• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular genetic analysis of phosphomannomutase genes in Triticum monococcum

    2015-03-13 05:51:36ChunmeiYuXinyanLiuQianZhangXinyuHeWanHuaiBaohuaWangYunyingCaoRongZhou
    The Crop Journal 2015年1期

    Chunmei Yu*,Xinyan Liu,Qian Zhang,Xinyu He,Wan Huai,Baohua Wang,Yunying Cao,Rong Zhou

    School of Life Science,Nantong University,Nantong,Jiangsu 226019,China

    1.Introduction

    In the Tribe Triticeae,the diploid A genome wheat species Triticum monococcum(AmAm)and Triticum urartu(AuAu)evolved from a common ancestor about 0.5–3.0 million years ago(MYA) [1,2].T.urartu is a wild species,and the donor of the A genome in tetraploid wheat (Triticum turgidum,AABB,2n =4x = 28) and hexaploid common wheat (Triticum aestivum,AABBDD,2n = 6x = 42)[1,3].T.monococcum is mainly cultivated,although one of its subspecies(T.monococcum ssp.aegilopoides)is wild [4].T.monococcum holds large genetic diversity in multiple traits,and has been found to be suitable for mining important genes useful for improving wheat and related Triticeae crops[5,6].For example,a number of T.monococcum accessions exhibit strong resistance to powdery mildew,leaf rust and cereal cyst nematode[7–10].Some disease resistance genes in T.monococcum were transferred to common wheat through marker-assisted selection[7,8].Puroiudoline and high-molecular-weight glutenin subunit genes in T.monococcum were also introgressed into common wheat to improve grain milling and processing qualities[11–14].Furthermore,the comparatively smaller diploid genome of T.monococcum has made it an efficient experimental model for map-based cloning of genes controlling important traits in Triticeae crops,such as the powdery mildew resistance gene Pm3,leaf rust resistance gene Lr10,the VRN1 and VRN2 genes regulating vernalization response,and the Q gene controlling spike morphology [15–19].Characterization of T.monococcum alleles of Pm3,Lr10,Q,VRN1 and VRN2 not only expanded our understanding of the evolutionary and functional diversification patterns of important genes in Triticeae plants,but also helped to overcome the narrow genetic diversity of common wheat due to the bottleneck of polyploidization[20,21].

    In eukaryotic cells,phosphomannomutase (PMM) is a conserved enzyme catalyzing the interconversion between mannose-6-phosphate(M6P)and mannose-1-phosphate(M1P),with M1P being the major substrate for synthesizing the key cellular metabolite GDP-mannose.In higher plants,GDPmannose is essential for biosynthesis of the potent antioxidant ascorbic acid (AsA) through the Smirnoff–Wheeler pathway[22–24].Overexpression of the PMM gene in plants increased AsA content and tolerance to oxidative stress [22,23].On the other hand,complete functional deficiency of PMM is lethal to organisms,and mild mutations of PMM were observed to decrease cellular tolerance to high temperature stress in both fungi and higher plants [24,25].In humans the genetically inherited disease CDG-Ia,associated with inadequate glycosylation of macromolecules,is caused by point mutations in PMM2[26–29].Dysfunction of PMM may also result in accumulation of M6P,the PMM substrate,and may cause a blockage of glycolysis in plant cells [30],and destruction of lipid-linked oligosaccharide in mammalian cells[31,32].Major agricultural crops such as rice,maize and wheat are mannose-sensitive plants,and cannot tolerate high M6P content in the cells[33–35].Therefore,it is very important to maintain an appropriate level of PMM enzyme activity in the cells of eukaryotes.So far,no report has shown that a eukaryotic organism can survive without PMM activity[23–25,36].

    Because of its fundamental importance,many in-depth studies on PMM have been reported,mostly in mammals and model organisms.By contrast,less is known about PMM genes and their functions in polyploid plants.We previously reported a detailed characterization of the PMM gene family in common wheat [37].We identified six TaPMM genes,with TaPMM-A1,B1 and D1 located on group 2 chromosomes and TaPMM-A2,B2 and D2 on group 4 chromosomes.TaPMM-A2 is a pseudogene,while the protein encoded by TaPMM-B2 lacks PMM activity.Although TaPMM-D2 exhibits PMM activity,its transcript level is relatively low.By contrast,all three TaPMM-1 members are more highly transcribed and their proteins show potent PMM activity.Clearly,TaPMM-A1,B1 and D1 are the dominant PMM genes,whereas TaPMM-A2,B2 and D2 are either debilitated or functionally diverged.To enrich our understanding of PMM genes in Triticeae species,the main objective of this work was to characterize PMM gene members in T.monococcum.Owing to close similarity between the A genome of common wheat and the Amgenome of T.monococcum,it was anticipated that the outcome of the study should expand our knowledge on the existence and potential functional differences of PMM members in common wheat and related species,and possibly provide useful clues for further functional and applied studies of PMM in crop plants.

    Table 1-Indel and SNP polymorphisms of TmPMM genes in T.monococcum accessions in common wheat[37].We identified six TaPMM genes,with.

    2.Materials and methods

    2.1.Plant materials,growth conditions and oligonucleotide primers

    T.monococcum accessions used for cloning TmPMM genes are listed in Table 1.Growth of T.monococcum in the greenhouse was accomplished as described previously [37].The oligonucleotide primers used in this work are listed in Table S1.The general molecular methods for handling nucleic acid and protein samples,PCR amplification,DNA cloning,and protein expression in bacterial cells were described previously [38].High fidelity Taq DNA polymerases were used to minimize errors in PCR amplification.

    2.2.Cloning of PMM cDNA and genomic sequences in T.monococcum

    Total RNA samples were prepared from seedling leaves using a RNeasy Plant Mini Kit (Qiagen,Düsseldorf,Germany),and were converted into cDNAs using M-MLV reverse transcriptase (Promega,Madison,USA).PMM cDNAs of T.monococcum were amplified by RT-PCR,cloned and sequenced.Genomic DNA samples were extracted from leaf materials as detailed previously [39],and were used for isolating DNA sequences of PMM genes of T.monococcum by genomic PCR.The final nucleotide sequence for each cDNA or genomic DNA coding region was constructed from sequencing information of at least three independent clones.The newly isolated PMM sequences in this work were submitted to GenBank and the accession numbers are listed in Table S2.

    2.3.Phylogenetic analysis

    Phylogenetic analysis was conducted using the Mega 5.02 program [40].Briefly,the genomic coding region of TmPMM-1 and TmPMM-2b (isolated from the T.monococcum accession TA2034,Table 1)was aligned to that of 16 Triticeae PMM genes reported previously [37] using ClustalX software,and was subsequently used for constructing phylogenetic trees by the methods of neighbor-joining and maximum parsimony.The PMM gene of Brachypodium distachyon,BdPMM[37],was used as an out-group control in the phylogenetic analysis.

    2.4.Bacterial expression and activity assay of recombinant PMM protein

    The cDNA coding region of TmPMM-2a was cloned into the bacterial expression vector pET-30a (Novagen,Darmstadt,Germany) with the aim to express a recombinant protein containing the histidine tag at the C-terminal end.Cloning was facilitated by PCR amplification using primers listed in Table S1,and the accuracy of the resultant bacterial expression construct was confirmed by DNA sequencing.The induction of TmPMM-2a expression and its subsequent purification by nickel affinity chromatography were conducted following previously described protocols [37].The PMM activity of recombinant TmPMM-2a was tested via a coupled assay,where the conversion of M1P to M6P was coupled to the reduction of NADP+to NADPH [23,24,37].The reaction was monitored through increased absorbance at 340 nm as a result of increased NADPH content.Recombinant TaPMM-D1,which was found to exhibit high PMM activity previously[37],was used as a positive control.The assay was repeated three times for both TmPMM-2a and TaPMM-D1,with highly reproducible results obtained for both proteins.

    2.5.Quantitative RT-PCR

    T.monococcum accessions were grown in the glasshouse for four weeks.For each accession,leaf samples were collected from five individual plants and pooled together for isolating total RNA samples as described above.After cDNA synthesis(see above),quantitative RT-PCR was performed in an ABI 7500 Real-time PCR system with 7500 Software v2.0.4.The PCR mixture contained 2 μL of diluted cDNA,10 μL of 2× SYBR Premix Ex Taq II (TaKaRa,Dalian,China),0.4 μL of 50 × ROX Reference Dye II,and 400 nmol L-1of the appropriate primer set(Table S1)in a final volume of 20 μL.Thermo-amplification was performed in a 96-well plate (Applied Biosystems,Carlsbad,USA) with the following parameters: 30 s at 95 °C,followed by 40 cycles of 5 s at 95 °C and 34 s at 60 °C.The specificity of the amplicon was verified by melting curve analysis (60 to 95 °C) after 40 cycles.Each assay included at least three technical replicates.The amplification of a wheat 26S rRNA gene served as the internal control for the assay[41].Two independent assays were conducted for each gene (or primer set),with nearly identical results being obtained.

    2.6.Assay of PMM activity in the leaf tissues

    For in planta PMM activity assay,leaf tissues were collected from appropriate T.monococcum accessions as described above.After grinding in liquid nitrogen,total leaf protein was extracted with buffer containing 50 mmol L-1Hepes (pH 7.1),10 mmol L-1MgCl2,5 mmol L-1dithiothreitol,1 mmol L-1EDTA,1 mmol L-1ethylene glycol-bis (β-aminoethyl ether) N,N,N′,N′-tetraacetic acid,1 mmol L-1benzamidine hydrochloride,and 0.5 mmol L-1phenylmethylsulfonyl fluoride.Cell debris was removed by centrifugation,and the supernatant was desalted using Thermo Scientific Dextran Desalting Columns (Thermo Fisher Scientific Inc.,Shanghai,China) [24].Protein concentration in each supernatant was measured using a Bio-Rad protein assay kit(Bio-Rad,Hercules,USA).An in planta PMM activity assay was set up and executed as described previously[24,37],except that the recombinant PMM protein was replaced by 40 μg total leaf protein.For each T.monococcum accession,the activity assay was repeated twice with each containing three technical replicates.The data were statistically analyzed using Tukey's multiple comparison tests in the software SPSS10 in order to compare the relative PMM activity levels in the leaf tissues of four T.monococcum accessions.

    2.7.Protein blot

    Total leaf proteins(extracted as outlined above)were separated in 10% SDS-PAGE,followed by transference to polyvinylidene fluoride membranes.Protein blot assays were made with a monoclonal antibody(PMMAb3,recognizing PMM protein from both monocot and dicot plants)as described in a previous study[23].Equal amounts of total leaf proteins(20 μg)were loaded in SDS-PAGE in order to compare the PMM protein levels in four T.monococcum accessions.The protein blot assay was repeated twice with highly similar results.

    3.Results

    3.1.Cloning and analysis of PMM genes in T.monococcum

    Using a homologous cloning approach,PMM cDNA and genomic DNA sequences were isolated from a range of T.monococcum accessions(Table 1).By comparing these sequences to previously reported PMM genes in grass species [37],we deduced that T.monococcum carried two distinct PMM genes,and their exon and intron patterns were identical to those of other Triticeae PMM genes (i.e.,HvPMM,TuPMM,TtPMM,AetPMM and TaPMM)[37].According to the phylogenetic tree constructed with PMM gDNA sequences of Triticeae species(Fig.1),PMM genes isolated in this study belonged to the PMM-1 and PMM-2 clades,and were thus named TmPMM-1 and 2,respectively.

    The cDNA sequences of TmPMM-1 from four accessions carried an intact coding region (750–756 bp from start to stop codons) (Table 1).One indel and seven SNPs were present in the coding region of TmPMM-1; the indel caused variation in the length of the short polyalanine tract in the N-terminus while the SNPs at positions 25 and 73 resulted in amino acid residue changes (Fig.S1-A).TmPMM-2 cDNA sequence was cloned from nine accessions,with a total of eight SNPs detected in its coding region (Table 1).The SNP at position 68 led to an amino acid substitution,whereas the one at position 569 converted a “tryptophan” codon(TGG) into a premature stop codon (TAG) in seven accessions (Table 1,Fig.S1-B).Thus,the TmPMM-2 coding sequence was intact (750 bp from start to stop codons) in only two of the nine accessions (TA2026 and TA2726,Table 1)examined.To facilitate further analysis,we divided TmPMM-2 alleles into two types,one carrying an intact coding region (named as TmPMM-2a) and the other being a pseudogene (TmPMM-2b).

    Fig.1-Phylogenetic analysis of PMM genes among Triticeae species.The tree was constructed based on an alignment of genomic DNA sequences of PMM genes by the neighbor joining method(with P distance and complete deletion options).Two distinct clades (indicated by PMM-1 and PMM-2) were resolved.Bootstrap values were estimated using 1000 replications.The PMM gene of B.distachyon (BdPMM,GenBank accession GQ412275) was used as an outgroup control.TmPMM-1 and TmPMM-2b (shown in bold,GenBank accessions JX559845 and JX559841,respectively) were isolated from T.monococcum accession TA2034 (Table 1).The other PMM sequences were reported previously[37].Their GenBank accession numbers are GQ412259 to GQ412264(for TaPMM-A1,A2,B1,B2,D1 and D2),GQ412265 to GQ412268(for TtPMM-A1,A2,B1 and B2),GQ412269 and GQ412270 (for TuPMM-1 and 2),GQ412271 and GQ412272 (for AetPMM-1 and 2),and GQ412273 and GQ412274(for HvPMM-1 and 2).The topology of the tree built using an alternative program(i.e.,maximum parsimony)was identical to that shown here.

    Fig.2-Purification of recombinant TmPMM-2a and its PMM activity.(A)Inducible expression and affinity purification of a histidine tagged TmPMM-2a protein in the bacterial cells examined by 10%SDS-PAGE.Compared to bacterial protein extracts not induced by isopropyl-β-D-1-thiogalactopyranoside(IPTG)(lanes 1 and 2),those treated with IPTG over-accumulated TmPMM-2a(indicated by arrowhead,lanes 3 and 4).The histidine-tagged TmPMM-2a (lanes 5 and 6,arrowed) was partially purified using nickel affinity chromatography.Protein size(kD)markers(lane M)are shown on the left side of the graph.(B)Relative PMM activity of recombinant TmPMM-2a is compared to that of TaPMM-D1(arbitrarily set as 1 to facilitate the comparison).The values shown were means ± SD calculated from three technical repeats.The dataset was typical of three separate tests.

    Fig.3-Comparative analysis of the relative transcript levels of TmPMM genes in leaf tissues of four T.monococcum accessions.Values are means ± SD of three technical repeats.The dataset was representative of two different experiments.(A)Combined transcript level of TmPMM-1 and TmPMM-2.(B)Transcript level of TmPMM-1.(C)Transcript level of TmPMM-2.

    3.2.Test of PMM activity of recombinant TmPMM-2a protein

    Following the findings above,it became necessary to test if TmPMM-2a might encode a protein with PMM activity.Towards this end,TmPMM-2a was expressed in the bacterial cells,and the resultant recombinant protein was purified(Fig.2-A).Subsequently,the recombinant TmPMM-2a was subjected to biochemical assay with TaPMM-D1 as a positive control.As shown in Fig.2-B,TmPMM-2a displayed a PMM activity level similar to that of TaPMM-D1.

    3.3.Analysis of PMM transcript levels in T.monococcum

    Based on the results presented above,two types of T.monococcum accessions were selected for analyzing PMM transcript levels in the leaf tissues.Accessions TA2026 and TA2726(Table 1)carried TmPMM-1 and TmPMM-2a,both with intact coding regions.Accessions TA2024 and TA2722 (Table 1) hosted TmPMM-1 and TmPMM-2b,with TmPMM-2b lacking coding capacity.The total TmPMM (TmPMM-1 + TmPMM-2) transcript levels in TA2026 and TA2726 leaf tissues were substantially higher than those in TA2024 and TA2722(Fig.3-A).The transcript level of TmPMM-1 did not differ among TA2722,TA2026 and TA2726,but was decreased in TA2024 (Fig.3-B).Finally,compared to TmPMM-2a,the transcript level of TmPMM-2b was drastically reduced(Fig.3-C).

    3.4.Investigation of total PMM protein and activity levels in T.monococcum

    The total PMM (TmPMM-1 + TmPMM-2) protein levels in leaf tissues of TA2024,TA2026,TA2722 and TA2726 were investigated using a monoclonal antibody that recognizes higher plant PMM proteins [23].From Fig.4-A,it is clear that PMM protein levels did not vary considerably among the four accessions.The in planta PMM activity levels of TA2722,TA2026 and TA2726 were approximately similar,whereas that of TA2024 was significantly lower(Fig.4-B).

    4.Discussion

    4.1.New information on PMM genes in T.monococcum

    In this study,we identified two TmPMM genes (TmPMM-1 and 2) in a range of T.monococcum accessions.The main characteristics of TmPMM genes are summarized as follows:1) TmPMM-1 has a functional coding region,and its deduced protein sequence is highly conserved among different T.monococcum accessions despite the some indel and SNP variations; 2) the TmPMM-2 coding region is intact in only a few T.monococcum accessions,and in many accessions is disrupted by a premature stop codon.For the TmPMM-2a allele with an intact coding sequence,the recombinant protein was biochemically active and possessed high PMM activity.Consequently,some T.monococcum accessions(about 22% of genotypes examined in this study) carry two highly active PMM members (TmPMM-1 and TmPMM-2a),whereas the majority of T.monococcum germplasm has only one active PMM gene (TmPMM-1).3) TmPMM-1 and 2 are orthologous to the PMM-1 and 2 genes of Triticeae plants,respectively.Compared to PMM genes of common wheat and barley characterized previously [37],TmPMM-1 is likely the ortholog of TaPMM-A1,TaPMM-B1,TaPMM-D1 and HvPMM-1,whereas TmPMM-2 may be orthologous to TaPMM-A2,TaPMM-B2,TaPMM-D2 and HvPMM-2.Conservation of a functional TmPMM-1 coding region in T.monococcum germplasm reinforces our previous suggestion that,in Triticeae plants,the functionality of PMM-1 genes is selectively maintained compared to that of PMM-2 members [37].On the other hand,the occurrence of non-functional alleles is probably common to Triticeae PMM-2 genes.For the PMM-2 alleles with an intact coding region,their protein may either retain PMM activity (as represented by TaPMM-D2 and TmPMM-2) or have lost such activity (such as TaPMM-B2)[37].

    Fig.4-Comparison of total PMM proteins and activity levels in leaf tissues of four T.monococcum accessions.M:markers;1:TA2024;2:TA2722;3:TA2026;4:TA2726.Total leaf proteins were extracted from accessions TA2024,TA2722,TA2026 and TA2726 and used in this series of experiments.(A)Separation of total leaf protein extracts of the four accessions in 10%SDS-PAGE(top panel)and detection of their total PMM protein levels by protein blot assay with a monoclonal antibody recognizing higher plant PMM(lower panel).Based on the size(kD)of the protein markers used,the molecular mass of TmPMM in the leaf cells was approximately 24 kD,which is close to that deduced from the cloned cDNA sequence.The dataset shown was representative of two separate experiments.(B)Relative in planta PMM activity levels in leaf tissues of the four accessions with the PMM activity of TA2722 arbitrarily set as 1 to facilitate comparison.The values displayed are means ± SD of three technical replicates.Different letters above the histograms indicate significant differences(P ≤0.05)between the means.The dataset displayed was typical of two independent experiments.

    4.2.Complex mechanisms regulating the expression and activity of PMM genes in T.monococcum

    In this work,we revealed considerable differences in total PMM transcript level,as well as those of TmPMM-1 and TmPMM-2,among different T.monococcum accessions (Fig.3).The transcript level of TmPMM-2a (with an intact coding sequence) was substantially higher than that of TmPMM-2b(a pseudogene) (Fig.3-C).Nonsense-mediated mRNA decay(NMD) might have reduced the transcript level of TmPMM-2b,because NMD has been implicated in decreased transcription of diverse pseudogenes in plant cells [42–46].On the other hand,TmPMM-2a may have contributed to the total PMM transcript level in accessions containing it,because such accessions tended to exhibit a much higher total PMM transcript level than those carrying TmPMM-2b (Fig.3-A).Surprisingly,the transcript level of TmPMM-1 was very low in one (TA2024) of the four T.monococcum accessions examined(Fig.3-B),suggesting the existence of a specific mechanism for maintaining a low TmPMM-1 transcript level in this genotype.However,the total PMM protein and activity levels in T.monococcum germplasm did not deviate as widely.This suggests the operation of complex mechanisms controlling the expression and activity of PMM genes in T.monococcum.Considering the key importance of PMM in regulating the contents of several vital cellular metabolites (e.g.,M6P,GDP-mannose,and AsA) (see Introduction),it is understandable that there are multiple mechanisms controlling the expression and activity of TmPMM genes.

    4.3.Implications for further research

    The new findings on TmPMM genes and the features of their expression and activity by this work have not only expanded our understanding of PMM genes in common wheat and related species,but also provided new clues for further study of PMM genes and their functions in Triticeae plants.Firstly,from the existence of both functional and non-functional alleles of TmPMM-2,it will be interesting to investigate if TaPMM-A2 encoded by the A genome of common wheat has a functional allele,and whether the TuPMM-2 gene of T.urartu is similar to TmPMM-2 in allelic differentiation.This type of analysis will further improve knowledge on the allelic diversity of PMM genes in Triticeae species,thus aiding the study of the mechanisms involved in molecular evolution of these genes.Secondly,from the data presented here,it is clear that T.monococcum accessions vary in number of functional PMM genes.Therefore,the next challenge will be to understand the potential consequences of this variation on growth and development of T.monococcum and its response to environmental factors.Finally,from the complex mechanisms regulating the expression and activity of TmPMM genes,it will be essential in the future to study dynamic changes in cellular contents of M6P,GDP-mannose and AsA in relation to variation in PMM protein and activity levels.This should yield a more complete elucidation of the biological function(s) of PMM in Triticeae species and may lead to appropriate strategies for using PMM in the improvement of crop plants.

    This work was supported by the Knowledge Innovation Program of Nantong(BK2012062),the National Basic Research Program of China (2009CB118302),and the National Natural Science Foundation of China (30771306).We thank wheat Genetic and Genomic Resourced Center,Kansas State University (Manhattan,KS,USA) for providing the T.monococcum accessions used in this study.

    Supplementary material

    Supplementary figure and tables to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.07.003.

    [1] S.Huang,A.Sirikhachornkit,X.Su,J.Faris,B.Gill,R.Haselkorn,P.Gornicki,Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.99(2002)8133–8138.

    [2] T.Wicker,N.Yahiaoui,R.Guyot,E.Schlagenhauf,Z.D.Liu,J.Dubcovsky,B.Keller,Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Amgenomes of wheat,Plant Cell 15(2003)1186–1197.

    [3] M.Feldman,F.G.H.Lupton,T.E.Miller,Wheats,2,Longman Scientific,London,1995.

    [4] Y.Matsuoka,Evolution of polyploid Triticum wheats under cultivation:the role of domestication,natural hybridization and allopolyploid speciation in their diversification,Plant Cell Physiol.52(2011) 750–764.

    [5] H.C.Jing,D.Kornyukhin,K.Kanyuka,S.Orford,A.Zlatska,O.P.Mitrofanova,R.Koebner,K.Hammond-Kosack,Identification of variation in adaptively important traits and genome-wide analysis of trait-marker associations in Triticum monococcum,J.Exp.Bot.58 (2007) 3749–3764.

    [6] H.C.Jing,C.Bayon,K.Kanyuka,S.Berry,P.Wenzl,E.Huttner,A.Kilian,K.E.Hammond-Kosack,DArT markers: diversity analyses,genomes comparison,mapping and integration with SSR markers in Triticum monococcum,BMC Genomics 10(2009) 458.

    [7] P.Chhuneja,K.Kumar,D.Stirnweis,S.Hurni,B.Keller,H.S.Dhaliwal,K.Singh,Identification and mapping of two powdery mildew resistance genes in Triticum boeoticum L,Theor.Appl.Genet.124 (2012) 1051–1058.

    [8] H.Xu,G.Yao,L.Xiong,L.Yang,Y.Jiang,B.Fu,W.Zhao,Z.Zhang,C.Zhang,Z.Ma,Identification and mapping of pm2026:a recessive powdery mildew resistance gene in an einkorn(Triticum monococcum L.) accession,Theor.Appl.Genet.117 (2008) 471–477.

    [9] G.Yao,J.Zhang,L.Yang,H.Xu,Y.Jiang,L.Xiong,C.Zhang,Z.Zhang,Z.Ma,M.E.Sorrells,Genetic mapping of two powdery mildew resistance genes in einkorn (Triticum monococcum L.) accessions,Theor.Appl.Genet.114 (2007)351–358.

    [10] W.Sodkiewicz,A.Strzembicka,T.Sodkiewicz,M.Majewska,Response to stripe rust (Puccinia striiformis Westend.f.sp.tritici) and its coincidence with leaf rust resistance in hexaploid introgressive triticale lines with Triticum monococcum genes,J.Appl.Genet.50(2009) 205–211.

    [11] W.J.Rogers,T.E.Miller,P.I.Payne,J.A.Seekings,E.J.Sayers,L.M.Holt,C.N.Law,Introduction to bread wheat (Triticum aestivum L.) and assessment for bread-making quality of alleles from T.boeoticum Boiss ssp.thaoudar at Glu-A1 encoding two high-molecular-weight subunits of glutenin,Euphytica 93 (1997) 19–29.

    [12] D.R.See,M.Giroux,B.S.Gill,Effect of multiple copies of puroindoline genes on grain softness,Crop Sci.44 (2004)1248–1253.

    [13] G.Tranquilli,M.Cuniberti,M.C.Gianibelli,L.Bullrich,O.R.Larroque,F.MacRitchie,J.Dubcovsky,Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality,J.Cereal Sci.36(2002) 9–18.

    [14] G.Tranquilli,J.Heaton,O.Chicaiza,J.Dubcovsky,Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture,Crop Sci.42(2002) 1812–1817.

    [15] J.D.Faris,J.P.Fellers,S.A.Brooks,B.S.Gill,A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene,Genetics 164 (2003) 311–321.

    [16] K.J.Simons,J.P.Fellers,H.N.Trick,Z.Zhang,Y.S.Tai,B.S.Gill,J.D.Faris,Molecular characterization of the major wheat domestication gene Q,Genetics 172 (2006) 547–555.

    [17] N.Stein,C.Feuillet,T.Wicker,E.Schlagenhauf,B.Keller,Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L.spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.),Proc.Natl.Acad.Sci.U.S.A.97(2000) 13436–13441.

    [18] L.Yan,A.Loukoianov,G.Tranquilli,M.Helguera,T.Fahima,J.Dubcovsky,Positional cloning of the wheat vernalization gene VRN1,Proc.Natl.Acad.Sci.U.S.A.100(2003)6263–6268.

    [19] L.Yan,A.Loukoianov,A.Blechl,G.Tranquilli,W.Ramakrishna,P.SanMiguel,J.L.Bennetzen,V.Echenique,J.Dubcovsky,The wheat VRN2 gene is a flowering repressor down-regulated by vernalization,Science 303 (2004)1640–1644.

    [20] J.Dubcovsky,J.Dvorak,Genome plasticity a key factor in the success of polyploid wheat under domestication,Science 316(2007) 1862–1866.

    [21] A.Haudry,A.Cenci,C.Ravel,T.Bataillon,D.Brunel,C.Poncet,I.Hochu,S.Poirier,S.Santoni,S.Glemin,J.David,Grinding up wheat:a massive loss of nucleotide diversity since domestication,Mol.Biol.Evol.24 (2007) 1506–1517.

    [22] A.A.Badejo,H.A.Eltelib,K.Fukunaga,Y.Fujikawa,M.Esaka,Increase in ascorbate content of transgenic tobacco plants overexpressing the acerola (Malpighia glabra)phosphomannomutase gene,Plant Cell Physiol.50(2009)423–428.

    [23] W.Qian,C.Yu,H.Qin,X.Liu,A.Zhang,I.E.Johansen,D.Wang,Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana,Plant J.49(2007) 399–413.

    [24] F.A.Hoeberichts,E.Vaeck,G.Kiddle,E.Coppens,B.van de Cotte,A.Adamantidis,S.Ormenese,C.H.Foyer,M.Zabeau,D.Inze,C.Perilleux,F.van Breusegem,M.Vuylsteke,A temperature-sensitive mutation in the Arabidopsis thaliana phosphomannomutase gene disrupts protein glycosylation and triggers cell death,J.Biol.Chem.283 (2008) 5708–5718.

    [25] F.Kepes,R.Schekman,The yeast SEC53 gene encodes phosphomannomutase,J.Biol.Chem.263 (1988) 9155–9161.

    [26] M.Aebi,T.Hennet,Congenital disorders of glycosylation:genetic model systems lead the way,Trends Cell Biol.11(2001) 136–141.

    [27] H.H.Freeze,M.Aebi,Molecular basis of carbohydratedeficient glycoprotein syndromes type I with normal phosphomannomutase activity,Biochim.Biophys.Acta 1455(1999) 167–178.

    [28] G.Matthijs,E.Schollen,E.Pardon,M.Veiga-Da-Cunha,J.Jaeken,J.J.Cassiman,E.Van Schaftingen,Mutations in PMM2,a phosphomannomutase gene on chromosome 16p13,in carbohydrate-deficient glycoprotein type I syndrome(Jaeken syndrome),Nat.Genet.16(1997) 88–92.

    [29] G.Matthijs,E.Schollen,E.Van Schaftingen,J.J.Cassiman,J.Jaeken,Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A,Am.J.Hum.Genet.62(1998) 542–550.

    [30] Z.He,Z.Duan,W.Liang,F.Chen,W.Yao,H.Liang,C.Yue,Z.Sun,F.Chen,J.Dai,Mannose selection system used for cucumber transformation,Plant Cell Rep.25(2006) 953–958.

    [31] N.Gao,J.Shang,M.A.Lehrman,Analysis of glycosylation in CDG-Ia fibroblasts by fluorophore-assisted carbohydrate electrophoresis: implications for extracellular glucose and intracellular mannose 6-phosphate,J.Biol.Chem.280 (2005)17901–17909.

    [32] N.Gao,J.Shang,D.Huynh,V.L.Manthati,C.Arias,H.P.Harding,R.J.Kaufman,I.Mohr,D.Ron,J.R.Falck,M.A.Lehrman,Mannose-6-phosphate regulates destruction of lipid-linked oligosaccharides,Mol.Biol.Cell 22(2011)2994–3009.

    [33] K.Datta,N.Baisakh,N.Oliva,L.Torrizo,E.Abrigo,J.Tan,M.Rai,S.Rehana,S.Al-Babili,P.Beyer,I.Potrykus,S.K.Datta,Bioengineered ‘golden'indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems,Plant Biotechnol.J.1(2003) 81–90.

    [34] P.Lucca,X.D.Ye,I.Potrykus,Effective selection and regeneration of transgenic rice plants with mannose as selective agent,Mol.Breed.7(2001) 43–49.

    [35] M.Wright,J.Dawson,E.Dunder,J.Suttie,J.Reed,C.Kramer,Y.Chang,R.Novitzky,H.Wang,L.Artim-Moore,Efficient biolistic transformation of maize (Zea mays L.) and wheat(Triticum aestivum L.) using the phosphomannose isomerase gene,pmi,as the selectable marker,Plant Cell Rep.20(2001)429–436.

    [36] K.Cromphout,W.Vleugels,L.Heykants,E.Schollen,L.Keldermans,R.Sciot,R.D'Hooge,P.P.De Deyn,K.von Figura,D.Hartmann,C.Korner,G.Matthijs,The normal phenotype of Pmm1-deficient mice suggests that Pmm1 is not essential for normal mouse development,Mol.Cell.Biol.26 (2006)5621–5635.

    [37] C.Yu,Y.Li,B.Li,X.Liu,L.Hao,J.Chen,W.Qian,S.Li,G.Wang,S.Bai,H.Ye,H.Qin,Q.Shen,L.Chen,A.Zhang,D.Wang,Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues,BMC Plant Biol.10(2010) 214.

    [38] J.Sambrook,R.W.Russell,Molecular Cloning: A Laboratory Manual,Cold Spring Harbor Laboratory Press,New York,2001.

    [39] M.A.Saghai-Maroof,K.M.Soliman,R.A.Jorgensen,R.W.Allard,Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance,chromosomal location,and population dynamics,Proc.Natl.Acad.Sci.U.S.A.81(1984)8014–8018.

    [40] K.Tamura,D.Peterson,N.Peterson,G.Stecher,M.Nei,S.Kumar,MEGA5: molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods,Mol.Biol.Evol.28(2011)2731–2739.

    [41] M.A.Ali-Benali,R.Alary,P.Joudrier,M.F.Gautier,Comparative expression of five Lea genes during wheat seed development and in response to abiotic stresses by real-time quantitative RT-PCR,Biochim.Biophys.Acta 1730 (2005)56–65.

    [42] M.Isshiki,Y.Yamamoto,H.Satoh,K.Shimamoto,Nonsensemediated decay of mutant waxy mRNA in rice,Plant Physiol.125 (2001) 1388–1395.

    [43] E.Botticella,F.Sestili,A.Hernandez-Lopez,A.Phillips,D.Lafiandra,High resolution melting analysis for the detection of EMS induced mutations in wheat SBEIIa genes,BMC Plant Biol.11(2011) 156.

    [44] K.Hori,Y.Watanabe,Context analysis of termination codons in mRNA that are recognized by plant NMD,Plant Cell Physiol.48(2007) 1072–1078.

    [45] S.Kertesz,Z.Kerenyi,Z.Merai,I.Bartos,T.Palfy,E.Barta,D.Silhavy,Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants,Nucleic Acids Res.34(2006) 6147–6157.

    [46] M.Kalyna,C.G.Simpson,N.H.Syed,D.Lewandowska,Y.Marquez,B.Kusenda,J.Marshall,J.Fuller,L.Cardle,J.McNicol,H.Q.Dinh,A.Barta,J.W.Brown,Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis,Nucleic Acids Res.40(2012) 2454–2469.

    能在线免费观看的黄片| 精品福利观看| 婷婷亚洲欧美| 欧美日韩国产亚洲二区| 赤兔流量卡办理| 国产亚洲精品综合一区在线观看| 日日摸夜夜添夜夜添av毛片 | www日本黄色视频网| 九九久久精品国产亚洲av麻豆| 亚洲一级一片aⅴ在线观看| 琪琪午夜伦伦电影理论片6080| 国产黄色小视频在线观看| av女优亚洲男人天堂| 国产v大片淫在线免费观看| 极品教师在线视频| 真实男女啪啪啪动态图| 看片在线看免费视频| 小蜜桃在线观看免费完整版高清| 悠悠久久av| 深夜精品福利| 国产一区二区亚洲精品在线观看| 国产一区二区亚洲精品在线观看| 淫秽高清视频在线观看| 欧美成人性av电影在线观看| 俺也久久电影网| 在线免费十八禁| 国产精品久久久久久久久免| 午夜福利成人在线免费观看| 久久久久国产精品人妻aⅴ院| av在线观看视频网站免费| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看 | av天堂在线播放| 国产精品日韩av在线免费观看| 国产精品嫩草影院av在线观看 | 久久精品久久久久久噜噜老黄 | 免费观看在线日韩| 最好的美女福利视频网| 高清在线国产一区| 日本免费a在线| 亚洲最大成人av| 国产淫片久久久久久久久| 天堂影院成人在线观看| 变态另类成人亚洲欧美熟女| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 十八禁国产超污无遮挡网站| 我的老师免费观看完整版| 88av欧美| 无人区码免费观看不卡| 内射极品少妇av片p| 无遮挡黄片免费观看| 日韩欧美免费精品| 久久久国产成人精品二区| 亚洲无线观看免费| 最好的美女福利视频网| 亚洲黑人精品在线| 国产aⅴ精品一区二区三区波| av福利片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲真实伦在线观看| 我要看日韩黄色一级片| 99久国产av精品| 黄色配什么色好看| 我的女老师完整版在线观看| 97热精品久久久久久| 高清在线国产一区| 欧美三级亚洲精品| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| av天堂在线播放| 美女xxoo啪啪120秒动态图| 国内精品久久久久久久电影| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久久亚洲 | 在线观看舔阴道视频| 最好的美女福利视频网| 少妇猛男粗大的猛烈进出视频 | 啦啦啦啦在线视频资源| 白带黄色成豆腐渣| 色综合亚洲欧美另类图片| 欧美xxxx黑人xx丫x性爽| 高清在线国产一区| 国产女主播在线喷水免费视频网站 | 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 国产精品野战在线观看| 亚洲国产精品sss在线观看| 国产伦人伦偷精品视频| 在线播放国产精品三级| 两个人的视频大全免费| 美女xxoo啪啪120秒动态图| 久久久国产成人精品二区| 黄色配什么色好看| 波多野结衣高清作品| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 少妇丰满av| 性插视频无遮挡在线免费观看| 久久精品国产鲁丝片午夜精品 | 国产成人av教育| 欧美高清成人免费视频www| 人人妻人人澡欧美一区二区| 亚洲五月天丁香| 乱码一卡2卡4卡精品| 日本黄大片高清| 成年女人永久免费观看视频| 99久国产av精品| 色综合色国产| 午夜福利在线在线| 精品久久久久久久久亚洲 | 精品人妻一区二区三区麻豆 | 国产aⅴ精品一区二区三区波| 特级一级黄色大片| 亚洲一区二区三区色噜噜| 成人国产麻豆网| 中文字幕熟女人妻在线| 国产亚洲av嫩草精品影院| 中出人妻视频一区二区| 久久久久久久久中文| 久久久久久久精品吃奶| 久久精品国产鲁丝片午夜精品 | 99热这里只有是精品在线观看| 国产免费男女视频| 国内揄拍国产精品人妻在线| 久久久久国内视频| 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| www日本黄色视频网| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| 中文字幕av在线有码专区| 成人特级黄色片久久久久久久| 草草在线视频免费看| 91在线精品国自产拍蜜月| 国产单亲对白刺激| 91狼人影院| 亚洲成人中文字幕在线播放| 精品久久国产蜜桃| 中国美女看黄片| 国产精品永久免费网站| 国产精品乱码一区二三区的特点| 久久热精品热| 十八禁网站免费在线| 久久国内精品自在自线图片| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 国产精品无大码| 男女之事视频高清在线观看| 久久精品国产亚洲网站| 免费观看精品视频网站| 人妻制服诱惑在线中文字幕| 色哟哟哟哟哟哟| 一进一出好大好爽视频| 亚洲七黄色美女视频| 韩国av在线不卡| 美女被艹到高潮喷水动态| 国产一区二区三区视频了| 免费av毛片视频| 亚洲aⅴ乱码一区二区在线播放| 性欧美人与动物交配| 天堂av国产一区二区熟女人妻| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| АⅤ资源中文在线天堂| 夜夜爽天天搞| 久久久国产成人精品二区| 18+在线观看网站| 两个人的视频大全免费| 日韩欧美三级三区| 欧美xxxx黑人xx丫x性爽| 欧洲精品卡2卡3卡4卡5卡区| 两性午夜刺激爽爽歪歪视频在线观看| 成人国产麻豆网| 真人一进一出gif抽搐免费| 亚洲精华国产精华液的使用体验 | 日韩一区二区视频免费看| 日本黄大片高清| 搡老岳熟女国产| 国产精品三级大全| av女优亚洲男人天堂| 国产激情偷乱视频一区二区| 12—13女人毛片做爰片一| 欧美黑人欧美精品刺激| 一区二区三区免费毛片| 如何舔出高潮| 不卡视频在线观看欧美| 午夜影院日韩av| 最近视频中文字幕2019在线8| 国产精华一区二区三区| 成年女人毛片免费观看观看9| 欧美日本视频| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇中文字幕五十中出| 欧美激情在线99| 免费在线观看成人毛片| 麻豆一二三区av精品| 一区二区三区高清视频在线| 国产高清激情床上av| 免费人成视频x8x8入口观看| 一级av片app| 精品一区二区三区视频在线观看免费| 日日干狠狠操夜夜爽| 久久国产精品人妻蜜桃| 3wmmmm亚洲av在线观看| 少妇人妻精品综合一区二区 | 国内精品宾馆在线| 99久国产av精品| 91狼人影院| av在线观看视频网站免费| 18禁在线播放成人免费| 韩国av在线不卡| 麻豆一二三区av精品| 此物有八面人人有两片| 一本久久中文字幕| 国产毛片a区久久久久| 亚洲av免费在线观看| 最新在线观看一区二区三区| 精品一区二区三区人妻视频| 97超视频在线观看视频| 亚洲一级一片aⅴ在线观看| 午夜精品久久久久久毛片777| 亚洲av中文字字幕乱码综合| 欧美三级亚洲精品| 国产精品,欧美在线| 久久久久九九精品影院| 观看免费一级毛片| 日韩中文字幕欧美一区二区| 久久久久久伊人网av| 久久午夜亚洲精品久久| 白带黄色成豆腐渣| АⅤ资源中文在线天堂| 国内精品久久久久久久电影| 日日摸夜夜添夜夜添av毛片 | 午夜精品在线福利| 99热这里只有是精品50| 不卡一级毛片| АⅤ资源中文在线天堂| 精品无人区乱码1区二区| 欧美日韩国产亚洲二区| 成人国产麻豆网| 一本久久中文字幕| 国产探花在线观看一区二区| 国产爱豆传媒在线观看| a级毛片a级免费在线| 麻豆精品久久久久久蜜桃| 亚洲,欧美,日韩| 精华霜和精华液先用哪个| 色播亚洲综合网| av黄色大香蕉| 国产精品一区二区性色av| 丝袜美腿在线中文| 特级一级黄色大片| 嫩草影院精品99| 99热这里只有是精品50| 99热网站在线观看| 亚洲久久久久久中文字幕| 99国产极品粉嫩在线观看| 免费观看的影片在线观看| 少妇熟女aⅴ在线视频| 床上黄色一级片| 直男gayav资源| 亚洲自拍偷在线| 能在线免费观看的黄片| 三级国产精品欧美在线观看| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 啪啪无遮挡十八禁网站| 久久精品国产亚洲av涩爱 | 免费电影在线观看免费观看| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 在线免费观看的www视频| 如何舔出高潮| 美女大奶头视频| 18禁黄网站禁片午夜丰满| 女同久久另类99精品国产91| 毛片一级片免费看久久久久 | 国产av不卡久久| 久久精品国产鲁丝片午夜精品 | 国产色爽女视频免费观看| 欧美日韩精品成人综合77777| 国产真实乱freesex| 欧美日韩综合久久久久久 | 午夜免费男女啪啪视频观看 | 午夜精品久久久久久毛片777| 免费av不卡在线播放| 少妇裸体淫交视频免费看高清| 大又大粗又爽又黄少妇毛片口| 国产精品av视频在线免费观看| 国产亚洲欧美98| 99久久久亚洲精品蜜臀av| 日韩欧美精品免费久久| 黄色日韩在线| 亚洲五月天丁香| 日本熟妇午夜| 亚洲av第一区精品v没综合| 18+在线观看网站| 哪里可以看免费的av片| 亚洲人成网站高清观看| 亚州av有码| 国产av一区在线观看免费| 3wmmmm亚洲av在线观看| 国产精品久久久久久久久免| 搡老岳熟女国产| 日本撒尿小便嘘嘘汇集6| 免费在线观看影片大全网站| 亚洲欧美日韩高清专用| 不卡一级毛片| 日韩亚洲欧美综合| 成年女人看的毛片在线观看| 久久国内精品自在自线图片| 国产午夜福利久久久久久| 亚洲五月天丁香| 欧美精品啪啪一区二区三区| 岛国在线免费视频观看| 日本熟妇午夜| 国产精品女同一区二区软件 | av视频在线观看入口| 欧美日本视频| 国内毛片毛片毛片毛片毛片| 欧美+日韩+精品| 我要看日韩黄色一级片| 亚洲无线观看免费| 免费观看人在逋| 91在线观看av| 欧美一区二区亚洲| 国产午夜精品论理片| 亚洲无线在线观看| 国产在线男女| a级毛片a级免费在线| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 联通29元200g的流量卡| 久久人人爽人人爽人人片va| 欧美最黄视频在线播放免费| 有码 亚洲区| 国产在线精品亚洲第一网站| 十八禁网站免费在线| 国产精品一区二区免费欧美| 亚洲18禁久久av| 日本一本二区三区精品| 国产男人的电影天堂91| 免费观看精品视频网站| 国产精品三级大全| 人人妻人人看人人澡| 麻豆国产97在线/欧美| 精品一区二区三区av网在线观看| 97超视频在线观看视频| 人妻丰满熟妇av一区二区三区| 国产精品,欧美在线| 午夜久久久久精精品| 国产伦精品一区二区三区视频9| 欧美成人免费av一区二区三区| 搡老岳熟女国产| 一级av片app| 国产 一区精品| 国产精品伦人一区二区| 在线观看一区二区三区| 国产av一区在线观看免费| 久久99热这里只有精品18| 直男gayav资源| 国产伦精品一区二区三区视频9| 国产久久久一区二区三区| 日韩精品有码人妻一区| 一边摸一边抽搐一进一小说| 级片在线观看| 日韩,欧美,国产一区二区三区 | 国产精品日韩av在线免费观看| 亚洲精品粉嫩美女一区| 欧美日韩亚洲国产一区二区在线观看| 波野结衣二区三区在线| 成人午夜高清在线视频| 国产激情偷乱视频一区二区| 波多野结衣高清作品| 日韩欧美国产在线观看| eeuss影院久久| 国产视频内射| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 18+在线观看网站| 国产一区二区在线av高清观看| 直男gayav资源| 少妇人妻一区二区三区视频| 国产成人影院久久av| 欧美不卡视频在线免费观看| 搡女人真爽免费视频火全软件 | 九九热线精品视视频播放| 亚洲欧美日韩高清在线视频| 搡女人真爽免费视频火全软件 | 男人的好看免费观看在线视频| 日韩国内少妇激情av| 国产精品三级大全| 国产 一区 欧美 日韩| 国产一区二区三区av在线 | 成人国产麻豆网| 欧美xxxx性猛交bbbb| 熟女电影av网| 国产高清有码在线观看视频| 窝窝影院91人妻| 亚洲av.av天堂| 国产精品久久久久久久久免| 中文字幕av成人在线电影| 久久九九热精品免费| 我的老师免费观看完整版| 午夜爱爱视频在线播放| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 一进一出好大好爽视频| 免费在线观看日本一区| 最近视频中文字幕2019在线8| 伦精品一区二区三区| а√天堂www在线а√下载| 免费无遮挡裸体视频| а√天堂www在线а√下载| 韩国av一区二区三区四区| 亚洲熟妇熟女久久| 又爽又黄a免费视频| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 国产免费男女视频| or卡值多少钱| 日日夜夜操网爽| 免费av毛片视频| 99热这里只有精品一区| 亚洲真实伦在线观看| 成人午夜高清在线视频| 久久久国产成人免费| 婷婷精品国产亚洲av| 可以在线观看的亚洲视频| 国产视频一区二区在线看| ponron亚洲| 日日摸夜夜添夜夜添小说| 久久久久久久久大av| 欧美国产日韩亚洲一区| 色在线成人网| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 久久久久九九精品影院| 国产高清不卡午夜福利| 色精品久久人妻99蜜桃| 色5月婷婷丁香| 哪里可以看免费的av片| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看 | 亚洲人成网站在线播放欧美日韩| 久久6这里有精品| 伦精品一区二区三区| 综合色av麻豆| 欧美一级a爱片免费观看看| 香蕉av资源在线| 校园春色视频在线观看| 中亚洲国语对白在线视频| 国产激情偷乱视频一区二区| 亚洲自偷自拍三级| 一本精品99久久精品77| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看| 日韩中字成人| 久久久国产成人精品二区| 男人舔奶头视频| 午夜精品久久久久久毛片777| 在线天堂最新版资源| 亚洲精华国产精华精| 亚洲欧美日韩东京热| 中文字幕熟女人妻在线| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 两个人的视频大全免费| 一级av片app| 一进一出好大好爽视频| 精品久久久久久久人妻蜜臀av| 国产伦人伦偷精品视频| 日韩中文字幕欧美一区二区| x7x7x7水蜜桃| 热99在线观看视频| 窝窝影院91人妻| 一个人免费在线观看电影| 麻豆成人av在线观看| 国产欧美日韩一区二区精品| 日韩欧美精品v在线| 又爽又黄a免费视频| 国产精品三级大全| 欧美激情久久久久久爽电影| 毛片女人毛片| 午夜免费成人在线视频| 高清在线国产一区| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 亚洲最大成人手机在线| 久久人人精品亚洲av| 尤物成人国产欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 免费看光身美女| 春色校园在线视频观看| 亚洲真实伦在线观看| 别揉我奶头 嗯啊视频| 天堂√8在线中文| 搞女人的毛片| 亚洲最大成人手机在线| 国产午夜精品久久久久久一区二区三区 | 禁无遮挡网站| 欧美日本亚洲视频在线播放| 日韩欧美国产在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲专区国产一区二区| 午夜激情福利司机影院| 黄色女人牲交| 在线国产一区二区在线| 中国美女看黄片| 亚洲精品亚洲一区二区| 久久精品国产亚洲av天美| 有码 亚洲区| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 91av网一区二区| 亚洲在线自拍视频| 少妇裸体淫交视频免费看高清| 全区人妻精品视频| 久久99热6这里只有精品| 亚洲av.av天堂| 国产亚洲精品av在线| 一边摸一边抽搐一进一小说| av天堂在线播放| 国国产精品蜜臀av免费| 伊人久久精品亚洲午夜| 国产精品嫩草影院av在线观看 | 18禁黄网站禁片午夜丰满| 男人舔女人下体高潮全视频| 日韩一区二区视频免费看| 丝袜美腿在线中文| 国产乱人视频| 国产久久久一区二区三区| 欧美性猛交黑人性爽| 免费无遮挡裸体视频| 欧美xxxx性猛交bbbb| 久久婷婷人人爽人人干人人爱| 中文字幕高清在线视频| 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 亚洲人成网站高清观看| 69人妻影院| 身体一侧抽搐| 成人亚洲精品av一区二区| 亚洲内射少妇av| 欧美激情久久久久久爽电影| 乱系列少妇在线播放| 国产高清激情床上av| 看黄色毛片网站| 亚洲五月天丁香| 久久久午夜欧美精品| 高清在线国产一区| 99九九线精品视频在线观看视频| av.在线天堂| 欧美3d第一页| 国产精品人妻久久久影院| 亚洲最大成人中文| 国产精品美女特级片免费视频播放器| 国产主播在线观看一区二区| 在线国产一区二区在线| 桃红色精品国产亚洲av| 一级a爱片免费观看的视频| 亚洲在线观看片| а√天堂www在线а√下载| 国产高清视频在线播放一区| 亚洲精品乱码久久久v下载方式| a级毛片a级免费在线| 国产熟女欧美一区二区| 老司机午夜福利在线观看视频| 哪里可以看免费的av片| 国产精品98久久久久久宅男小说| xxxwww97欧美| 国产精品一区二区三区四区久久| 婷婷亚洲欧美| 免费在线观看成人毛片| 亚洲自偷自拍三级| 99久久九九国产精品国产免费| 在线免费观看不下载黄p国产 | 在线播放无遮挡| 禁无遮挡网站| 少妇丰满av| 亚洲精华国产精华液的使用体验 | 天天躁日日操中文字幕| 日本五十路高清| 亚洲av成人精品一区久久| 一区二区三区四区激情视频 | 国产一级毛片七仙女欲春2| 蜜桃亚洲精品一区二区三区| 男女边吃奶边做爰视频| 女同久久另类99精品国产91| 老司机午夜福利在线观看视频| 成年女人永久免费观看视频| 欧美日韩综合久久久久久 | 久久欧美精品欧美久久欧美| 国产色爽女视频免费观看| av视频在线观看入口| 国产精品久久久久久亚洲av鲁大| 国产在线精品亚洲第一网站| 欧美在线一区亚洲| 日日啪夜夜撸| 久久久久久久亚洲中文字幕| 欧美zozozo另类| 国产av在哪里看| 国产探花在线观看一区二区| 中国美女看黄片| 97人妻精品一区二区三区麻豆| 成人一区二区视频在线观看| videossex国产| 精华霜和精华液先用哪个| 午夜免费男女啪啪视频观看 | 啦啦啦韩国在线观看视频| 中国美女看黄片|