iw1 gene,are equivalent to JIC011/CJ876545,JIC009/BF474014,and JIC010,respectively [20,23].BE498111 and CD938589 are orthologs of the genes in rice BAC clones OSJNBb0003A12(AL731620) and OSJNBa0095E20 (AL731627) and show microcolinearity to the Iw2 gene on wheat chromosome 2DS [21].In total,10 EST/SNP based PCR markers were developed,including three dominant markers in Langdon,one dominant marker in LDNDIC521-2B,two InDel markers,and four CAPS/dCAPS markers(Table 1).The 2B locations of some of the new markers were demonstrated by testing the“Chinese Spring” nulli-tetrasomic(NT)lines(Fig.2).

    Table 1-PCR markers used for linkage analysis; upper,SSR markers; lower,gene-based markers developed from ESTs/SNPs.

    3.3.PI 481521 carries a dominant Iw1 gene on chromosome 2BS

    Using the F2population of Langdon/LDNDIC521-2B,we constructed a 2B linkage map containing 29 SSR and EST/SNP-based PCR markers spanning ca.79.9 cM (Fig.3).In this map,Xwmc272,Xwmc592,and Xcfa2278 are located near the centromere [32].As the Iw allele from PI 481521 displayed dominance for non-glaucousness,the EW phenotypes of F2plants and F3lines were sufficient to conclude the Iw genotype in F2plants.We mapped the Iw gene of PI 481521 to the distal region of chromosome 2BS (Fig.3).In the current map,Xbarc35,BQ788707,CD893659,CD927782,and CD938589 were completely linked to the Iw locus.In other reports,CD893659/BF474014/JIC009,CD927782/JIC010,and BQ788707/CJ876545/JIC011 (hereafter designated as CD893659,CD927782,and BQ788707) were shown to co-segregate with the Iw1 and Iw2 loci [20,23].Most likely,the dominant Iw locus of PI 481521 is Iw1.

    The 2B linkage map of Langdon/LDNDIC521-2Bwas in agreement with the “Shamrock”/“Shango” map [22]; six SSR markers aligned in the same order on chromosome 2BS;the non-glaucous allele was mapped within the Xgwm614–Xwmc264 interval (Fig.3-A,B).Using EST-based markers,we then investigated the syntenic relationship of the Triticeae homologous group 2,and the Iw1 and Iw2 regions were highly conserved among the 2BS,2DS,and 2HS chromosomes(Fig.3-B,C,D,E).Seven ESTs were mapped in the same order on 2BS and 2DS (Fig.3-D,E).However,data for other ESTs implied chromosome inversions between 2BS and 2HS,such as the chromosome blocks MC43775–MC37223,MC1559514–MC36937,and MC1580487–MC135036 on the barley physical map(Fig.3-B,C).

    Table 2-SNPs on the chromosome 2B polymorphic between Langdon and PI 481521.

    Fig.2-Chromosome 2B specificities of newly developed PCR markers.PCR were performed on Langdon(AABB),“DV92”(T.monococcum,AmAm),“AS75”(Ae.tauschii,DD),and the“Chinese Spring” nulli-tetrasomic(NT)lines.BQ788707,a dominant marker in LDNDIC521-2B,is not detected in Langdon.

    4.Discussion

    Wild emmer is the progenitor of cultivated durum and the A and B genome donors of common wheat via cultivated emmer.As a largely untapped genetic reservoir,wild emmer represents a significant resource for wheat improvement[38].Wild emmer PI 481521,collected from Israel in 1983,was used to produce 14 chromosome substitution lines (LDNDIC521) in which single chromosome pairs of Langdon are replaced by the corresponding homologous pairs from PI 481521 [26].Studies on PI 481521 and the LDNDIC521substitutions demonstrated that PI 481521 possesses genes affecting disease resistance[39],kernel characteristics and protein molecular weight distribution [40],the glutenin subunits and gliadins[26].

    In wheat,the EW phenotype is a significant morphological character.Glaucousness prevails in cultivated wheat,but non-glaucousness is common in wild germplasms,including wheat donors such as wild emmer and Ae.tauschii [41].EW phenotype is determined by four dominant genes,including the wax production genes(W1 and W2)and the wax inhibitors(Iw1 and Iw2).The inhibitors pair act epistatically on the wax producing genes[19].The absence of both dominant W genes or the presence of either dominant Iw gene leads to a non-glaucous phenotype.Both Iw1 and Iw2 were precisely mapped in wheat materials originating from wild emmer and Ae.tauschii[20,23].

    Fig.3-Comparative maps of the two homologous groups containing the Iw gene.A:2B linkage map of the Shamrock/Shango population[22];B: 2B linkage map of the Langdon/LDNDIC521-2B population(current study);C:2H physical map of barley“Morex”(MC = morex_contig;http://barleyflc.dna.affrc.go.jp/bexdb/blast.html)[42]; D:2B linkage map of the WE74/Xuezao population[20];E:2DS linkage map of the ITMI population[20].Previously,BE498358(WE6)was mapped ca.1.4 cM proximal to the Iw2 gene[21];an approximate location of BE498358 is shown on the ITMI map.Of markers co-segregating with the Iw loci,only the 2B orthologs are included.For comparison with other studies,CD893659,CD927782,and BQ788707 are equivalent to JIC009/BF474014,JIC010 and JIC011/CJ876545,respectively[20,23].

    Wild emmer accession PI 481521 and the LDNDIC521-2Bsubstitution lines are both non-glaucous.In contrast,the durum wheat cultivar Langdon is glaucous.Using the wheat 90K iSelect array,we first identified 345 SNPs polymorphic between LDN and its 2B substitution line LDNDIC521-2B.Using the wheat 90K consensus map as a reference,257 SNPs were ordered along the chromosome(Table 2).In conjunction with SSR and EST-based markers,the non-glaucous trait of PI 481521 was mapped to the distal region of the chromosome.In the current study,the Langdon/LDNDIC521-2Bpopulation contained only 85 F2plants,which consequently led to a low mapping resolution such that BQ788707,CD893659,CD927782,CD938589,and Xbarc35 co-segregated with the Iw.With population sizes of 2111 in the Shango/Shamrock population[23]and 4949 in the“Xuezao”/“WE74”population[20],BQ788707,CD893659,and CD927782 remained linked to the Iw1 locus.In addition,BQ788707 and CD893659 also co-segregated with the Iw2 locus in 1161 recombinant inbred lines(RIL)from“W7984”/“Opata M85” [20].However,only CD893659 cosegregated with the Iw1 gene among 850 F2plants in Langdon/ “TTD140” [23].Apparently,Iw1 and Iw2 are orthologs on 2BS and 2DS[20],and the dominant Iw locus of PI 481521 is assumed to be the Iw1 locus,although an allelism test should be made to determine whether PI 481521 carries the Iw1 allele.In barley,MLOC_20994 and MLOC_6767 are in close proximity to MLOC_77461 (an ortholog of CD893659),and are potential candidates for the Iw1 gene[23].In the future,large Langdon/LDNDIC521-2Bpopulations(e.g.5000 F2plants)should be obtained to test for linkage among MLOC_20994,MLOC_6767,and the Iw1 gene.If MLOC_20994 and MLOC_6767 show recombination with the Iw1 locus,map-based cloning of the Iw1 gene could be performed on large F2populations of the Langdon/LDNDIC521-2Bcross.

    Glaucousness in common wheat is controlled by two pairs of wax producing gene(W loci)and wax production inhibitors(Iw loci);W1 and Iw1 are located on chromosome 2BS,and the W2 and Iw2 are located on chromosome 2DS.At least one dominant W allele is required for a glaucous phenotype,and only one dominant Iw allele is capable to prevent glaucousness [19].The glaucous parent Langdon must have genotype W1iw1,but whether non-glaucous PI 481521 has genotype W1Iw1 or w1Iw1 remains to be answered.Because the W1 locus is ca.2 cM proximal to the Iw1 locus [19],the EW phenotype on F2and F3plants of a cross between W1iw1 and W1Iw1(or w1Iw1)is primarily controlled by the Iw1 locus.If a dominant W1 allele is present in PI 481521 the Iw1 genotype can be precisely predicted using the F2phenotype in conjunction with the F3segregation pattern of glaucousness.The non-glaucous phenotype is solely caused by the dominant Iw1 gene.At the same time,all lines heterozygous for the Iw1 locus should segregate in an approximate ratio of one glaucous to three non-glaucous plants.The current study indeed displayed this segregation pattern.

    If a recessive (w1) gene is present in PI 481521,the EW phenotype of the F2plants is again controlled by the Iw1 locus resulting from non-recombinant gametes at W1 and Iw1.Given a 2 cM genetic distance between W1 and Iw1,ca.96.04%of F2plants will be derived from non-recombinant gametes.Of the remaining 3.96% F2plants derived from recombinant gametes,about one quarter of them(ca.0.98%of all F2plants)will segregate at the W1 locus in homozygous iw1 background(W1w1iw1iw1),resulting in an approximate segregation ratio of three glaucous to one non-glaucous plant in F3lines.In the current study,only 82 F3lines were investigated,which allows only a 55.41% chance to containing at least one F3line segregating 3:1 for glaucousness versus non-glaucous plants P = 1 │(82 | 0)(0.98%) ↑0 (1 │0.98%) ↑82] with at least 468 F3lines being required to ensure a 99% possibility of recovering at least one such segregant.Therefore,a large F2population and progeny testing are necessary to determine whether a recessive(w1)gene is present in PI 481521.

    Wild emmer has been widely studied with the objective of improving cultivated wheat [38].For example,the UK bread-making variety Shamrock is characterized by its viridescent appearance derived from the non-glaucous wild emmer[22].As for wild emmer PI 481521,a complete set of 14 chromosome substitution lines (LDNDIC521) were generated in the cultivated durum wheat Langdon [26].The LDNDIC521lines have been made publically accessible by the U.S.scientists with the USDA-ARS,and these are becoming important genetic resources for wheat improvement.

    5.Conclusions

    The non-glaucous phenotype of wild emmer accession PI 481521 and LDNDIC521-2Bis controlled by the dominant Iw1 allele on the chromosome 2B.In total,371 polymorphic markers,including 345 SNPs,19 SSRs,and 7 EST-based markers,were assigned to the chromosome 2B.All SSRs and 10 SNP/EST-based markers were used to construct a 79.9 cM linkage map,spanning the short arm of chromosome 2B.The Iw1 gene was mapped within the Xgwm614–BE498111 interval in the distal region of 2BS,and five markers(BQ788707,CD893659,CD927782,CD938589,and Xbarc35)cosegregated with the EW phenotype in the current mapping population.

    This study was supported by the Natural Science Foundation of Shandong Province,China(JQ201107),the National Natural Science Foundation of China (31110103917),and the Cooperative Innovation Center of Efficient Production with High Annual Yield of Wheat and Corn,Shandong Province,China.We thank Professor G.F.Marais for providing the DIC479 seeds and Dr.Mingcheng Luo for the critical reading of the manuscript.

    [1] L.Zhou,E.Ni,J.Yang,H.Zhou,H.Liang,J.Li,D.Jiang,Z.Wang,Z.Liu,C.Zhuang,Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance,PLoS ONE 8(2013) e65139.

    [2] M.A.Jenks,R.J.Joly,P.J.Peters,P.J.Rich,J.D.Axtell,E.N.Ashworth,Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench,Plant Physiol.105 (1994) 1239–1245.

    [3] J.-Y.Zhang,C.D.Broeckling,E.B.Blancaflor,M.K.Sledge,L.W.Sumner,Z.-Y.Wang,Overexpression of WXP1,a putative Medicago truncatula AP2 domain-containing transcription factor gene,increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa),Plant J.42(2005) 689–707.

    [4] S.D.Eigenbrode,K.E.Espelie,Effects of plant epicuticular lipids on insect herbivores,Annu.Rev.Entomol.40(1995)171–194.

    [5] B.Lemieux,Molecular genetics of epicuticular wax biosynthesis,Trends Plant Sci.1(1996) 312–318.

    [6] P.-G.Gülz,Epicuticular leaf waxes in the evolution of the plant kingdom,J.Plant Physiol.143 (1994) 453–464.

    [7] B.S.Manheim Jr.,T.W.Mulroy,Triterpenoids in epicuticular waxes of Dudleya species,Phytochemistry 17(1978)1799–1800.

    [8] A.P.Tulloch,Chemistry of waxes of higher plants,in:P.E.Kolattukudy (Ed.),Chemistry and Biochemistry of Natural Waxes,Elsevier,Oxford,1976,pp.235–287.

    [9] A.P.Tulloch,L.L.Hoffman,Composition of epicuticular waxes of some grasses,Can.J.Bot.55(1977) 853–857.

    [10] P.G.Jefferson,Leaf epicuticular wax and glaucousness in Altai wildrye grass:which trait is most important to water status?Can.J.Plant Sci.88 (2008) 447–455.

    [11] N.Watanabe,N.Takesada,Y.Shibata,T.Ban,Genetic mapping of the genes for glaucous leaf and tough rachis in Aegilops tauschii,the D-genome progenitor of wheat,Euphytica 144 (2005) 119–123.

    [12] P.von Wettstein-Knowles,Genetic control of β-diketone and hydroxy-β-diketone synthesis in epicuticular waxes of barley,Planta 106 (1972) 113–130.

    [13] A.Richardson,A.Boscari,L.Schreiber,G.Kerstiens,M.Jarvis,P.Herzyk,W.Fricke,Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare)leaf,Planta 226 (2007)1459–1473.

    [14] K.Yoshiya,N.Watanabe,T.Kuboyama,Genetic mapping of the genes for non-glaucous phenotypes in tetraploid wheat,Euphytica 177 (2011) 293–297.

    [15] K.Koch,W.Barthlott,S.Koch,A.Hommes,K.Wandelt,W.Mamdouh,S.De-Feyter,P.Broekmann,Structural analysis of wheat wax (Triticum aestivum,cv.‘Naturastar'L.): from the molecular level to three dimensional crystals,Planta 223(2006) 258–270.

    [16] C.Guzmán,L.Caballero,L.M.Martín,J.B.Alvarez,Waxy genes from spelt wheat:new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species,Ann.Bot.110 (2012) 1161–1171.

    [17] G.Bianchi,M.L.Figini,Epicuticular waxes of glaucous and nonglaucous durum wheat lines,J.Agric.Food Chem.34(1986) 429–433.

    [18] Z.Zhang,W.Wang,W.Li,Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability,PLoS ONE 8(2013) e54129.

    [19] K.Tsunewaki,K.Ebana,Production of near-isogenic lines of common wheat for glaucousness and genetic basis of this trait clarified by their use,Genes Genet.Syst.74 (1999)33–41.

    [20] H.Wu,J.Qin,J.Han,X.Zhao,S.Ouyang,Y.Liang,D.Zhang,Z.Wang,Q.Wu,J.Xie,Y.Cui,H.Peng,Q.Sun,Z.Liu,Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat,PLoS ONE 8(2013) e84691.

    [21] Q.Liu,Z.Ni,H.Peng,W.Song,Z.Liu,Q.Sun,Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.),Euphytica 155 (2007) 71–78.

    [22] J.R.Simmonds,L.J.Fish,M.A.Leverington-Waite,Y.Wang,P.Howell,J.W.Snape,Mapping of a gene(Vir)for a non-glaucous,viridescent phenotype in bread wheat derived from Triticum dicoccoides,and its association with yield variation,Euphytica 159(2008)333–341.

    [23] N.M.Adamski,M.S.Bush,J.Simmonds,A.S.Turner,S.G.Mugford,A.Jones,K.Findlay,N.Pedentchouk,P.von Wettstein-Knowles,C.Uauy,The Inhibitor of wax 1 locus(Iw1)prevents formation of β-and OH-β-diketones in wheat cuticular waxes and maps to a sub-cM interval on chromosome arm 2BS,Plant J.74(2013) 989–1002.

    [24] L.R.Joppa,N.D.Williams,Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat,Genome 30 (1988) 222–228.

    [25] L.R.Joppa,Chromosome engineering in tetraploid wheat,Crop Sci.33 (1993) 908–913.

    [26] S.S.Xu,K.Khan,D.L.Klindworth,J.D.Faris,G.Nygard,Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L.var.dicoccoides),Theor.Appl.Genet.108 (2004)1221–1228.

    [27] E.G.Heyne,Registration of improved wheat varieties,XXIII,Agron.J.51 (1959) 689–692.

    [28] C.Yuan,H.Jiang,H.Wang,K.Li,H.Tang,X.Li,D.Fu,Distribution,frequency and variation of stripe rust resistance loci Yr10,Lr34/Yr18 and Yr36 in Chinese wheat cultivars,J.Genet.Genom.39(2012) 587–592.

    [29] S.Wang,D.Wong,K.Forrest,A.Allen,S.Chao,B.E.Huang,M.Maccaferri,S.Salvi,S.G.Milner,L.Cattivelli,A.M.Mastrangelo,A.Whan,S.Stephen,G.Barker,R.Wieseke,J.Plieske,C.International Wheat Genome Sequencing,M.Lillemo,D.Mather,R.Appels,R.Dolferus,G.Brown-Guedira,A.Korol,A.R.Akhunova,C.Feuillet,J.Salse,M.Morgante,C.Pozniak,M.-C.Luo,J.Dvorak,M.Morell,J.Dubcovsky,M.Ganal,R.Tuberosa,C.Lawley,I.Mikoulitch,C.Cavanagh,K.J.Edwards,M.Hayden,E.Akhunov,Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array,Plant Biotechnol.J.12 (2014) 787–796.

    [30] E.J.Conley,V.Nduati,J.L.Gonzalez-Hernandez,A.Mesfin,M.Trudeau-Spanjers,S.Chao,G.R.Lazo,D.D.Hummel,O.D.Anderson,L.L.Qi,B.S.Gill,B.Echalier,A.M.Linkiewicz,J.Dubcovsky,E.D.Akhunov,J.Dvo?ák,J.H.Peng,N.L.V.Lapitan,M.S.Pathan,H.T.Nguyen,X.-F.Ma,J.P.Gustafson Miftahudin,R.A.Greene,M.E.Sorrells,K.G.Hossain,V.Kalavacharla,S.F.Kianian,D.Sidhu,M.Dilbirligi,K.S.Gill,D.W.Choi,R.D.Fenton,T.J.Close,P.E.McGuire,C.O.Qualset,J.A.Anderson,A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice,Genetics 168(2004) 625–637.

    [31] S.Xue,Z.Zhang,F.Lin,Z.Kong,Y.Cao,C.Li,H.Yi,M.Mei,H.Zhu,J.Wu,H.Xu,D.Zhao,D.Tian,C.Zhang,Z.Ma,A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags,Theor.Appl.Genet.117 (2008) 181–189.

    [32] D.Somers,P.Isaac,K.Edwards,A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.),Theor.Appl.Genet.109 (2004) 1105–1114.

    [33] M.S.R?der,V.Korzun,K.Wendehake,J.Plaschke,M.-H.Tixier,P.Leroy,M.W.Ganal,A microsatellite map of wheat,Genetics 149 (1998) 2007–2023.

    [34] D.D.Kosambi,The estimation of map distances from recombination values,Ann.Eugen.12(1943) 172–175.

    [35] E.C.Large,Growth stages in cereals illustration of the Feekes scale,Plant Pathol.3(1954) 128–129.

    [36] G.F.Marais,Z.A.Pretorius,A.S.Marais,C.R.Wellings,Transfer of rust resistance genes from Triticum species to common wheat,S.Afr.J.Plant Soil 20(2003) 193–198.

    [37] International Wheat Genome Sequencing Consortium(IWGSC),A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum)genome,Science 345 (2014) 1251788,http://dx.doi.org/10.1126/science.

    [38] W.Xie,E.Nevo,Wild emmer:genetic resources,gene mapping and potential for wheat improvement,Euphytica 164 (2008) 603–614.

    [39] R.E.Oliver,R.W.Stack,J.D.Miller,X.Cai,Reaction of wild emmer wheat accessions to Fusarium head blight,Crop Sci.47(2007) 893–897.

    [40] J.B.Ohm,D.L.Klindworth,G.A.Hareland,J.D.Faris,E.M.Elias,S.S.Xu,Variation in kernel characteristics and protein molecular weight distribution of Langdon durum-wild emmer wheat chromosome substitution lines,J.Cereal Sci.52 (2010) 207–214.

    [41] H.Kihara,K.Yamashita,M.Tanaka,in: K.Yamashita (Ed.),Morphological,Physiological and Cytological Studies in Aegilops and Triticum Collected from Pakistan,Afghanistan and Iran in CULTIVATED plants and Their Relatives(Results of the Kyoto University Scientific Expedition to the Karakoram and Hindukush,1955),The Committee of the Kyoto University Scientific Expedition to the Karakoram and Hindukush,Kyoto University,Kyoto,Japan,1965,pp.1–140.

    [42] IBSC,A physical,genetic and functional sequence assembly of the barley genome,Nature 491 (2012) 711–716.

    精品久久久久久久久久免费视频| av在线观看视频网站免费| 国产91精品成人一区二区三区| 偷拍熟女少妇极品色| 久久国内精品自在自线图片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲午夜理论影院| 人妻夜夜爽99麻豆av| 国产精品一及| 天天躁日日操中文字幕| 特大巨黑吊av在线直播| 日日摸夜夜添夜夜添av毛片 | 在现免费观看毛片| 一本精品99久久精品77| 少妇高潮的动态图| 亚洲精品成人久久久久久| av在线天堂中文字幕| 久久午夜亚洲精品久久| 国产精品一区二区免费欧美| av天堂中文字幕网| 最新中文字幕久久久久| 亚洲最大成人av| 国产美女午夜福利| 亚洲av中文字字幕乱码综合| 12—13女人毛片做爰片一| 99热只有精品国产| 性色avwww在线观看| 99热这里只有精品一区| 婷婷亚洲欧美| 欧美bdsm另类| 欧美成人性av电影在线观看| 国产v大片淫在线免费观看| 亚洲国产日韩欧美精品在线观看| 男女啪啪激烈高潮av片| 亚洲熟妇熟女久久| 亚洲av免费高清在线观看| 国产aⅴ精品一区二区三区波| h日本视频在线播放| 国产一区二区在线观看日韩| 最近中文字幕高清免费大全6 | 日韩欧美 国产精品| 日韩欧美三级三区| 亚洲va在线va天堂va国产| 国产精品永久免费网站| 国语自产精品视频在线第100页| 美女大奶头视频| 超碰av人人做人人爽久久| aaaaa片日本免费| 99精品在免费线老司机午夜| 99久久久亚洲精品蜜臀av| 国产成年人精品一区二区| 桃红色精品国产亚洲av| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 日日撸夜夜添| 亚洲精华国产精华精| 成人亚洲精品av一区二区| 欧美国产日韩亚洲一区| 亚洲va日本ⅴa欧美va伊人久久| 在线a可以看的网站| 国产精品福利在线免费观看| 美女xxoo啪啪120秒动态图| x7x7x7水蜜桃| 中国美白少妇内射xxxbb| 午夜免费成人在线视频| 在线观看美女被高潮喷水网站| 久久久久性生活片| 欧美激情国产日韩精品一区| 97人妻精品一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 亚洲性久久影院| 亚洲自拍偷在线| 午夜亚洲福利在线播放| 色av中文字幕| 亚洲av二区三区四区| 久久99热这里只有精品18| 欧美xxxx黑人xx丫x性爽| 黄色丝袜av网址大全| 久久香蕉精品热| 深夜精品福利| 在线免费十八禁| 国产欧美日韩精品一区二区| 波多野结衣高清无吗| 国产精品爽爽va在线观看网站| 午夜激情福利司机影院| 国产精品99久久久久久久久| 精品久久久久久久久亚洲 | 色哟哟哟哟哟哟| 国产成人福利小说| 国产中年淑女户外野战色| 国产精品人妻久久久久久| 午夜影院日韩av| 男女之事视频高清在线观看| 中文字幕免费在线视频6| 亚洲色图av天堂| 久久婷婷人人爽人人干人人爱| 99riav亚洲国产免费| 亚洲人成网站高清观看| 91久久精品电影网| 色综合站精品国产| 桃色一区二区三区在线观看| 天天一区二区日本电影三级| 黄色女人牲交| 久久久色成人| 少妇的逼水好多| av天堂在线播放| 我要搜黄色片| 免费黄网站久久成人精品| 波野结衣二区三区在线| 亚洲自偷自拍三级| 欧美日韩瑟瑟在线播放| 在线观看一区二区三区| 日韩高清综合在线| 国产色婷婷99| 亚洲精品在线观看二区| 69人妻影院| 亚洲欧美精品综合久久99| 白带黄色成豆腐渣| 他把我摸到了高潮在线观看| 国产亚洲av嫩草精品影院| 国产探花在线观看一区二区| 免费看a级黄色片| 日本爱情动作片www.在线观看 | 老熟妇乱子伦视频在线观看| 色吧在线观看| 亚洲成人久久爱视频| 日日摸夜夜添夜夜添av毛片 | 久久久精品大字幕| 亚洲 国产 在线| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 亚洲国产精品合色在线| 免费电影在线观看免费观看| 国产成人aa在线观看| 国产精品99久久久久久久久| 免费av毛片视频| 国产欧美日韩一区二区精品| 在线观看舔阴道视频| 精华霜和精华液先用哪个| 天天躁日日操中文字幕| 国产探花在线观看一区二区| 国产精品无大码| 色精品久久人妻99蜜桃| 国产av麻豆久久久久久久| 免费看a级黄色片| 亚洲国产精品成人综合色| 一本精品99久久精品77| 中文字幕av成人在线电影| 天美传媒精品一区二区| 一本精品99久久精品77| 男人舔奶头视频| 最近中文字幕高清免费大全6 | 午夜福利欧美成人| 春色校园在线视频观看| 在线国产一区二区在线| 成人国产麻豆网| 亚洲四区av| 亚洲午夜理论影院| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 中文资源天堂在线| 国产精品av视频在线免费观看| 久久久色成人| 国产免费男女视频| 久久久久久伊人网av| 成人性生交大片免费视频hd| 老司机深夜福利视频在线观看| 久久精品国产清高在天天线| 国产成人av教育| 日韩,欧美,国产一区二区三区 | 日韩在线高清观看一区二区三区 | 麻豆av噜噜一区二区三区| 国产乱人伦免费视频| 精品午夜福利在线看| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av| 国产av不卡久久| 成人鲁丝片一二三区免费| av天堂中文字幕网| 狂野欧美激情性xxxx在线观看| 特大巨黑吊av在线直播| 亚洲电影在线观看av| a级毛片免费高清观看在线播放| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在 | 精品福利观看| 哪里可以看免费的av片| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 又粗又爽又猛毛片免费看| 日本免费a在线| 国产又黄又爽又无遮挡在线| 日本五十路高清| 午夜福利在线观看吧| 美女被艹到高潮喷水动态| 日韩中字成人| 在线免费十八禁| 日韩精品中文字幕看吧| 国产成人福利小说| 亚洲精品乱码久久久v下载方式| 国产女主播在线喷水免费视频网站 | 啪啪无遮挡十八禁网站| 国产av麻豆久久久久久久| 色噜噜av男人的天堂激情| 亚洲国产色片| 一个人看的www免费观看视频| 国产一区二区亚洲精品在线观看| 女的被弄到高潮叫床怎么办 | 欧美3d第一页| 三级国产精品欧美在线观看| а√天堂www在线а√下载| 日本一本二区三区精品| av在线观看视频网站免费| www.www免费av| 在线观看舔阴道视频| 国产精品,欧美在线| 成年免费大片在线观看| 亚洲国产高清在线一区二区三| 偷拍熟女少妇极品色| av在线老鸭窝| 久久国产乱子免费精品| av女优亚洲男人天堂| 国产精品一区二区三区四区免费观看 | or卡值多少钱| 真实男女啪啪啪动态图| 美女免费视频网站| 人妻少妇偷人精品九色| 国产乱人伦免费视频| 露出奶头的视频| 久久久久精品国产欧美久久久| 国产av在哪里看| 一本久久中文字幕| 日本熟妇午夜| 欧美一区二区国产精品久久精品| 国产av一区在线观看免费| 国产三级在线视频| 久久久色成人| 亚洲精品一卡2卡三卡4卡5卡| a级毛片免费高清观看在线播放| 亚洲第一电影网av| 国产真实伦视频高清在线观看 | 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 波野结衣二区三区在线| 天美传媒精品一区二区| 中文字幕高清在线视频| 国产精品国产三级国产av玫瑰| 91精品国产九色| 国产爱豆传媒在线观看| 一本久久中文字幕| 国产激情偷乱视频一区二区| 久久精品国产清高在天天线| 女的被弄到高潮叫床怎么办 | 中文字幕免费在线视频6| 成人国产一区最新在线观看| 桃红色精品国产亚洲av| 老熟妇乱子伦视频在线观看| 日韩强制内射视频| 亚洲av成人精品一区久久| 少妇丰满av| 中文字幕精品亚洲无线码一区| 国产精品亚洲一级av第二区| 嫩草影院新地址| 成人欧美大片| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片 | 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 真人一进一出gif抽搐免费| 欧美激情国产日韩精品一区| 久久久久久大精品| 成人综合一区亚洲| 日韩欧美一区二区三区在线观看| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 亚洲av免费高清在线观看| 婷婷精品国产亚洲av| 在线观看美女被高潮喷水网站| 欧美最黄视频在线播放免费| 国产91精品成人一区二区三区| 欧美成人免费av一区二区三区| 亚洲 国产 在线| 午夜福利视频1000在线观看| 网址你懂的国产日韩在线| 日韩欧美免费精品| 中文字幕av在线有码专区| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 在线天堂最新版资源| 久久99热这里只有精品18| 免费在线观看影片大全网站| 88av欧美| 女人被狂操c到高潮| 人妻制服诱惑在线中文字幕| 日日撸夜夜添| 乱系列少妇在线播放| 99久久九九国产精品国产免费| 88av欧美| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 日韩欧美三级三区| 国产v大片淫在线免费观看| 12—13女人毛片做爰片一| 亚洲av免费在线观看| 日日干狠狠操夜夜爽| 免费人成在线观看视频色| 美女大奶头视频| 亚洲av一区综合| 亚洲精品乱码久久久v下载方式| 99视频精品全部免费 在线| 国产私拍福利视频在线观看| 亚洲欧美激情综合另类| 欧美+日韩+精品| 97人妻精品一区二区三区麻豆| 69人妻影院| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| a级毛片免费高清观看在线播放| 91麻豆av在线| 亚洲精华国产精华液的使用体验 | 久99久视频精品免费| 亚洲精华国产精华液的使用体验 | 国产精品国产三级国产av玫瑰| 国产久久久一区二区三区| 亚洲精品成人久久久久久| 99热这里只有是精品在线观看| 亚洲专区中文字幕在线| 日韩 亚洲 欧美在线| 我的老师免费观看完整版| 久久国内精品自在自线图片| 动漫黄色视频在线观看| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久 | 91狼人影院| 亚洲无线在线观看| 国产在线男女| 亚洲国产欧美人成| 亚洲中文日韩欧美视频| or卡值多少钱| 中国美白少妇内射xxxbb| 日韩强制内射视频| 国产亚洲精品av在线| 国产精品日韩av在线免费观看| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 最近最新中文字幕大全电影3| 草草在线视频免费看| 91麻豆av在线| 久久精品久久久久久噜噜老黄 | 亚洲av成人av| 黄色欧美视频在线观看| 国产成人福利小说| 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 久99久视频精品免费| 女同久久另类99精品国产91| av在线天堂中文字幕| 联通29元200g的流量卡| 久久久久久国产a免费观看| 成人欧美大片| 国产精品爽爽va在线观看网站| 午夜免费男女啪啪视频观看 | 麻豆精品久久久久久蜜桃| 此物有八面人人有两片| 亚洲成a人片在线一区二区| 国产三级在线视频| 蜜桃亚洲精品一区二区三区| 国产不卡一卡二| 中文字幕免费在线视频6| 午夜a级毛片| 99热这里只有精品一区| 他把我摸到了高潮在线观看| 国产高清三级在线| 日本精品一区二区三区蜜桃| 精品一区二区三区av网在线观看| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 九九热线精品视视频播放| 日韩欧美在线乱码| av在线天堂中文字幕| 成人永久免费在线观看视频| 狠狠狠狠99中文字幕| 成人国产综合亚洲| 最近最新免费中文字幕在线| 国产精品久久久久久久电影| 精品一区二区三区视频在线| 日韩人妻高清精品专区| 日本撒尿小便嘘嘘汇集6| 国产男靠女视频免费网站| 成年免费大片在线观看| 黄片wwwwww| 91精品国产九色| 波多野结衣高清无吗| 99久久精品国产国产毛片| 成人精品一区二区免费| 免费看光身美女| 成人高潮视频无遮挡免费网站| 亚洲性夜色夜夜综合| 午夜视频国产福利| 国产一区二区亚洲精品在线观看| 又爽又黄a免费视频| av国产免费在线观看| 一级黄片播放器| 国产免费一级a男人的天堂| 久久久久九九精品影院| 国产乱人伦免费视频| 男女之事视频高清在线观看| 国产亚洲精品av在线| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 亚洲人成网站高清观看| 久久精品久久久久久噜噜老黄 | netflix在线观看网站| 日韩中字成人| 亚洲av免费高清在线观看| 网址你懂的国产日韩在线| 国产精品女同一区二区软件 | a级毛片免费高清观看在线播放| 亚洲人成网站高清观看| 精品国产三级普通话版| 美女高潮的动态| 精品人妻偷拍中文字幕| 亚洲欧美日韩高清专用| av福利片在线观看| 我要搜黄色片| 波多野结衣巨乳人妻| 日韩欧美三级三区| 免费黄网站久久成人精品| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| 一区二区三区高清视频在线| 乱人视频在线观看| 色尼玛亚洲综合影院| 精品久久久久久久久亚洲 | 内射极品少妇av片p| 成年女人永久免费观看视频| 午夜久久久久精精品| 黄色女人牲交| 国产v大片淫在线免费观看| 国产精品久久久久久亚洲av鲁大| 精品人妻熟女av久视频| 日本与韩国留学比较| 校园春色视频在线观看| 国产精品永久免费网站| 一进一出好大好爽视频| 黄色配什么色好看| 色哟哟·www| 亚洲在线自拍视频| 免费av毛片视频| 99久国产av精品| 久久精品人妻少妇| 成人av在线播放网站| 人人妻,人人澡人人爽秒播| 欧美成人免费av一区二区三区| 丰满的人妻完整版| 欧美最黄视频在线播放免费| 日韩欧美免费精品| 国产老妇女一区| 人妻少妇偷人精品九色| 亚洲精品日韩av片在线观看| 国产在视频线在精品| 亚洲熟妇熟女久久| 不卡视频在线观看欧美| 男人的好看免费观看在线视频| 日本免费一区二区三区高清不卡| 99久国产av精品| 国产私拍福利视频在线观看| 午夜免费男女啪啪视频观看 | 麻豆av噜噜一区二区三区| 搡女人真爽免费视频火全软件 | 韩国av一区二区三区四区| 丝袜美腿在线中文| 国产精品一区二区性色av| 一级黄片播放器| 少妇丰满av| 成人美女网站在线观看视频| 国内毛片毛片毛片毛片毛片| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久爱视频| 一级a爱片免费观看的视频| 国产av一区在线观看免费| 有码 亚洲区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品久久国产高清桃花| 97碰自拍视频| 蜜桃久久精品国产亚洲av| 国产亚洲91精品色在线| 国产免费男女视频| 午夜福利视频1000在线观看| 免费看a级黄色片| 久久精品国产鲁丝片午夜精品 | 欧美激情久久久久久爽电影| 精品欧美国产一区二区三| 久久人人精品亚洲av| 精品久久久久久久久久久久久| 精品久久久久久久久av| 少妇熟女aⅴ在线视频| 毛片女人毛片| 2021天堂中文幕一二区在线观| 国内久久婷婷六月综合欲色啪| 精品久久国产蜜桃| 国产精品乱码一区二三区的特点| 99久久精品国产国产毛片| 亚洲真实伦在线观看| 久久精品国产鲁丝片午夜精品 | 色综合色国产| 亚洲四区av| 国产精品无大码| 真实男女啪啪啪动态图| 日韩欧美免费精品| 午夜福利在线观看免费完整高清在 | 少妇的逼好多水| 亚洲欧美日韩东京热| 男人的好看免费观看在线视频| 日本五十路高清| 精品人妻一区二区三区麻豆 | 99久久无色码亚洲精品果冻| 22中文网久久字幕| 九九爱精品视频在线观看| 国产一区二区激情短视频| 欧美激情久久久久久爽电影| 成人av在线播放网站| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 成人午夜高清在线视频| 1000部很黄的大片| 成人亚洲精品av一区二区| 99在线人妻在线中文字幕| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 国产一区二区在线观看日韩| 国产av麻豆久久久久久久| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲av免费在线观看| 熟妇人妻久久中文字幕3abv| 精品欧美国产一区二区三| 亚洲精品成人久久久久久| 免费在线观看日本一区| 亚洲aⅴ乱码一区二区在线播放| 麻豆久久精品国产亚洲av| 午夜福利成人在线免费观看| 女生性感内裤真人,穿戴方法视频| 99久久九九国产精品国产免费| 精品人妻熟女av久视频| 黄色女人牲交| 日日摸夜夜添夜夜添av毛片 | 国产男靠女视频免费网站| 观看免费一级毛片| 校园人妻丝袜中文字幕| 99久久久亚洲精品蜜臀av| 亚洲久久久久久中文字幕| 丰满乱子伦码专区| 国产视频一区二区在线看| 夜夜夜夜夜久久久久| 国产精品,欧美在线| 搞女人的毛片| 成人av在线播放网站| 久久这里只有精品中国| 小蜜桃在线观看免费完整版高清| 亚洲精华国产精华精| videossex国产| 国产男靠女视频免费网站| 99热这里只有是精品50| 亚洲七黄色美女视频| 12—13女人毛片做爰片一| 九九爱精品视频在线观看| 亚洲狠狠婷婷综合久久图片| 小说图片视频综合网站| 久久久国产成人精品二区| АⅤ资源中文在线天堂| 国产乱人伦免费视频| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 日韩精品中文字幕看吧| 在线免费观看不下载黄p国产 | 中文字幕高清在线视频| 高清毛片免费观看视频网站| 亚洲国产精品sss在线观看| 可以在线观看毛片的网站| 嫩草影院入口| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 日韩av在线大香蕉| 亚洲av中文av极速乱 | 最近视频中文字幕2019在线8| 动漫黄色视频在线观看| 精品99又大又爽又粗少妇毛片 | 波野结衣二区三区在线| 欧美丝袜亚洲另类 | 在线观看舔阴道视频| 亚洲四区av| 久久亚洲精品不卡| 亚洲无线观看免费| 亚洲国产色片| 99热网站在线观看| 日韩在线高清观看一区二区三区 | 国产精品一区二区三区四区免费观看 | 国产v大片淫在线免费观看| 国产精品日韩av在线免费观看| 亚洲人成网站在线播放欧美日韩| 中出人妻视频一区二区| 成人特级av手机在线观看| 欧美三级亚洲精品| 蜜桃久久精品国产亚洲av| 美女xxoo啪啪120秒动态图| 国产女主播在线喷水免费视频网站 | 男人舔奶头视频| 亚洲av成人精品一区久久| 国产精品久久久久久av不卡|