• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization

    2015-11-12 05:35:03DongdongZhngBingnnWngJunminZhoXuoZhoLinqunZhngDengiLiuLingliDongDowenWngLongMoAiliLi
    The Crop Journal 2015年1期

    Dongdong Zhng,Bingnn Wng,Junmin Zho,Xuo Zho,Linqun Zhng,Dengi Liu,Lingli Dong,Dowen Wng,Long Mo,*,Aili Li,*

    aNational Key Facility for Crop Gene Resources and Genetic Improvement,Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bTriticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China

    cThe State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,

    Chinese Academy of Sciences,Beijing 100101,China

    Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization

    Dongdong Zhanga,1,Bingnan Wanga,1,Junmin Zhaoa,1,Xubo Zhaoa,Lianquan Zhangb,Dengcai Liub,Lingli Dongc,Daowen Wangc,Long Maoa,*,Aili Lia,*

    aNational Key Facility for Crop Gene Resources and Genetic Improvement,Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bTriticeae Research Institute,Sichuan Agricultural University,Chengdu 611130,China

    cThe State Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,

    Chinese Academy of Sciences,Beijing 100101,China

    A R T I C L E I N F O

    Article history:

    Accepted 29 August 2014

    Available online 5 October 2014

    TaGASR7

    Gibberellic acid

    Triticum aestivum

    Polyploidy

    Hexaploid wheat has triplicated homoeologs for most of the genes that are located in subgenomesA,B,andD.GASR7,amemberoftheSnakin/GASAgenefamily,hasbeenassociated with grain length development in wheat.However,little is known about divergence of its homoeolog expression in wheat polyploids.We studied the expression patterns of the GASR7 homoeologs in immature seeds in a synthetic hexaploid wheat line whose kernels are slender likethoseofitsmaternal parent(Triticumturgidum,AABB,PI 94655)incontrastto theround seed shapeofitspaternalprogenitor(Aegilopstauschii,DD,AS2404).WefoundthattheBhomoeologof GASR7 was the main contributor to the total expression level of this gene in both the maternal tetraploid progenitor and the hexaploid progeny,whereas the expression levels of the A and D homoeologs were much lower.To understand possible mechanisms regulating different GASR7 homoeologs,we firstly analyzed the promoter sequences of three homoeologous genes and found that all of them contained gibberellic acid(GA)response elements,with the TaGASR7B promoter(pTaGASR7B)uniquely characterized by an additional predicted transcriptional enhancer.This was confirmed by the GA treatment of spikes where all three homoeologs wereinduced,withamuchstrongerresponseforTaGASR7B.McrBCenzymeassaysshowedthat the methylation status at pTaGASR7D was increased during allohexaploidization,consistent with the repressed expression of TaGASR7D.For pTaGASR7A,the distribution of repetitive sequence-derived24-nucleotide(nt)smallinterferingRNAs(siRNAs)werefoundwhichsuggests possible epigenetic regulation because 24-nt siRNAs are known to mediate RNA-dependent DNA methylation.Our results thus indicate that both genetic and epigenetic mechanisms may be involved in the divergence of GASR7 homoeolog expression in polyploid wheat.

    ?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.All rights reserved.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

    1.Introduction

    Polyploidyleadstowhole-genomeduplicationandis widespread in the plant kingdom[1,2],providing opportunities for duplicated genes to diverge in several evolutionary ways such as subfunctionalization,neofunctionalization,and nonfunctionalization(deletion or pseudogenization)[3,4],as well as genetic and epigenetic interactions between homoeoalleles[1,5].Bread wheat or common wheat(Triticum aestivum)is a hexaploid(2n=6x=42,AABBDD)that arose 7000-12,000 years ago following the hybridization of the early-domesticated allotetraploid T.turgidum ssp.dicoccon(AABB)and the diploid goat grass Aegilops tauschii(2n=2x=14,DD)[6-9].As one of the most important staple crops,common wheat is also a good model for studying genetic interactions between multiple related genomes.New allohexaploid synthetic wheat can be readily synthesized in the laboratory by interspecific hybridization[10]and chromosome doubling,facilitating the study of genetic,functional,and epigenetic changes during this process. Previously,a series of allohexaploid wheat lines were generated by hybridizing T.turgidum ssp.dicoccon accession PI 94655 with the diploid Ae.tauschii ssp.strangulata accession AS2404 as a paternal parent[11].The synthetic predominantly resembled T.turgidum in grain length(Fig.1),implying,as far as the grain developmentisconcerned,thegeneticarchitectureofhexaploid progeny may be more similar to the maternal progenitor[12].

    Snakin/GASA proteins are widely distributed in plants[13]. They are expressed in different plant organs with high tissue and temporal specificity.Most Snakin/GASA genes are regulated by hormones and participate in signaling pathways that modulate hormonal responses and levels.In Arabidopsis,GASA4 plays a role in regulating floral meristem identity and promotes the development of seed size and seed weight[14].In rice,OsGASR7(Os06g0266800),which is highly similar to Arabidopsis GASA4,was identified as a candidate gene determininggrainlength[15].Inwheat,ahomologofArabidopsis GASA4 and rice OsGASR7 was also involved in grain length development[16,17].In Triticum urartu(2n=2x=14,AA),the putative A genome donor of common wheat and two haplotypes(H1 and H2)of TuGASR7 were identified among 92 diverse accessions collected from different regions,among which H1 was found to be significantly associated with greater values of grain length and grain weight.In common wheat,TaGASR7-A1 was shown to be a major genetic determinant of grain length,with pleiotropic effects on grain weight and yield[17].

    Despite triplication of many genes in hexaploid wheat,notallhomoeoalleles are equally transcribed.Transcriptional divergence of homoeologous genes has been reported.Our previous work showed that the A homoeolog of wheat calcium-dependent protein kinase(CDPK)gene TaCPK2-A was inducible by Blumeria graminis f.sp.tritici(Bgt)infection whereas TaCPK2-D mainly responded to cold treatment,suggesting subfunctionalization of these homoeologs[18].Similarly,the homoeologs of methyl-binding domain protein genes TaMBD2-5B and TaMBD2-5D were highly responsive to salt stress,but in the seedling leaves only TaMBD2-5B was specifically up-regulated by low temperature[19].Although all three homoeologs of a wheat expansin gene(TaEXPA1)were silenced in wheat seedling roots,TaEXPA1-A and TaEXPA1-D were expressed in seedling leaves,indicating tissue specificity of homoeolog expression[20].On the other hand,among the threehomoeologsofthewheatSEPALLATA-likeMADS-boxgene WLHS1,only WLHS1-D was functional.The protein structure of WLHS1-A is interrupted by a DNA insertion whereas WLHS1-B is predominantly silenced by cytosine methylation,suggesting different evolutionary effects that lead to divergence in homoeologous gene expressions[21].

    Weareinterestedinunderstandinghowexpressionsofwheat GASR7 homoeologs are regulated in polyploid wheat and their differential regulation during wheat polyploidization because homoeologs of GASR7 are associated with grain length development and hexaploid synthetic wheat has similar grain shape to its tetraploid progenitor.Towards this end,we examined the expression patterns of wheat GASR7 homoeologs in immature seeds of several generations of a synthetic wheat line and its progenitors and studied the promoter sequences of all three homoeologs.We found that both genetic and epigenetic mechanisms may be involved in the expression divergence of GASR7 homoeologs in polyploid wheat.

    2.Materials and methods

    2.1.Plant materials and GA treatment

    Fig.1-The slender seeds of synthetic allohexaploid wheat and its tetraploid progenitor.PI 94655,T.turgidum(AABB),tetraploid maternal parent;AS2404,Ae.tauschii(DD),paternal progenitor;third generation(S3)synthetic plants(AABBDD). Bar=1 cm.

    A set of newly synthesized hexaploid wheat lines and their progenitors were used,including the third and the fourth generation plants of self-pollinated synthetic wheat(S3 and S4)and their progenitors the T.turgidum ssp.dicoccon accession PI 94655(AABB,2n=4x=28)and the goat grass Ae. tauschii ssp.strangulata accession AS2404(DD,2n=2x=14)[11,22,23].Seeds were germinated on moist filter papers,transplanted into soil,and grew in a controlled environment[24].Immature seeds were collected from a pool of 10-12 plants for each genotype at 6,11,14,17,21,and 25 days after flowering(DAF)and were stored in liquid nitrogen until RNA extraction.Samples were prepared for two consecutive years in the same experimental field as two biological replicates. For gibberellic acid(GA)treatment,young spikes of S3 and S4 plants were sprayed with 100 mg L-1GA3once a day for 10 days from 2 to 11 DAF.Spikes sprayed with water were used as controls.

    2.2.RNA extraction and cDNA 3′RACE

    Total RNA was isolated from seeds using a Trizol-based RNA isolation protocol(Life Technologies,NY,USA).First-strand cDNAwassynthesizedusing2 μgDNase-treatedtotalRNAwith oligo(dT)primers(Promega,WI,USA).Full-length cDNAs were obtained by PCR using primers TaGASR7-F and TaGASR7-R designed according to EST sequences(see text and Table S1). PCR products were subcloned and sequenced.The 3′UTR of GASR7 homoeologous genes were cloned using a SMART-rapid amplification of cDNA end kit(SMART-RACE;Clontech,Mountain View,CA,USA)following the manufacturer's protocol. Primers for 3′RACE and homoeolog-specific PCR are also listed in Table S1.

    2.3.Semi-quantitative PCR and quantitative RT-PCR analysis

    Gene-specific primers for quantitative PCR(Forward,TaGASR7-4 F;Reverse,TaGASR7A-4R,TaGASR7B-4R,and TaGASR7D-5R,respectively)were designed according to the nucleotide polymorphisms of cDNA sequences of the three TaGASR7 homoeologs(Table S1).Amplification efficiency of primers was detected according to the method described by Hu et al.[20].For homoeolog-specific expression analysis,tubulin and glyceraldehyde-3-phosphate dehydrogenase(GAPDH)genes were used as endogenous controls for semi-quantitative and real time PCR,respectively.

    2.4.BAC library screening to obtain promoter sequences of GASR7 homoeologs

    ToisolatethepromotersequencesofGASR7BandDhomoeologs,a BAC library from T.aestivum cv.Renan was screened by PCR using a BAC clone pooling approach[25].Two BAC clones were obtained using primers designed from the coding regions of TaGASR7B and TaGASR7D.Promoter sequences of TaGASR7B/D were obtained by PCR from the BAC clones using primers designed from the 5×Chinese Spring genome sequences(Table S1)[26]and sequenced.

    2.5.cis-element prediction and siRNA distribution analysis

    DNA fragments encompassing the 1.5 kb upstream the start codon and part of the coding region were amplified using PCR. By comparing the coding sequences,three promoters were discriminated into pTaGASR7A,pTaGASR7B,and pTaGASR7D. cis-acting regulatory elements were predicted from the PLACE online service(http://www.dna.affrc.go.jp/PLACE/signalscan. html;[27]).Small RNAs were obtained from 11 DAF seeds and deep sequenced as previously described[12].SiRNA distribution was identified by BlastN[28]search against the small RNA dataset[12]using promoter sequences as queries.

    2.6.McrBC enzyme assay

    Total genomicDNA wasextractedusing a DNeasyPlantMini kit(Qiagen)following the manufacturer's instructions.PCR-based DNA methylation assays were conducted as described[29].At leastthreeindependentbiologicalreplicateswereperformedon pTaGASR7D using primers listed in Table S1.

    3.Results

    3.1.Acquirement of TaGASR7 homoeolog-specific primers

    ABlastNsearchusingtheT.urartuGASR7gene(TuGASR7)[16]as a query against the PlantGDB Chinese Spring EST assembly retrievedthreeESTs,PUT-163b-Triticum_aestivum-2301165442,2301165443,and 147657 that contained open reading frames(ORF)of306,300,and 285 bp,respectively.A comparison of T.urartu and Ae.tauschii GASR7 sequences[30]showed that the three ESTs corresponded to the A,B,and D homoeologs,respectively(Fig.S1).Rapid amplification of cDNA end(RACE)experiments showed that the three homoeologs had 3′UTR sequences that were 216(A),233(B),and 259 bp(D)and were quitepolymorphic(Fig.2-A).Homoeolog-specificreverseprimers were then designed using the 3′UTR polymorphic regions(TaGASR7A-4R,TaGASR7B-4R,and TaGASR7D-5R;Table S1). Combining with the same forward primer TaGASR7-4F,these homoeolog-specific reverse primers amplified only two of the three bands in Chinese Spring(CS)nulli-tetrasomic lines that lacked the one on corresponding missing chromosomes.As shown in Fig.2-B,the primer pair TaGASR7-4F/A-4R amplified a band from all nulli-tetrasomic lines except N7AT7B and N7AT7D in which chromosome 7A was missing.The other two primer combinations(TaGASR7-4F/B-4R and TaGASR7-4 F/D-5R)also gave expected amplification patterns(Fig.2-B).These results indicate that the primers used here were indeed specific to each homoeolog.

    3.2.Differential expression of TaGASR7 homoeologs in immature seeds

    To ensure that homoeolog-specific primers have comparable amplification efficiencies,Ct values were checked using genomic DNA of S3 plants and their progenitors.As shown in Fig.S2 the above homoeolog-specific primer pairs gave very similar threshold cycle numbers or Ct values on various samples with the same DNA concentrations in either diploid or polyploid samples,indicating that these primers were suitable for subsequentexpressionanalysis.Wethencomparedhomoeolog expression levelsinimmatureseedsofdifferentspecies(S3 and its progenitors PI 94655 and AS2404).To do this,seeds at 6,11,14,17,21,and 25 days after flowering(DAF)were collected from a pool of 10-12 plants for eachspecies accordingto its flowering time.We found that GASR7B was highly expressed from 6 DAF until 14 DAF in developing seeds of the tetraploid accession PI94655 and began to decrease at 17 DAF.In comparison,theexpression of GASR7A started to decrease from 11 DAF,while in AS2404,the expression of GASR7D was repressed immediately after 6 DAF(Fig.3-A,B,C).Similar expression patterns were found for each GASR7 homoeolog in the S3(Fig.3-D,E,F(xiàn)).These data indicate that the three homoeologs of GASR7 were differentially regulated during seed development.

    Fig.2-Design of GASR7 homoeolog-specific primers.A:Alignment of 3′UTR sequences of GASR7A,B,and D homoeologs.Green boxes indicate homoeolog-specific reverse primers corresponding to the homoeologs with their names at the beginning of the alignment.B:Specific amplification of homoeolog-specific primer pairs among Chinese Spring(CS)nulli-tetrasomic lines. N7AT7B refers to the nullisomic 7A-tetrasomic 7B line and similar naming rules apply to the remaining lines.The names of homoeolog-specific primer pairs are indicated on the right side and their sequences are listed in Table S1.

    3.3.GASR7B dominates GASR7 expression in synthetic wheat

    To study homoeolog expression regulation during wheat hexaploidizationwemeasuredtheexpressionlevelsof GASR7 homoeologs in S3 seeds at 6 DAF and compared the results with those of the parents PI 94655 and AS2404.GASR7B maintained high expression in the S3 synthetic similar to the maternal parent PI 94655,whereas GASR7A and GASR7D were further repressed in newly synthesized hexaploid wheat(Fig.4-A,B,C).These data indicate that the three GASR7 homoeologsweredifferentiallyregulatedduringwheat polyploidization.This was confirmed in S3 11 DAF seeds by semi-quantitative RT-PCR where GASR7B was found to have higher expression,similar to that in its tetraploid progenitor(Fig.4-D),whereas expressions of GASR7A and GASR7D were much lower in S3 as in the progenitors PI 94655 and AS2404(Fig.4-D).Since GASR7 belongs to the Snakin/GASA gene family,we wondered whether the homoeologs were inducible by gibberellic acid(GA)and which one might dominate GASR7 expression under this condition.We treated young spikes of S3 and S4 plants daily using 100 mg L-1GA3over 10 consecutive days from 2 to 11 DAF and collected seeds at 11 DAF for RNA extraction.Spikes sprayed with water at the same time were used as controls.As shown in Fig.4-E,all three GASR7 homoeologs were induced by GA treatment.The expression of GASR7B however became even more dominant in both S3 and S4 plants,indicating that GASR7B is more responsive to GA treatment than the other two homoeologs.

    To gain further insight into the differential response of GASR7 homoeologs to GA,we isolated the promoter sequences.About 1500 bp of the GASR7A promoter regions was PCR amplified using primers designed from the genomic sequence of T.urartu[16].To obtain the other two promoters,we screened a hexaploid wheat BAC library[25]using GASR7B-and GASR7D-specific primers because we were not able to amplify them using genomic DNA as templates.Two BAC clones were obtained and the promoter sequences for GASR7B and GASR7D were amplified through PCR and sequenced. The three promoter sequences were named pTaGASR7A,pTaGASR7B,and pTaGASR7D.We found that pTaGASR7B was more similar to pTaGASR7D(60.2%)than to pTaGASR7A(38.7%).The promoter sequences were then subjected to cis-acting regulatory element prediction using the PLACE online service(http://www.dna.affrc.go.jp/PLACE/signalscan. html)[27].As shown in Fig.5 and Fig.S3,at least one GA-relatedcis-element was found for each promoter(pTaGASR7A,“Pyrimidine box”,PYRIMIDINEBOXOSRAMY1A;pTaGASR7B,“TATCCAC box”;TATCCACHVAL21;pTaGASR7D,“RY repeat motif”,RYREPEATVFLEB4),consistent with the GA responsive patterns of GASR7 homoeologs.Two additional GA-response ciselements,including a transcriptional enhancer,were found at pTaGASR7B(“TATCCAY”motif,TATCCAYMOTIFOSRAMY3D and“TATCCA”,TATCCAOSAMY),supporting the markedly increased expression of this homoeolog under GA treatment.These data suggest that genetic regulation plays a role in GASR7 homoeolog expression in polyploid wheat.

    Fig.3-Expression patterns of three GASR7 homoeologs during seed development.A,B:TtGASR7A and TtGASR7B are the two homoeologs of T.turgidum accession PI94655.C:AeGASR7 expression pattern in diploid Ae.tauschii accession AS2404.D,E,F(xiàn):Expression pattern of three TaGASR7 homoeologs in S3(AABBDD).All values represent means±SD of n=3 independent determinations with two biological replicates.

    3.4.Possible epigenetic regulation of GASR7 homoeologs during wheat polyploidization

    Although the relative expression of GASR7D was lower than that of GASR7B in the synthetic,GASR7D was further repressed during hexaploidization(Fig.4-C,D).Since sequences of the GASR7D promoter and coding region from the diploid progenitor AS2404 are identical to that in S3 synthetic,repression of GASR7D should contribute to epigenetic modification.To test this hypothesis,we studied the methylation status at the GASR7D promoter using the methylation-dependent restriction enzyme McrBC.PCR on DNAs pre-incubated with McrBC enzymes showed that two regions represented by P1(-1392 to-887)and P2(-928 to-446)were more digested in S3 than that in its progenitor AS2404,indicating increased DNA methylation in the GASR7D promoter after hexaploidization(Fig.6-A).Such an increase in promoter DNA methylation may account for the repression of TaGASR7D during wheat hexaploidization.In other words,epigenetic modification may be indeed involved in the regulation of GASR7 expression.

    However,we were not able to design pGASR7A-and pGASR7B-specific primers for the other two promoters,due to the lack of appropriate polymorphisms between them and therefore could not conduct PCR-based methylation assays on them.We then studied the presence of 24-nt siRNAs on these two promoters because siRNAs are indicators of DNA methylation status by mediating RNA-dependent DNA methylation(RdDM).SiRNAs are also known to be important for the maintenance of chromatin stability and regulation of gene expression in interspecific hybrids and polyploids[31-33]. We searched the three promoter sequences against our small RNA dataset previously generated from immature seeds at 11 DAF[12].A total of 152 24-nt siRNA(8.2 transcripts per million,or TPM,152/18,441,717)from S3 plants were mapped to pGASR7A(Tables 1 and S2)and nine 24-nt siRNA(0.5 TPM,9/ 18,441,717)were mapped to pTaGASR7D(Tables 1 and S3)whereas no siRNA was found in pTaGASR7B(Table 1).A BLAST search against the wheat repeat sequence dataset showed that the region on pTaGASR7A that generated siRNAs(from -1250 nt to-1160 nt)corresponded to an unclassified repetitive sequence(TREP1579;Fig.6-B).In light of the role of transposon-or repeat-derived 24-nt siRNA in DNA methylation[31],it is possible that TaGASR7A is also regulated by means of epigenetic modification during wheat polyploidization.

    Fig.4-Expression divergence of GASR7 homoeologs in synthetic wheat.A,B:Expression regulation of GASR7A(A)and GASR7B(B)in the tetraploid maternal parent T.turgidum(PI 94655)and the S3 synthetic at 6 DAF.C:Expression pattern of GASR7D in 6 DAF seeds from the diploid paternal parent Ae.tauschii(AS2404)compared to S3 synthetic plants.All values represent means±SD of n=3 independent determinations with two biological replicates.D:Semi-quantitative RT-PCR confirmation of GASR7 homoeolog expression patterns in seeds at 11 DAF.The tubulin gene was used as the endogenous control.E:Induction of TaGAR7 homoeolog expression by GA3treatment of S3 and S4 seeds at 11 DAF.-,H2O treatment;+,GA3treatment.

    4.Discussion

    Common wheat is a hexaploid species with genome composition of AABBDD originating from three putative diploid ancestral species:T.urartu,Aegilops speltoides and Ae. tauschii[34].Allopolyploidization leads to the generation of duplicated homoeologous genes,whose expression needs to be re-balanced in a polyploid genome[20].Evidence is accumulating that both genetic and epigenetic modifications may contribute to the divergence of expression of the three homoeologs in hexaploid wheat[18,20,21].Divergent cis-element combinations in the promoters of two homoeologs of the wheat CDPK gene TaCPK2 were shown to contribute to functional differentiation,with TaCPK2A responding to powdery mildew infection and TaCPK2D response to cold stress[18]. On theotherhand,epigenetic modificationswereconsideredto contribute to the divergence of expression of three TaEXPA1homoeologs during wheat development[20].An ability to produce new wheat synthetics provides opportunities to further study these regulatory processes by tracing homoeolog expression patterns in polyploid wheat[11,12].

    Fig.5-Distribution of GA related cis-elements in the GASR7A,B,and D promoter regions.Blue triangle,“Pyrimidine box”,PYRIMIDINEBOXOSRAMY1A;red triangle,“TATCCAY”motif,TATCCAYMOTIFOSRAMY3D;“TATCCAC box”,TATCCACHVAL21,and“TATCCA”,TATCCAOSAMY;purple triangle,“RY repeat motif”,RYREPEATVFLEB4.ATG,the start codon.

    Fig.6-Epigenetic regulation of GASR7 homoeologs during wheat allohexaploidization.A:Locations of DNA fragments in the GASR7D promoter used for testing the methylation status(top,P1 and P2)and McrBC enzyme-based PCR assays of methylation status of genomic regions(bottom).CKs,DNA templates not pre-incubated with McrBC.S3,third generation plants of the synthetic.B:Distribution of wheat repeat TREP159(the red line)and S3-derived 24-nt siRNAs(short lines below the region indicated by lines with left and right arrows)on pGASR7A and pGASR7D.

    Similarto that inT.urartu,the A homoeolog of thehexaploid wheat GASR7 is also found to be associated with grain lengthdevelopment[17].Since synthetic wheat line used in this work has slender seeds similar to its maternal parent the regulation of homoeolog expression of this gene in polyploid wheat and during wheat allohexaploidization is of great interest. By studying the promoter sequences of GASR7 homoeologs,we found that genetic composition may play a role in differential regulation of homoeolog expression.The presence of GA-responsive elements in promoters may explain the inducibility of GASR7 homoeologs by GA.However,epigenetic modification may provide alternative regulatory approaches as shown by changes of methylation status in the GASR7D promoter.Similar epigenetic modifications may also apply to GASR7A due to the presence of repeat-derived 24-nt siRNAs in its promoter.Inlight ofthe persistentlydominant expression of GASR7B,itispossiblethatTaGASR7Bmayalsoberelatedtograin length in common wheat.

    Table 1-Distribution of 24-nt siRNAs in promoters of GASR7 homoeologs in S3 synthetic plants.

    Recent work has shown that many structural changes in allohexaploid wheat may have taken place during allotetraploidization [10,35,36].Experiments with newly formed allotetraploid wheat revealed localized genomic changes and rapid changes in the copy number of gene homologs[37].More recently,differential modifications of A and D subgenome transposable element(TE)-associated genes were found in the hexaploid wheat,indicating that RNA-dependent DNA methylation may be another regulatory mechanism during wheat allohexaploidization[12].Additional mechanisms are expected when more information on gene expression patterns and regulation are available in the future.

    Despite the presence of multiple homoeologs for one gene,there is a preference in the use of one homoeolog in polyploid plants[38].Such a phenomenon may be due to the intrinsic mechanisms of basic genetic rules such as those highlighted by the gene dosage balance hypothesis[39].The rules governing homoeolog interaction are pivotal for genetic manipulation in polyploid crops such as wheat,cotton,and canola.More work on genetic and epigenetic interactions of homoeoalleles should reveal new information on the modes of gene regulation in polyploids and should promote their application in crop breeding.

    Acknowledgments

    This work was supported by the Chinese National Natural Science Foundation(31271716),National High Technology Research and Development Program (2012AA10A308),and National KeyProgramon TransgenicResearch(2013ZX009-001).

    Supplementary material

    Supplementary figures to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.08.005.

    R E F E R E N C E S

    [1]A.Cenci,N.Chantret,X.Kong,Y.Gu,O.D.Anderson,T. Fahima,A.Distelfeld,J.Dubcovsky,Construction and characterization of a half million clone BAC library of durumwheat(Triticum turgidum ssp.durum),Theor.Appl.Genet.107(2003)931-939.

    [2]J.D.Faris,J.P.Fellers,S.A.Brooks,B.S.Gill,A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene,Genetics 164(2003)311-321.

    [3]S.Allouis,G.Moore,A.Bellec,R.F.Sharp,P.Rampant,K. Mortimer,S.Pateyron,T.N.Foote,S.Griffiths,M.Caboche,B. Chalhoub,Construction and characterisation of a hexaploid wheat(Triticum aestivum L.)BAC library from the reference germplasm‘Chinese Spring',Cereal Res.Commun.31(2003)331-338.

    [4]B.Chalhoub,H.Belcram,M.Caboche,Efficient cloning of plant genomes into bacterial artificial chromosome(BAC)libraries with larger and more uniform insert size,Plant Biotechnol.J.2(2004)181-188.

    [5]E.Isidore,B.Scherrer,B.Chalhoub,C.Feuillet,B.Keller,Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels,Genome Res. 15(2005)526-536.

    [6]S.Huang,A.Sirikhachornkit,X.Su,J.Faris,B.Gill,R. Haselkorn,P.Gornicki,Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/ Aegilops complex and the evolutionary history of polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.99(2002)8133-8138.

    [7]H,.Kihara,Discovery of the DD analyser,one of the tetraploid,Agric.Hortic.19(1944)889-890.

    [8]Y,.Matsuoka,Evolution of polyploid triticum wheats under cultivation:the role of domestication,natural hybridization and allopolyploid speciation in their diversification,Plant& Cell Physiol.52(2011)750-764.

    [9]E.S.McFadden,E.R.Sears,The origin of Triticum spelta and its free-threshing hexaploid relatives,J.Hered.37(1946)81-89.

    [10]I.Mestiri,V.Chague,A.M.Tanguy,C.Huneau,V.Huteau,H. Belcram,O.Coriton,B.Chalhoub,J.Jahier,Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity,New Phytol.186(2010)86-101.

    [11]L.Q.Zhang,D.C.Liu,Y.L.Zheng,Z.H.Yan,S.F.Dai,Y.F.Li,Q. Jiang,Y.Q.Ye,Y.Yen,F(xiàn)requent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids,Euphytica 172(2010)285-294.

    [12]A.Li,D.Liu,J.Wu,X.Zhao,M.Hao,S.Geng,J.Yan,X.Jiang,L. Zhang,J.Y.Wu,L.Yin,R.Zhang,L.Wu,Y.Zheng,L.Mao,mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat,Plant Cell(2014)124388 10.1105/ tpc.1114.

    [13]V.Nahir?ak,N.I.Almasia,H.E.Hopp,C.Vazquez-Rovere,Snakin/GASA proteins involvement in hormone crosstalk and redox homeostasis,Plant Signal.Behav.7(2012)1004-1008.

    [14]I.Roxrud,L.S.Erik,J.C.Fletcher,E.D.L.Schmidt,H.Opsahl-Sorteberg,GASA4,one of the 14-member Arabidopsis GASA family of small polypeptides,regulates flowering and seed development,Plant Cell Physiol.48(2007)471-483.

    [15]X.Huang,Y.Zhao,X.Wei,C.Li,A.Wang,Q.Zhao,W.Li,Y. Guo,L.Deng,C.Zhu,D.Fan,Y.Lu,Q.Weng,K.Liu,T.Zhou,Y. Jing,L.Si,G.Dong,T.Huang,T.Lu,Q.Feng,Q.Qian,J.Li,B. Han,Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm,Nat.Genet.44(2012)32-39.

    [16]H.Q.Ling,S.Zhao,D.Liu,J.Wang,H.Sun,C.Zhang,H.Fan,D. Li,L.Dong,Y.Tao,C.Gao,H.Wu,Y.Li,Y.Cui,X.Guo,S. Zheng,B.Wang,K.Yu,Q.Liang,W.Yang,X.Lou,J.Chen,M. Feng,J.Jian,X.Zhang,G.Luo,Y.Jiang,J.Liu,Z.Wang,Y.Sha,B.Zhang,H.Wu,D.Tang,Q.Shen,P.Xue,S.Zou,X.Wang,X. Liu,F(xiàn).Wang,Y.Yang,X.An,Z.Dong,K.Zhang,X.Zhang,M.C. Luo,J.Dvorak,Y.Tong,J.Wang,H.Yang,Z.Li,D.Wang,A. Zhang,J.Wang,The draft genome of Triticum urartu,Nature 496(2013)487-490.

    [17]L.Dong,F(xiàn).Wang,T.Liu,Z.Dong,A.Li,R.Jing,L.Mao,Y.Li,X. Liu,K.Zhang,D.Wang,Natural variation of TaGASR7-1 A1 affects grain length in common wheat under multiple cultivation conditions,Mol.Breed.(2014),http://dx.doi.org/10. 1007/s11032-11014-10087-11032.

    [18]S.Geng,A.Li,L.Tang,L.Yin,L.Wu,C.Lei,X.Guo,X.Zhang,G. Jiang,W.Zhai,Y.Wei,Y.Zheng,X.Lan,L.Mao,TaCPK2-A,a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice,J.Exp.Bot.64(2013)3125-3136.

    [19]Z.R.Hu,Y.Yu,R.Wang,Y.Y.Yao,H.R.Peng,Z.F.Ni,Q.X.Sun,Expression divergence of TaMBD2 homoeologous genes encoding methyl CpG-binding domain proteins in wheat(Triticum aestivum L.),Gene 471(2011)13-18.

    [20]Z.Hu,Z.Han,N.Song,L.Chai,Y.Yao,H.Peng,Z.Ni,Q.Sun,Epigenetic modification contributes to the expression divergence of three TaEXPA1 homoeologs in hexaploid wheat(Triticum aestivum),New Phytol.197(2013)1344-1352.

    [21]N.Shitsukawa,C.Tahira,K.Kassai,C.Hirabayashi,T.Shimizu,S.Takumi,K.Mochida,K.Kawaura,Y.Ogihara,K.Murai,Genetic and epigenetic alteration among three homoeologous genesofaclassEMADSboxgeneinhexaploidwheat,PlantCell 19(2007)1723-1737.

    [22]W.Yang,D.Liu,J.Li,L.Zhang,H.Wei,X.Hu,Y.Zheng,Z.He,Y.Zou,Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China,J.Genet.Genom.36(2009)539-546.

    [23]L.Zhang,Y.Yang,Y.Zheng,D.Liu,Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines,Sex.Plant Reprod.20(2007)159-166.

    [24]C.A.Sparks,H.D.Jones,Biolistics transformation of wheat,Methods Mol.Biol.478(2009)71-92.

    [25]S.Geng,Y.Zhao,L.Tang,R.Zhang,M.Sun,H.Guo,X.Kong,A. Li,L.Mao,Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species:a case study in wheat(Triticum aestivum L.),Gene 475(2011)94-103.

    [26]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.Mayer,K.J.Edwards,M.W. Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature 491(2012)705-710.

    [27]K.Higo,Y.Ugawa,M.Iwamoto,T.Korenaga,Plant cis-acting regulatory DNA elements(PLACE)database,Nucleic Acids Res.27(1999)297-300.

    [28]S.F.Altschul,T.L.Madden,A.A.Sch?ffer,J.Zhang,Z.Zhang,W. Miller,D.J.Lipman,Gapped BLAST and PSI-BLAST:a new generation of protein database search programs,Nucleic Acids Res.25(1997)3389-3402.

    [29]L.Wu,H.Y.Zhou,Q.Q.Zhang,J.G.Zhang,F(xiàn).R.Ni,C.Liu,Y.J.Qi,DNA methylation mediated by a microRNA pathway,Mol. Cell 38(2010)465-475.

    [30]J.Jia,S.Zhao,X.Kong,Y.Li,G.Zhao,W.He,R.Appels,M. Pfeifer,Y.Tao,X.Zhang,R.Jing,C.Zhang,Y.Ma,L.Gao,C. Gao,M.Spannagl,K.F.X.Mayer,D.Li,S.Pan,F(xiàn).Zheng,Q.Hu,X.Xia,J.Li,Q.Liang,J.Chen,T.Wicker,C.Gou,H.Kuang,G. He,Y.Luo,B.Keller,Q.Xia,P.Lu,J.Wang,H.Zou,R.Zhang,J. Gao,C.Middleton,Z.Quan,G.Liu,J.Wang,H.Yang,X.Liu,Z. He,L.Mao,J.Wang,The Aegilops tauschii draft genome sequence reveals gene repertoire for wheat adaptation,Nature 496(2013)91-95.

    [31]M.Ha,J.Lu,L.Tian,V.Ramachandran,K.D.Kasschau,E.J. Chapman,J.C.Carrington,X.Chen,X.J.Wang,Z.J.Chen,SmallRNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids,Proc. Natl.Acad.Sci.U.S.A.106(2009)17835-17840.

    [32]M.Kenan-Eichler,D.Leshkowitz,L.Tal,E.Noor,C.Melamed-Bessudo,M.Feldman,A.A.Levy,Heat hybridization and polyploidization results in deregulation of small RNAs,Genetics 188(2011)263-272.

    [33]J.Lu,C.Zhang,D.C.Baulcombe,Z.J.Chen,Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds,Proc.Natl. Acad.Sci.U.S.A.109(2012)5529-5534.

    [34]M.Feldman,A.A.Levy,Allopolyploidy-a shaping force in the evolution of wheat genomes,Cytogenet Genome Res.109(2005)250-258.

    [35]N.Zhao,L.Xu,B.Zhu,M.Li,H.Zhang,B.Qi,C.Xu,F(xiàn).Han,B.Liu,Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental,Genome 54(2011)692-699.

    [36]N.Zhao,B.Zhu,M.Li,L.Wang,L.Xu,H.Zhang,S.Zheng,B. Qi,F(xiàn).Han,B.Liu,Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat,Genetics 188(2011)499-510.

    [37]H.K.Zhang,Y.Bian,X.W.Gou,Y.Z.Dong,S.Rustgi,B.J.Zhang,C.M.Xu,N.Li,B.Qi,F(xiàn).P.Han,D.V.Wettstein,B.Liu,Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation,Proc.Natl.Acad.Sci.U.S.A.110(2013)19466-19471.

    [38]M.Feldman,A.A.Levy,T.Fahima,A.Korol,Genomic asymmetry in allopolyploid plants:wheat as a model,J.Exp. Bot.63(2012)5045-5059.

    [39]J.A.Birchler,R.A.Veitia,The gene balance hypothesis:implications for gene regulation,quantitative traits and evolution,New Phytol.186(2009)54-62.

    18 June 2014

    in revised form 29 July 2014

    s.

    E-mail addresses:maolong@caas.cn(L.Mao),liaili@caas.cn(A.Li).

    Peer review under responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    1These authors contributed equally to this work.

    http://dx.doi.org/10.1016/j.cj.2014.08.005

    2214-5141/?2014 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.All rights reserved.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

    久久久国产精品麻豆| 亚洲一区二区三区欧美精品| 国产成人精品久久二区二区91| 人成视频在线观看免费观看| 老司机影院毛片| 99精品欧美一区二区三区四区| 捣出白浆h1v1| 午夜福利乱码中文字幕| 亚洲国产看品久久| 日韩精品免费视频一区二区三区| 日韩精品免费视频一区二区三区| 80岁老熟妇乱子伦牲交| 宅男免费午夜| 国产在线免费精品| 午夜福利免费观看在线| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 欧美激情高清一区二区三区| 69av精品久久久久久 | av天堂久久9| 国产精品国产高清国产av | 大型黄色视频在线免费观看| 午夜福利欧美成人| 久久毛片免费看一区二区三区| 在线观看一区二区三区激情| 在线永久观看黄色视频| 亚洲av美国av| 老汉色av国产亚洲站长工具| 国产有黄有色有爽视频| 日韩人妻精品一区2区三区| 成人手机av| 精品国产一区二区久久| 老司机午夜福利在线观看视频 | 亚洲自偷自拍图片 自拍| 啪啪无遮挡十八禁网站| 欧美日韩亚洲综合一区二区三区_| 国产成人精品在线电影| 色94色欧美一区二区| 国产精品一区二区在线观看99| 国产在线免费精品| 俄罗斯特黄特色一大片| 欧美在线一区亚洲| 成人手机av| 欧美黄色淫秽网站| 狂野欧美激情性xxxx| 最新美女视频免费是黄的| 亚洲中文日韩欧美视频| 在线 av 中文字幕| 久久久欧美国产精品| 18禁美女被吸乳视频| 久久精品亚洲av国产电影网| 热re99久久精品国产66热6| 最近最新中文字幕大全电影3 | 丰满迷人的少妇在线观看| 精品国内亚洲2022精品成人 | 久久人人爽av亚洲精品天堂| 男男h啪啪无遮挡| 久久久久久人人人人人| 久久国产精品大桥未久av| 一区二区av电影网| 亚洲自偷自拍图片 自拍| 亚洲欧美色中文字幕在线| 男女之事视频高清在线观看| 免费av中文字幕在线| 国产精品一区二区精品视频观看| 人人妻人人爽人人添夜夜欢视频| 波多野结衣一区麻豆| 免费在线观看日本一区| 亚洲少妇的诱惑av| 啪啪无遮挡十八禁网站| xxxhd国产人妻xxx| av天堂在线播放| 丝袜美腿诱惑在线| www.精华液| 成年版毛片免费区| 久久av网站| 一区在线观看完整版| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 亚洲情色 制服丝袜| 日本黄色视频三级网站网址 | 欧美日韩一级在线毛片| 国产成+人综合+亚洲专区| 国产在线观看jvid| 桃红色精品国产亚洲av| 美女福利国产在线| 久久国产精品男人的天堂亚洲| 高清黄色对白视频在线免费看| 精品午夜福利视频在线观看一区 | 99精国产麻豆久久婷婷| 夫妻午夜视频| 少妇粗大呻吟视频| 国产亚洲精品久久久久5区| 岛国在线观看网站| 亚洲视频免费观看视频| 99精品久久久久人妻精品| 丁香六月欧美| 欧美精品高潮呻吟av久久| 高清黄色对白视频在线免费看| 多毛熟女@视频| 国产亚洲av高清不卡| 日韩欧美三级三区| 无人区码免费观看不卡 | 亚洲国产欧美一区二区综合| 啦啦啦中文免费视频观看日本| 老司机靠b影院| 日韩熟女老妇一区二区性免费视频| 一区二区av电影网| 老熟妇乱子伦视频在线观看| 深夜精品福利| 亚洲免费av在线视频| 国产精品熟女久久久久浪| av欧美777| 日韩大码丰满熟妇| 免费一级毛片在线播放高清视频 | 久久影院123| 999久久久精品免费观看国产| 捣出白浆h1v1| 久久久久国产一级毛片高清牌| 欧美日韩av久久| 免费在线观看完整版高清| 欧美人与性动交α欧美精品济南到| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲黑人精品在线| 欧美大码av| 亚洲国产欧美日韩在线播放| 少妇裸体淫交视频免费看高清 | 老鸭窝网址在线观看| 亚洲精品国产色婷婷电影| 欧美日韩黄片免| 女人久久www免费人成看片| 99久久精品国产亚洲精品| 欧美国产精品va在线观看不卡| av欧美777| 欧美乱妇无乱码| 男男h啪啪无遮挡| 国产日韩欧美在线精品| 欧美精品一区二区免费开放| 无限看片的www在线观看| 亚洲精品久久成人aⅴ小说| 国产精品偷伦视频观看了| 天天添夜夜摸| 久久精品亚洲av国产电影网| 天天躁日日躁夜夜躁夜夜| 欧美在线黄色| 精品熟女少妇八av免费久了| 不卡av一区二区三区| 精品视频人人做人人爽| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品电影小说| 亚洲成人国产一区在线观看| 亚洲成a人片在线一区二区| 精品福利观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av国产av综合av卡| 热re99久久国产66热| 在线观看一区二区三区激情| 最黄视频免费看| 老司机深夜福利视频在线观看| 精品人妻在线不人妻| 成年人黄色毛片网站| 色播在线永久视频| 成年动漫av网址| 国产色视频综合| 国产成人精品久久二区二区免费| 另类亚洲欧美激情| 国产一区二区在线观看av| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸| 亚洲国产欧美在线一区| 好男人电影高清在线观看| 一夜夜www| 夫妻午夜视频| 97人妻天天添夜夜摸| 午夜福利欧美成人| 黄色视频不卡| 最近最新中文字幕大全免费视频| 免费观看a级毛片全部| 成人18禁高潮啪啪吃奶动态图| 色播在线永久视频| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩一区二区三| 亚洲精品中文字幕一二三四区 | 悠悠久久av| 午夜福利,免费看| 久久亚洲真实| 可以免费在线观看a视频的电影网站| 丁香六月欧美| 悠悠久久av| 亚洲视频免费观看视频| 亚洲av日韩在线播放| 无人区码免费观看不卡 | 天天添夜夜摸| 午夜老司机福利片| 国产视频一区二区在线看| 国产精品九九99| 亚洲国产欧美在线一区| 亚洲av成人不卡在线观看播放网| 国产精品偷伦视频观看了| 黑人操中国人逼视频| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 欧美+亚洲+日韩+国产| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜添小说| 精品国产一区二区三区四区第35| 亚洲国产av影院在线观看| 国产精品98久久久久久宅男小说| 国产亚洲精品久久久久5区| 久久久久久久久免费视频了| av在线播放免费不卡| 一区在线观看完整版| 老司机亚洲免费影院| 国产精品二区激情视频| 午夜久久久在线观看| 狠狠精品人妻久久久久久综合| 满18在线观看网站| 国产亚洲精品一区二区www | 欧美日韩视频精品一区| 水蜜桃什么品种好| 久久人妻福利社区极品人妻图片| 久久国产亚洲av麻豆专区| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 九色亚洲精品在线播放| 香蕉国产在线看| 在线观看舔阴道视频| 国产精品国产av在线观看| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 精品免费久久久久久久清纯 | 成人国产一区最新在线观看| 国产黄频视频在线观看| 国产精品98久久久久久宅男小说| 亚洲精品美女久久av网站| 777米奇影视久久| 丝袜在线中文字幕| 又大又爽又粗| 亚洲一区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩高清在线视频 | 久久青草综合色| 精品亚洲成a人片在线观看| 亚洲五月婷婷丁香| 久久国产精品影院| 国产福利在线免费观看视频| 国产亚洲精品一区二区www | 国产一区二区在线观看av| 亚洲中文字幕日韩| av超薄肉色丝袜交足视频| 天天躁日日躁夜夜躁夜夜| 亚洲成av片中文字幕在线观看| 国产亚洲欧美精品永久| tube8黄色片| 国产欧美日韩一区二区精品| 午夜两性在线视频| 久久亚洲真实| 国产精品国产高清国产av | 国产成人免费观看mmmm| 中文字幕制服av| 男女边摸边吃奶| 热re99久久国产66热| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 国产在线观看jvid| 国产伦人伦偷精品视频| 国产精品 欧美亚洲| 在线 av 中文字幕| 精品人妻在线不人妻| 中文欧美无线码| 99国产精品99久久久久| 大型黄色视频在线免费观看| 亚洲熟妇熟女久久| 久久久久久久久久久久大奶| 少妇的丰满在线观看| 香蕉久久夜色| 12—13女人毛片做爰片一| 岛国毛片在线播放| 99久久国产精品久久久| 丝袜美足系列| 国产亚洲精品第一综合不卡| 天天操日日干夜夜撸| 国产aⅴ精品一区二区三区波| 建设人人有责人人尽责人人享有的| 国产伦理片在线播放av一区| 日本av免费视频播放| 一区二区三区国产精品乱码| 欧美av亚洲av综合av国产av| 中文字幕人妻丝袜制服| 国产精品免费大片| 亚洲精品在线美女| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级| 韩国精品一区二区三区| 国产黄色免费在线视频| 欧美激情久久久久久爽电影 | a级毛片黄视频| 丝袜美腿诱惑在线| 精品久久久精品久久久| 极品教师在线免费播放| netflix在线观看网站| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 美女高潮喷水抽搐中文字幕| 国产高清国产精品国产三级| 亚洲视频免费观看视频| 搡老乐熟女国产| 国产不卡一卡二| 女人精品久久久久毛片| 日本五十路高清| 免费在线观看黄色视频的| 超碰97精品在线观看| 久久久久国内视频| 一级黄色大片毛片| 交换朋友夫妻互换小说| 777久久人妻少妇嫩草av网站| 精品国产乱码久久久久久男人| 精品高清国产在线一区| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久| 精品视频人人做人人爽| 多毛熟女@视频| 国产淫语在线视频| 亚洲avbb在线观看| 在线观看人妻少妇| av又黄又爽大尺度在线免费看| 国产野战对白在线观看| 国产97色在线日韩免费| av天堂在线播放| 国产精品秋霞免费鲁丝片| 18禁观看日本| 三级毛片av免费| 每晚都被弄得嗷嗷叫到高潮| 操出白浆在线播放| 999久久久国产精品视频| 麻豆国产av国片精品| 日本黄色视频三级网站网址 | 天堂8中文在线网| 亚洲,欧美精品.| 制服人妻中文乱码| 国产免费av片在线观看野外av| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 老司机午夜福利在线观看视频 | 黄色片一级片一级黄色片| 国产成人欧美| bbb黄色大片| 男人舔女人的私密视频| 极品人妻少妇av视频| 亚洲精品在线观看二区| 精品久久久久久电影网| 精品亚洲成a人片在线观看| 操美女的视频在线观看| tube8黄色片| 国产成人欧美在线观看 | 狠狠婷婷综合久久久久久88av| 亚洲成人手机| 精品国产乱码久久久久久男人| 女人爽到高潮嗷嗷叫在线视频| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| 欧美人与性动交α欧美软件| 国产免费福利视频在线观看| 国产老妇伦熟女老妇高清| 高清黄色对白视频在线免费看| www日本在线高清视频| 中文字幕人妻丝袜制服| 激情在线观看视频在线高清 | 国产高清videossex| 国产不卡av网站在线观看| 国产片内射在线| 欧美午夜高清在线| 午夜免费鲁丝| 91成年电影在线观看| 精品少妇内射三级| 欧美激情高清一区二区三区| 亚洲一区中文字幕在线| 久久精品成人免费网站| 国产精品久久久久久精品古装| 久9热在线精品视频| 免费在线观看影片大全网站| 日本wwww免费看| 老熟女久久久| 大码成人一级视频| 另类亚洲欧美激情| 一级毛片女人18水好多| 日韩三级视频一区二区三区| 精品久久蜜臀av无| 狠狠精品人妻久久久久久综合| 国产精品久久久久久人妻精品电影 | 亚洲色图av天堂| 极品教师在线免费播放| 久久人人爽av亚洲精品天堂| 精品一区二区三卡| 一区二区av电影网| 亚洲精品成人av观看孕妇| 丝袜美腿诱惑在线| 欧美精品啪啪一区二区三区| 国产午夜精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 涩涩av久久男人的天堂| 制服诱惑二区| 亚洲色图av天堂| 亚洲九九香蕉| 亚洲 欧美一区二区三区| 亚洲久久久国产精品| 久久ye,这里只有精品| 精品视频人人做人人爽| 最近最新中文字幕大全电影3 | 久久人妻熟女aⅴ| 在线 av 中文字幕| 高清毛片免费观看视频网站 | 亚洲成人手机| 久久精品国产亚洲av高清一级| 下体分泌物呈黄色| 欧美亚洲 丝袜 人妻 在线| 超碰97精品在线观看| 免费在线观看黄色视频的| 97在线人人人人妻| 美女扒开内裤让男人捅视频| 国产精品免费一区二区三区在线 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av欧美aⅴ国产| 中文字幕高清在线视频| 两个人免费观看高清视频| 99热网站在线观看| 成人av一区二区三区在线看| 久久精品成人免费网站| 9热在线视频观看99| 少妇裸体淫交视频免费看高清 | 一级黄色大片毛片| 亚洲av日韩在线播放| 色播在线永久视频| 99re6热这里在线精品视频| 国产精品免费大片| 日韩欧美国产一区二区入口| 大香蕉久久成人网| 亚洲色图av天堂| 51午夜福利影视在线观看| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 久久热在线av| 久久亚洲精品不卡| 777米奇影视久久| 91成人精品电影| 热99re8久久精品国产| 亚洲国产欧美日韩在线播放| 久久性视频一级片| 少妇 在线观看| 母亲3免费完整高清在线观看| 一本大道久久a久久精品| 香蕉丝袜av| 亚洲av成人一区二区三| 岛国毛片在线播放| 中文字幕精品免费在线观看视频| 一边摸一边抽搐一进一小说 | 美女高潮到喷水免费观看| 熟女少妇亚洲综合色aaa.| 日韩欧美三级三区| 精品国产国语对白av| 高清黄色对白视频在线免费看| 中文亚洲av片在线观看爽 | 色综合婷婷激情| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久 | 国产亚洲一区二区精品| 老司机午夜十八禁免费视频| 在线观看一区二区三区激情| 国产精品亚洲av一区麻豆| 91字幕亚洲| 亚洲人成电影观看| 少妇的丰满在线观看| 纯流量卡能插随身wifi吗| 中文字幕人妻熟女乱码| 欧美 日韩 精品 国产| 精品熟女少妇八av免费久了| 亚洲专区中文字幕在线| 精品熟女少妇八av免费久了| 不卡一级毛片| 欧美日韩视频精品一区| 亚洲欧美激情在线| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 国产亚洲精品久久久久5区| 亚洲午夜精品一区,二区,三区| 1024视频免费在线观看| 亚洲三区欧美一区| 一边摸一边抽搐一进一小说 | 午夜福利视频精品| 日韩视频一区二区在线观看| 丁香六月欧美| 美女高潮到喷水免费观看| 一级毛片精品| 久久久久精品人妻al黑| 国产成人av激情在线播放| 男女床上黄色一级片免费看| 国产日韩一区二区三区精品不卡| 一进一出好大好爽视频| 久久影院123| 深夜精品福利| 久久久久久久久免费视频了| 精品乱码久久久久久99久播| 亚洲情色 制服丝袜| 男女床上黄色一级片免费看| 黄色怎么调成土黄色| 国产欧美日韩精品亚洲av| 怎么达到女性高潮| 国产一区二区三区综合在线观看| 精品国内亚洲2022精品成人 | 欧美黑人精品巨大| 欧美国产精品一级二级三级| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 女性生殖器流出的白浆| 国产精品1区2区在线观看. | 一级毛片电影观看| 午夜福利免费观看在线| 侵犯人妻中文字幕一二三四区| 欧美日韩福利视频一区二区| 国产xxxxx性猛交| 我的亚洲天堂| 在线看a的网站| 每晚都被弄得嗷嗷叫到高潮| 2018国产大陆天天弄谢| 99在线人妻在线中文字幕 | 一区福利在线观看| 久久 成人 亚洲| 国产成人精品久久二区二区91| 少妇粗大呻吟视频| 国产成人啪精品午夜网站| 性高湖久久久久久久久免费观看| 下体分泌物呈黄色| 三级毛片av免费| 欧美变态另类bdsm刘玥| 亚洲av成人一区二区三| 超色免费av| 精品久久蜜臀av无| 宅男免费午夜| 大片免费播放器 马上看| 1024视频免费在线观看| 国产日韩欧美亚洲二区| 国产一区二区 视频在线| 肉色欧美久久久久久久蜜桃| 老司机靠b影院| 亚洲avbb在线观看| 色94色欧美一区二区| 亚洲专区国产一区二区| 精品熟女少妇八av免费久了| 精品人妻在线不人妻| 丝袜美足系列| 99riav亚洲国产免费| 免费黄频网站在线观看国产| 日本av手机在线免费观看| 久久久久久久精品吃奶| 丝瓜视频免费看黄片| 正在播放国产对白刺激| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品中文字幕在线视频| 亚洲精品国产一区二区精华液| 欧美日韩中文字幕国产精品一区二区三区 | 国产在线观看jvid| 丰满迷人的少妇在线观看| 香蕉丝袜av| 飞空精品影院首页| 黑人猛操日本美女一级片| 99精国产麻豆久久婷婷| 国产精品久久久久久精品古装| 高清av免费在线| 亚洲中文av在线| 国产亚洲av高清不卡| 国产成人欧美在线观看 | 热99re8久久精品国产| kizo精华| 高清欧美精品videossex| 最黄视频免费看| 久久毛片免费看一区二区三区| 国产在视频线精品| 美女主播在线视频| 热99久久久久精品小说推荐| 国产亚洲精品一区二区www | 精品高清国产在线一区| 高清毛片免费观看视频网站 | 亚洲精品一卡2卡三卡4卡5卡| 99热网站在线观看| 老汉色av国产亚洲站长工具| 国产精品国产高清国产av | 中文字幕精品免费在线观看视频| 69精品国产乱码久久久| 另类亚洲欧美激情| 欧美人与性动交α欧美软件| 操出白浆在线播放| 国产精品免费一区二区三区在线 | 欧美日韩黄片免| 久久久久国产一级毛片高清牌| 一二三四社区在线视频社区8| 五月天丁香电影| 久久香蕉激情| 精品视频人人做人人爽| 久久国产亚洲av麻豆专区| 亚洲精华国产精华精| 涩涩av久久男人的天堂| 黑人欧美特级aaaaaa片| 亚洲一码二码三码区别大吗| 国产高清视频在线播放一区| 欧美日韩亚洲国产一区二区在线观看 | 国产视频一区二区在线看| 国产成人免费观看mmmm|