• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applications of Smart Grid Big Data Analytics

    2015-03-11 06:55:37GAOFengLIUGuangyiSAUNDERSChrisZHUWendongTANChinwooYUYang
    電力建設(shè) 2015年10期
    關(guān)鍵詞:用電量工程師電能

    GAO Feng , LIU Guangyi , SAUNDERS Chris ,ZHU Wendong , TAN Chin-woo , YU Yang

    (1.Smart Grid Research Institute North America Inc., Santa Clara, CA 95054;2. China Electric Power Research Institute, Beijing 100192, China; 3. Stanford University,Palo Alto 94305)

    ?

    Applications of Smart Grid Big Data Analytics

    GAO Feng1, LIU Guangyi2, SAUNDERS Chris1,ZHU Wendong1, TAN Chin-woo3, YU Yang3

    (1.Smart Grid Research Institute North America Inc., Santa Clara, CA 95054;2. China Electric Power Research Institute, Beijing 100192, China; 3. Stanford University,Palo Alto 94305)

    With the rapid progress in information technology, a novel concept—“Energy Internet”, that concentrates on the coordination and optimization of multi-type energy flows via advanced communication and internet technology, has received a lot of attention. The result of such an inevitable trend is that a fundamental technique—Big Data Analytics—must be developed to handle massive influx of data from multiple heterogeneous sources, as well as utilize the data to swiftly derive an economic value. The paper gives an overview on research works conducted at SGRI North America big data lab with highlights on hardware configuration and software deployment of the cluster environment. The paper reviews several ongoing research topics performed in the lab with an emphasis on customer segmentation and response targeting (collaboration with Stanford University); and energy disaggregation. These works are built on an integrated power system data model that is supported by open source technology. Preliminary results show that our research will benefit both utility companies and customers.

    Big Data Analytics; mixed-integer programming; customer segmentation and targeting; energy disaggregation

    0 Introduction

    With the rapid progress in information technology, a novel concept-“Energy Internet”, that extends “Smart Grid” to concentrate on the coordination and optimization of multi-type energy flows via advanced communication and Internet technology, has received a lot of attention. The deployment of a massive amount of distributed, intelligent, cost-effective sensors, controllers, meters, and processors within the value chain of energy system forms the foundation for “Energy Internet”. The result of such an inevitable trend is that a fundamental technique must be developed that can handle massive influx of data from multiple heterogeneous sources, as well as utilize the data to swiftly derive an economical value. Big data analytics, as a process of examining large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful business information, has consequently increased its popularity.[1]

    The utility industry is facing unprecedented challenges caused by extremely high volume and high frequency measurement data. According to the Navigant Research Report, the estimated installed base of smart meters worldwide will surpass 1.1 billion by 2022.[2]Advanced Metering Infrastructure (AMI) typically collects electricity usage data in the range of 15 minutes to 1 hour. This is up to a three thousand fold increase in the amount of data utilities would have processed in the past.[3]Meanwhile, synchrophasor is being deployed around the global that collects a large volume of low-latency, real-time streaming measurement data. Phasor Measure Unit (PMU) can measure AC waveforms (voltages and currents) typically at a rate of 48 samples per cycle (2 880 samples per second for 60 Hz systems)[4]. Just one Phasor Data Concentrator (PDC) collecting data from 100 PMUs of 20 measurements each at 30 Hz sampling rate generates over 50 GB of data one day.[5]

    Big data analytics provides a suite of techniques for the utility industry that are deemed to resolve these challenges. The in-memory calculation engine and parallel computing framework, Hadoop/MapReduce and Spark, are ready for handling an extremely large scale of dataset; on the other hand, the stream processing engine, Storm, Streams, and Spark Streaming, are built to analyze data in motion and act on information as it is happening.

    Consequently, big data analytics could be applied to improve both power system short-term operations and long-term planning processes. The promising applications for big data analytics include detection of energy theft, strategic adoption for electric vehicle and rooftop solar integration, fine granularity load forecast and renewable generation forecast, distribution system topology identification, online asset risk assessment, distribution system voltage and var optimization, customer segmentation & targeting, and revenue protection etc.[3]

    The paper gives an overview on research works conducted in SGRI North America big data lab with highlights on hardware configuration and software deployment of the cluster environment. The paper reviews several ongoing research topics performed in the lab, for example: a conceptual design of data structure and computing architecture for smart grid, customer segmentation and response targeting (collaboration with Stanford University), and energy disaggregation. These works are built on an integrated power system data model that is supported by open source technology. Preliminary results show that our research will benefit both utility companies and customers.

    1 Big Data Laboratory for Power Application

    The SGRI North America big data lab was funded by SGRI North America Inc., and the construction will be finished by the end of 2015. The lab will serve as an integrated development environment and testing bed for data integration, data management and advanced optimization, data mining, and data analytics. The lab is composed of Hadoop cluster environment, data extract/transform/load platform, data mining & exploration platform, and data analysis platform, with two hundred terabyte initial processing power and extensible capacity.

    The lab is equipped with fourteen high performance computing facilities and state-of-the-art apache Hadoop packages. Fig. 1 gives an overview of system architecture for the lab. Specific hardware and software configurations are shown as below:

    ·The lab is equipped with eight 4-U 4-Socket servers, six 2-U 2-Socket servers, and one 2600T storage server.

    ·The lab intranet consists of one 10 G switch, two 1 G switches, and one fiber switch. Firewall and wireless access point technology are deployed to assure cyber security.

    ·The lab deploys enterprise-grade big data platform—BigInsights/Open Data Platform. The platform integrates Apache open source components: Hadoop/MapReduce, Yarn, Spark, Hive, HBase, and big data analysis tools: BigSQL, BigSheet, and Text Analytics.

    ·The lab deploys real-time big data analytic tool— Streams, to provide integration and analysis services for streaming data.

    ·The lab deploys large-scale optimization and decision analysis package-ILOG CPLEX to address multi-dimensional optimization, decision, pricing and resource allocation problems for “Energy Internet”.

    ·The lab deploys business intelligence package to serve as an integrated environment for managing structural data and performing multi-dimensional analysis.

    ·The lab deploys open source programming language R that provides a complete set of data processing, statistical analysis, computation, and visualization tools.

    圖1 大數(shù)據(jù)實(shí)驗(yàn)室系統(tǒng)架構(gòu)Fig.1 System architecture for big data lab

    In the lab, the research and development works are performed on an end-to-end platform for addressing the needs of the future “Smart Grid” and “Energy Internet”. A holistic solution including data processing, storage, analytics, and visualization technologies used in this lab enable rapid insights and informed decision making for meeting the business demands of a power system where distributed renewable generation, continuous metering and system monitoring, and frequent customer interaction are a reality. Fig. 2 illustrates software packages and workflow deployed in big data lab.

    2 Demonstration of Research Works

    2.1 Conceptual Design for Hierarchic Smart Grid Big Data Analytics Platform

    The lack of a unified data model blocks the efficient data integration and module deployment for smart grid big data analytics platform. Our research teases out five rules and three criteria (shown in Fig. 3) for building a platform designed to comprehensively enable resilient features of smart grid big data.[6]

    We propose a conceptual framework to enable situational awareness and control capabilities within a smart grid, by establishing a unified structural hierarchy which simultaneously yields an organizational pattern for the storage, processing, analytics, and control of a smart grid.[7]

    ·Comprehensive: store, process and communicate all available information and integrate all available tools and interfaces.

    ·Adaptive and dynamic: adaptively organized, dynamically innovated, and function-based structured to support all kinds of process and analytics.

    圖2 大數(shù)據(jù)實(shí)驗(yàn)室軟件配置與流程圖Fig.2 Software packages and workflow for big data lab

    圖3 智能電網(wǎng)大數(shù)據(jù)平臺(tái)建設(shè)標(biāo)準(zhǔn)Fig.3 Rules and criteria for smart grid big data platform

    ·Distributed and multi-layered: multi-layered and each component are equipped with an intelligent “brain”. Only necessary data and information are communicated in-between.

    We propose a Spark Streaming-based Real-Time Complex Event Processing framework for the smart grid (shown in Fig. 4). A number of commercial and open source events processing software are available for building complex event processing applications. Apache Spark is a fast and general engine for large-scale data processing[8]. It is a unified platform combining Spark SQL, Spark Streaming, and ML-Lib for machine learning and GraphX. Spark now boasts the ability to not only process streams of data at scale, but to “query” that data at scale using SQL-like syntax.[9]

    圖4 復(fù)雜事件處理架構(gòu)Fig.4 Complex event processing system architecture

    2.2 Customer Segmentation and Response Targeting (Collaboration with Stanford University)

    圖5 大數(shù)據(jù)解析應(yīng)用流程圖Fig.5 Advanced big data analytics workflow for power application

    We design a workflow for potential Big Data Applications that include segmentation, targeting, and disaggregation etc. (shown in Fig. 5). Segmentation based on consumption behavior benefits both utilities and customers. The primary benefit for utilities is to achieve higher returns in demand response programs as well as equipping decision makers with information to advance resource allocation, pricing, and program development. Segmentation also provides time of day consumption, daily usage pattern stability over time, as well as actual volume of energy use that would potentially drive customers to improve home energy efficiency.

    Traditional segmentation method is based on customer self-report and survey data, without leveraging real electricity consumption measurement. The widespread deployment of smart meters creates opportunities for segmentation strategies based on 15 min, 30 min or hourly household energy use. Collaborating with Stanford University, we integrate segmentation package with commercial database and implement a novel browser-server based analysis platform. The segmentation method is called adaptiveK-means with a customized threshold to construct a shape dictionary[10]. The algorithm starts by a set of initialized cluster centers utilizing a standardK-means algorithm, with an initialK=k0. AdaptiveK-means then adds additional cluster centers, whenever a load shapes(t) in the dataset violates the mean squared error threshold condition as shown in (1):

    (1)

    where:

    s(t):loadshape;

    Ci*(t)(t):representativeloadshape;

    θ:clusterthreshold.

    Thestepsofthealgorithmarehighlightedasbelow.Thedetailedexplanationisinreference[10].

    ·Calculatingdailytotalconsumptioncharacterizationanditsprobabilitydistribution;

    ·Encodingsystembasedonapre-processedloadshapedictionary;

    ·ApplyingadaptiveK-means on normalized data;

    ·Performing hierarchical clustering.

    The drive towards more green energy has enabled signicant growth of renewable generation. Demand response (DR) has become an efficient practice to address the intermittence issues caused by deep penetration of renewable generation. It becomes important to be able to target the right customers among a large population to keep DR enrollment cost low. The availability of high resolution smart meter information can signicantly reshape such a targeting schema.

    We collaborate with Stanford University and integrate targeting package into the analysis platform. Since an enrollment decision is made in advance of the actual consumption period, only a prediction of the DR potential is available. The prediction can be estimated by analyzing the historical high resolution consumption data for each customer. Given a prediction of DR potential being a random variable, the targeting package chooses sufficient number of customers to balance the magnitude of demand response potential, and the uncertainty in the prediction.[11]

    Assume the utility desires to enroll up toNcustomers from a population ofKindividuals, aiming to achieve at leastTkWh of energy savings with high probability. The targeting problem can be stated as:

    The goal is to maximize the likelihood of saving at leastTkWh, given that we are limited to selecting at mostNcustomers amongKcandidates. In general, this is a stochastic knapsack formation and belongs to the family ofNP-hard problems.

    (2)

    where:

    rk:energysavingresponseofcustomerk;

    xk:decisionvariableforselectionofcustomerk.

    We re-visit the problem from a different angle. Assume that the utility desires to achieve at leastTkWh of energy savings with probabilityP0, aiming to enroll the least number of consumers to keep the cost low.

    We figure out a schema to transform the problem into a deterministic formulation with its relaxation being a Second Order Conic Programming (SOCP), a special case of Convex Programming. In this case, the problem becomes a little easier to conquer. Several commercial and academic optimization packages would provide SOCP solvers, for example: CPLEX and GUROBI etc.

    (3)

    where:

    rk:energysavingresponseofcustomerk;

    xk:decisionvariableforselectionofcustomerk;

    Σ:covariancematrixofenergysavingresponse;

    P0:probabilitythresholdoftargetingproblem;

    Φ:cumulativedistributionfunctionofstandardnormaldistribution.

    2.3EnergyDisaggregation

    Segmentationandtargetingaretypicallybasedonhouseholdaggregateconsumptiondata.However,energydisaggregation,alsoknownasnonintrusiveloadmonitoring(NILM),isthetaskofseparatingaggregatedataforacustomerintotheenergydataforindividualappliances.Studieshaveshownthatsimplyprovidingdisaggregateddatatotheconsumerimprovesenergyconsumptionbehavior.[12]

    Energydisaggregationhasbeenstudiedmorethan30years.Theliteraturecanbeclassifiedintotwomainareas:supervisedandunsupervisedmethods.Superviseddisaggregationmethodsrequireadisaggregateddatasetfortraining.Unsupervisedmethodsdonotrequireadisaggregateddatasettobecollected.However,theydorequirehandtuningofparameters.Theexistingsupervisedmethodsincludesparsecoding[ 1 3],changedetectionandclusteringbasedapproaches[14-15]andpatternrecognition[ 16].TheexistingunsupervisedmethodsincludefactorialhiddenMarkovmodels,differenceMarkovmodelsandvariantsandtemporalmotifmining.Weproposeasupervisedmethodbuiltonamixed-integerprogramming(MIP)formulationthatcanachievehighperformancewithstate-of-the-artbranch-and-cutalgorithm.

    Typically,powerconsumptionforaparticularappliancecanbemodelledasmonotonicnon-decreasingcurvewithrespecttoitscontrolinputsthatcouldbeeithercontinuousordiscrete.Forexample,stoveorheatertypicallycanoperateatcontinuestemperaturesettings;andwasherordryercanoperateatdiscreteloadinglevels.Fig. 6illustratesanexemplarconsumptioncurveforanappliancewithrespecttoitscontrolinputs.Apiecewiselinearcurveisusedtoapproximatetheconsumptioncharacteristics.

    WeproposeaMIPmodeltooptimizetheconsumptionerrorresidualsoverthetimehorizon.Meanwhile,eachapplianceisconstrainedbyitscharacteristics.Additionally,wecanmodelmore“l(fā)ogic”constraintsfordevices,forexample,typicallyitisnottruetoturnonorturnoffastoveorheateratahighfrequentrate.Thedeviceswouldratherstayat“on”or“off”statusduringapre-definedtimeperiodinreality.Theseadditional“l(fā)ogic”constraintscanbeeasilyimplementedwithinaMIPmodel.

    圖6 設(shè)備用電特性曲線Fig.6 An example of device consumption curve

    The objective function of the MIP model is to minimize error residues for the power consumption over the time. Equation (4) describes device’s power consumption must be within high and low limits. Equation (5)~(7) are an “efficient” implementation for “l(fā)ogic” requirement that device has to stay at the same state for a certain time period after switching status. These constraints define the most compact relaxation area called “Convex Hull” for a MIP model that will speed up the overall performance. Fig. 7 illustrates several different MIP formulationsv.s. Convex Hull formulation. More discussion on efficient formulation for MIP model can be found in reference.[17]Equation (8) defines devicei’s power consumption characteristics.

    圖7 優(yōu)化約束的Convex Hull模型Fig.7 Alternative formulation and convex gull in MIP min ‖Y·1-E‖1,2,

    s.t.

    (4)

    (5)

    (6)

    vti≥uti-u(t-1),i

    (7)

    yti=Ci(xti)

    (8)

    wheredecisionvariables:

    xti:devicei’s control input at timet;

    uti:devicei’s status at timet, 1: on, 0: off;

    vti:devicei’s start-up status at timet, 1: turn on att;

    yti:devicei’s control output at timet,i.e. consumption att;

    Y:aT-by-Imatrix of device control output variables;

    parameters:

    oni:devicei’s minimum stay-on time;

    offi:devicei’s minimum stay-off time;

    T:number of time intervals under study;

    I: number of devices;

    E:aT-by-1 vector of power measurement input;

    1:aI-by-1 vector with all elements equal to 1;

    functions:

    Ci:devicei’s power consumption characteristics with respect to control inputs.

    3 Numerical Examples

    We now illustrate some selected numerical examples for the applications of customer segmentation, targeting and energy disaggregation at SGRI North America big data lab. All numerical examples are running on a computer with 8 G RAM and Intel Dual Core CPU @ 2.40 GHz.

    3.1 Customer Segmentation

    We create about six million records for customer meter data by Gridlab-D simulation tool and store them into Oracle and PostgreSQL database. Our software platform built on browser-server architecture is developed by R-shiny that is an open source tool. R script is fully supported as a complete set of data processing, statistical analysis, computation, and visualization tools.

    Fig.8 shows multidimensional segmentation results based on smart meter data. We describe customers by two aspects: quantity and variability. The left graph uses Entropy and logarithm of average daily consumption. The right graph adds one more dimensionality that is maximum daily consumption. As shown in both graphs, those households with heavy and stable consumption behaviors would become good candidates for demand response during peak days.

    圖8 用戶分類分組示意圖Fig.8 Multidimensional customers segmentation examples

    We are performing more business intelligence analysis based on meter data. Fig. 9 shows the software would select top usage customers based on minimum and maximum daily consumption criteria set by uses.

    Fig. 10 shows the most popular load shapes in the sample data. This is again based on adaptiveK-mean clustering algorithm. The top rated shape (56%) is of twin-peak: morning peak and evening peak, which are typically caused by more activities occurring during the time in a household.

    圖9 用戶最小最大日用電量Fig.9 Customer sorted by minimum and maximum daily consumption

    圖10 典型負(fù)荷曲線示意圖Fig.10 Top 9 typical load shapes

    3.2 Customer Targeting

    Fig. 11 draws several plots to illustrate customer targeting results. The left shows a graph of “ReliabilityvsNumber of Selected Customers” given target energy saving equal to 100 kWh. The right one shows a graph of “ReliabilityvsAvailable Demand Response Energy” given the number of customers to recruit equal to 200. Based on the same principle, one can draw a plot of “Available Demand Response EnergyvsNumber of Selected Customers” given a reliability level.

    圖11 定量需求響應(yīng)示意圖Fig.11 Response targeting examples

    3.3 Energy Disaggregation

    We implement the MIP model for Energy Disaggregation described in Section 2.3 by IBM Optimization Programing Language (OPL) that is a type of high-level scripting language seamlessly integrated with CPLEX optimization engine. We use OPL to create a moving window for energy disaggregation on an appliance level with an interval equal to 30 s. The total time interval for disaggregation is 600 s. All of the parameters are configurable in real time. Table 1 lists consumption characteristics for five types of appliances represented by piecewise linear curves.

    表1 用電設(shè)備特性參數(shù)

    Table 1 Parameters for five devices’ consumption characteristics

    In this example, we selectL1-norm as the objective function to minimize the aggregated absolute error residues of consumption data,however, our software does supportL1,L2, and L-infinite norms in the optimization model. We use a random term with normal distribution to simulate the electricity consumption over time produced by smart meters. Fig. 12 shows the total power consumption from both measurement and disaggregation result. During most of the time points, the error residue is small except at two time points the relative error is beyond 25%. The root cause is that all of the data are from a stochastic simulation process and between time point 10 and 15 there is a significant change in simulation data. In reality, the case is having a low probability to occur.

    圖12 總用電量與擬合誤差Fig.12 Total power consumption and relative error

    Fig. 13 shows device’s on and off status from disaggregation results. During the two valley spots, the Washer and HAVC got shutdown accordingly.

    Table 2 gives each device’s power consumption based on disaggregation results. The result is shown in Fig. 14. Our energy disaggregation tool can operate on a continuous rolling window mode. All of the simulations perform very efficiently, typically less than 1 s.

    圖13 基于電能分解的設(shè)備開關(guān)狀態(tài)Fig.13 Device status based on energy disaggregation

    圖14 基于電能分解的設(shè)備用電量Fig.14 Device consumption based on energy disaggregation

    4 Conclusion

    The paper gives an overview on research works conducted at SGRI North America big data lab with highlights on hardware configuration and software deployment of the cluster environment. The paper reviews several ongoing research topics performed in the lab, for example: a conceptual design of data structure and computing architecture for smart grid, customer segmentation and response targeting (collaboration with Stanford University), and energy disaggregation. These works are built on an integrated power system data model that is supported by open source technology. Preliminary results show that our research will benefit both utility companies and customers. The future directions would include integrating the existing applications with parallel computing framework at big data lab to accelerate the overall performance and making the software platform mature eventually.

    表2 基于電能分解的用電量

    Table 2 Device power consumption

    Acknowledgement

    The authors would like to thank Dr. J. Kwac and Prof. R. Rajagopal for their contributions. The authors also express their thanks to Prof. C. Kang for the review and comments.

    5 References

    [1]What is big data analytics?-Definition from WhatIs.com[EB/OL]. http://searchbusinessanalytics.techtarget.com/definition/big-data-analytics.

    [2]Smart electric meters, Advanced metering infrastructure, and meter communications: Global market analysis and forecasts[EB/OL] Navigant Research, 2013. http://www.navigantresearch.com/research/smart-meters.

    [3]Yu N, Shah S, Johnson R, et al. Big data analytics in power distribution systems[J]. IEEE ISGT 2015.

    [4]Wikipedia[EB/OL]. https://en.wikipedia.org/wiki/Phasor_measurement_unit

    [5]Xie L, Chen Y, Kumar P R. Dimensionality reduction of synchrophasor data for early anomaly detection: linearized analysis[J]. IEEE Transactions on Power Systems, 2014, 29(6): 2784-2794.

    [6]Liu G, Yu Y, Gao F,et al. Research of smart gird big data model[C]. 23rd International Conference on Electricity Distribution Lyon, 2015.

    [7]Saunders C, Liu G, Yu Y, et al. Data-driven distributed analytics and control platform for smart grid situational awareness[C]. CSEE, 2015.

    [8]Spark official website[EB/OL]. https://spark.apache.org/.

    [9]Liu G, Zhu W, Saunders C, et al. Real-Time Complex Event Processing and Analytics for Smart Grid[C]//Complex Adaptive Systems, San Jose: Conference Organized by Missouri University of Science and Technology, 2015.

    [10]Kwac J, Tan C, Sintov N, et al. Utility customer segmentation based on Smart Meter Data: Empirical Study[J]. IEEE Smart Grid Community, 2013.

    [11]Kwac J, Rajagopal R, Demand response targeting using big data analytics[C]// 2013 IEEE International Conference on Big Data.

    [12]Dong R, Ratliff L, Ohlsson H, et al. A dynamical systems approach to energy disaggregation[C]//2013 IEEE 52nd Annual Conference on Decision and Control (CDC).

    [13]Kolter J Z, Batra S, Ng A Y. Energy disaggregation via discriminative sparse coding[C]//Advances in Neural Information Processing Systems, 2010.

    [14]Drenker S, Kader A. Nonintrusive monitoring of electric loads[J]. IEEE Computer Applications in Power, 1999, 12(4): 47-51.

    [15]Rahayu D, Narayanaswamy B, Krishnaswamy S. Learning to be energy-wise: discriminative methods for load disaggregation[C]//Third International Conference on Future Energy Systems: Where Energy, Computing and Communication Meet (e-Energy), 2012. [16]Farinaccio L, Zmeureanu R. Using a pattern recognition approach to disaggregate the total electricity consumption in a house into the major end-uses[J]. Energy and Buildings, 1999, 30(3): 245-259.

    [17]Rajan D, Takriti S. Minimum up/down polytopes of the unit commitment problem with start-up costs[R].IBM Research Report, 2005.

    高峰(1977),博士,IEEE與INFORMS會(huì)員,高級(jí)工程師。研究方向?yàn)殡娏ο到y(tǒng)經(jīng)濟(jì)運(yùn)行、電力市場(chǎng)交易、優(yōu)化與決策分析、電力大數(shù)據(jù)、電力系統(tǒng)規(guī)劃,人工智能技術(shù);

    劉廣一(1963),博士,教授級(jí)高級(jí)工程師,研究方向?yàn)殡娏ο到y(tǒng)經(jīng)濟(jì)調(diào)度、網(wǎng)絡(luò)分析、 EMS/DMS、主動(dòng)配電網(wǎng)、電力大數(shù)據(jù)和電力市場(chǎng);

    Chris Saunders(1980),博士,高級(jí)工程師,研究方向?yàn)閿?shù)據(jù)庫架構(gòu)、電力系統(tǒng)數(shù)據(jù)分析、電力系統(tǒng)數(shù)據(jù)挖掘、機(jī)器學(xué)習(xí)、電力系統(tǒng)運(yùn)行與規(guī)劃;

    朱文東(1969),碩士,高級(jí)工程師,研究方向?yàn)殛P(guān)系型數(shù)據(jù)庫、NoSQL & NewSQL、分布式計(jì)算、實(shí)時(shí)流數(shù)據(jù)計(jì)算、基于內(nèi)存計(jì)算的開源集群計(jì)算平臺(tái)Spark及其在電力系統(tǒng)中的應(yīng)用;

    陳振宇(1961),博士,斯坦福大學(xué)智能電網(wǎng)研究所主任。研究方向?yàn)橹悄茈娋W(wǎng)大數(shù)據(jù),分布式能源規(guī)劃及運(yùn)作,電力系統(tǒng)動(dòng)態(tài)分析;

    于洋,博士,研究方向?yàn)殡娏κ袌?chǎng)設(shè)計(jì)、新能源接入、配電側(cè)市場(chǎng)設(shè)計(jì)、電力消費(fèi)分析、電力系統(tǒng)機(jī)制設(shè)計(jì)的環(huán)境影響、電力市場(chǎng)與碳市場(chǎng)等。

    (編輯:劉文瑩)

    國家自然科學(xué)基金資助項(xiàng)目(51261130472); 國家電網(wǎng)公司科技項(xiàng)目 (DZB51201403772)。

    TM 76

    A

    1000-7229(2015)10-0011-09

    智能電網(wǎng)大數(shù)據(jù)的分析與應(yīng)用

    高峰1,劉廣一2,Chris Saunders1, 朱文東1, 陳振宇3,于洋3

    (1. 國網(wǎng)智研院美國研究院,Santa Clara, CA 95054;2. 中國電力科學(xué)研究院,北京市 100192;3. 斯坦福大學(xué),Palo Alto 94305)

    能源互聯(lián)網(wǎng)的興起是全球能源環(huán)境與經(jīng)濟(jì)發(fā)展雙重壓力導(dǎo)致的結(jié)果,這種趨勢(shì)不可避免地促進(jìn)大數(shù)據(jù)分析技術(shù)的快速發(fā)展。大數(shù)據(jù)技術(shù)是指從各種各樣類型的海量數(shù)據(jù)中,快速獲得有價(jià)值信息的技術(shù)。簡(jiǎn)要介紹了國網(wǎng)智研院美國研究院大數(shù)據(jù)團(tuán)隊(duì)的研究工作和實(shí)驗(yàn)室軟硬件配置,介紹了智能電網(wǎng)數(shù)據(jù)結(jié)構(gòu)和計(jì)算架構(gòu)等概念性的設(shè)計(jì)。重點(diǎn)介紹了與斯坦福大學(xué)合作進(jìn)行的用戶分組分類和需求響應(yīng)定量計(jì)算方法,以及非侵入式電能分解。這些工作基于集成的數(shù)據(jù)模型和開源軟件技術(shù),將為電網(wǎng)公司和客戶同時(shí)帶來收益。

    大數(shù)據(jù)解析;混合整數(shù)規(guī)劃;用電行為分析;電能分解

    2015-08-03

    2015-09-14

    10.3969/j.issn.1000-7229.2015.10.002

    Project supported by National Natural Science Foundation of China (51261130472);Science and Technology Program of the State Grid Corporation of China (DZB51201403772).

    猜你喜歡
    用電量工程師電能
    02 國家能源局:1~7月全社會(huì)用電量同比增長(zhǎng)3.4%
    01 國家能源局:3月份全社會(huì)用電量同比增長(zhǎng)3.5%
    《機(jī)械工程師》征訂啟事
    Kenoteq的工程師研發(fā)環(huán)保磚塊
    英語文摘(2021年10期)2021-11-22 08:02:40
    青年工程師
    安徽建筑(2020年4期)2020-05-23 01:37:12
    蘋果皮可以產(chǎn)生電能
    電能的生產(chǎn)和運(yùn)輸
    海風(fēng)吹來的電能
    澎湃電能 助力“四大攻堅(jiān)”
    1~10月全社會(huì)用電量累計(jì)56552億千瓦時(shí)同比增長(zhǎng)8.7%
    亚洲第一电影网av| 亚洲熟女毛片儿| 亚洲最大成人中文| 啦啦啦观看免费观看视频高清| 可以在线观看的亚洲视频| 日本a在线网址| 88av欧美| 草草在线视频免费看| 亚洲专区中文字幕在线| 麻豆久久精品国产亚洲av| 午夜久久久久精精品| 久久香蕉激情| 日本免费a在线| 女性生殖器流出的白浆| 国内揄拍国产精品人妻在线 | 好男人电影高清在线观看| 亚洲午夜精品一区,二区,三区| 亚洲av成人一区二区三| www.熟女人妻精品国产| 精品久久久久久久久久久久久 | 日本三级黄在线观看| 黑丝袜美女国产一区| 美女高潮喷水抽搐中文字幕| 国产野战对白在线观看| 久久婷婷成人综合色麻豆| 色婷婷久久久亚洲欧美| 9191精品国产免费久久| 观看免费一级毛片| 国产精品 欧美亚洲| 成年免费大片在线观看| 久99久视频精品免费| 一级片免费观看大全| 黄色视频,在线免费观看| 国产黄a三级三级三级人| 欧美黄色片欧美黄色片| 丰满的人妻完整版| 久久婷婷人人爽人人干人人爱| 亚洲国产精品sss在线观看| 97碰自拍视频| 亚洲精品一区av在线观看| 欧美又色又爽又黄视频| 一区二区三区高清视频在线| 婷婷精品国产亚洲av| 岛国在线观看网站| av电影中文网址| 中文字幕高清在线视频| 国产1区2区3区精品| 国产在线精品亚洲第一网站| 国内久久婷婷六月综合欲色啪| 成人亚洲精品av一区二区| 97超级碰碰碰精品色视频在线观看| 18禁黄网站禁片午夜丰满| 久久久国产成人免费| 久9热在线精品视频| 国产亚洲av嫩草精品影院| 午夜免费激情av| 中国美女看黄片| 欧美黑人巨大hd| 在线观看午夜福利视频| 午夜亚洲福利在线播放| 亚洲九九香蕉| 日日干狠狠操夜夜爽| 一夜夜www| 亚洲欧美一区二区三区黑人| 黄频高清免费视频| 极品教师在线免费播放| 国产精品av久久久久免费| 色综合站精品国产| 亚洲av电影在线进入| 国产一区二区激情短视频| 日本精品一区二区三区蜜桃| 国产精品久久久人人做人人爽| 亚洲第一av免费看| 国产精品久久久久久亚洲av鲁大| 午夜视频精品福利| 国产精品一区二区精品视频观看| 久久久久国产精品人妻aⅴ院| 国产成+人综合+亚洲专区| 婷婷精品国产亚洲av| 不卡一级毛片| 999久久久精品免费观看国产| 欧美三级亚洲精品| 精品不卡国产一区二区三区| 麻豆成人av在线观看| 欧美不卡视频在线免费观看 | 无人区码免费观看不卡| 国产成人影院久久av| 亚洲精品中文字幕一二三四区| 黄色视频不卡| 亚洲男人天堂网一区| 在线免费观看的www视频| 国产不卡一卡二| 美女午夜性视频免费| 国产精品香港三级国产av潘金莲| 亚洲全国av大片| 成人av一区二区三区在线看| 少妇 在线观看| 一二三四在线观看免费中文在| 国产精品国产高清国产av| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一电影网av| 婷婷丁香在线五月| 日本撒尿小便嘘嘘汇集6| 午夜激情福利司机影院| 成年人黄色毛片网站| 两性夫妻黄色片| 亚洲国产欧美一区二区综合| 色播亚洲综合网| 亚洲精华国产精华精| 麻豆av在线久日| 亚洲aⅴ乱码一区二区在线播放 | 在线观看一区二区三区| 婷婷精品国产亚洲av在线| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久国产高清桃花| 日韩视频一区二区在线观看| 欧美黑人欧美精品刺激| 国产精品,欧美在线| 宅男免费午夜| 美女高潮喷水抽搐中文字幕| 男女床上黄色一级片免费看| 亚洲精品久久成人aⅴ小说| 美女大奶头视频| 嫩草影视91久久| 韩国精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 久久久精品国产亚洲av高清涩受| 国产极品粉嫩免费观看在线| 国产国语露脸激情在线看| 三级毛片av免费| 国产97色在线日韩免费| 成年女人毛片免费观看观看9| 婷婷丁香在线五月| 在线播放国产精品三级| xxx96com| 男男h啪啪无遮挡| 日日摸夜夜添夜夜添小说| 一级毛片高清免费大全| 欧美绝顶高潮抽搐喷水| 国语自产精品视频在线第100页| 国产精品亚洲一级av第二区| 成人国产一区最新在线观看| 国产亚洲精品第一综合不卡| 久久精品国产亚洲av香蕉五月| 国产一卡二卡三卡精品| 亚洲精品美女久久av网站| 亚洲av成人av| 成人亚洲精品一区在线观看| 国产精品av久久久久免费| 日韩av在线大香蕉| 制服诱惑二区| bbb黄色大片| 国内久久婷婷六月综合欲色啪| 制服人妻中文乱码| 久久久久久久久中文| 两性午夜刺激爽爽歪歪视频在线观看 | 免费搜索国产男女视频| 最近最新中文字幕大全免费视频| 男女视频在线观看网站免费 | av有码第一页| 一个人免费在线观看的高清视频| 波多野结衣高清作品| 极品教师在线免费播放| 欧美zozozo另类| 欧美成人一区二区免费高清观看 | 久久国产精品影院| 黄色成人免费大全| 丝袜在线中文字幕| 国产野战对白在线观看| 免费电影在线观看免费观看| 亚洲七黄色美女视频| 一个人免费在线观看的高清视频| 51午夜福利影视在线观看| av超薄肉色丝袜交足视频| 丝袜美腿诱惑在线| 欧美日韩乱码在线| 99国产精品一区二区蜜桃av| 午夜免费激情av| 夜夜夜夜夜久久久久| 可以免费在线观看a视频的电影网站| 一卡2卡三卡四卡精品乱码亚洲| 国产高清videossex| 亚洲欧洲精品一区二区精品久久久| 成人亚洲精品av一区二区| 日日摸夜夜添夜夜添小说| 欧美不卡视频在线免费观看 | 韩国av一区二区三区四区| 国产免费男女视频| 国产精品一区二区精品视频观看| 999精品在线视频| 欧美又色又爽又黄视频| 美女免费视频网站| 国产男靠女视频免费网站| 美女大奶头视频| 女生性感内裤真人,穿戴方法视频| 丝袜美腿诱惑在线| 久久亚洲真实| 亚洲人成电影免费在线| 可以免费在线观看a视频的电影网站| 国产激情久久老熟女| 午夜久久久久精精品| 亚洲 欧美一区二区三区| 欧美乱码精品一区二区三区| 欧美日韩精品网址| 精品国产超薄肉色丝袜足j| 18禁观看日本| 午夜福利欧美成人| 一进一出好大好爽视频| 亚洲中文av在线| 欧美日韩乱码在线| 成人手机av| 男人操女人黄网站| 午夜激情福利司机影院| 成人三级做爰电影| 观看免费一级毛片| 搞女人的毛片| 又紧又爽又黄一区二区| 男女午夜视频在线观看| 亚洲国产精品sss在线观看| 日本精品一区二区三区蜜桃| 嫩草影院精品99| 色精品久久人妻99蜜桃| 国产真实乱freesex| 人妻久久中文字幕网| 一区二区三区国产精品乱码| 国产乱人伦免费视频| 天天躁夜夜躁狠狠躁躁| 国产高清激情床上av| 在线天堂中文资源库| av超薄肉色丝袜交足视频| 热99re8久久精品国产| 法律面前人人平等表现在哪些方面| 精品第一国产精品| 欧美乱码精品一区二区三区| 精品一区二区三区视频在线观看免费| 波多野结衣av一区二区av| 久久天堂一区二区三区四区| 搡老妇女老女人老熟妇| 操出白浆在线播放| 国产又黄又爽又无遮挡在线| 日日摸夜夜添夜夜添小说| 成人特级黄色片久久久久久久| 日韩 欧美 亚洲 中文字幕| 日韩三级视频一区二区三区| 18美女黄网站色大片免费观看| 精品无人区乱码1区二区| 级片在线观看| 亚洲自偷自拍图片 自拍| 日本免费一区二区三区高清不卡| 欧美黑人精品巨大| 69av精品久久久久久| 桃色一区二区三区在线观看| 亚洲av片天天在线观看| 色哟哟哟哟哟哟| 国产精品,欧美在线| 最近最新免费中文字幕在线| 国产欧美日韩一区二区精品| 成人18禁在线播放| 中文资源天堂在线| 身体一侧抽搐| 亚洲国产看品久久| 亚洲精品粉嫩美女一区| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久视频播放| 国产麻豆成人av免费视频| 两个人看的免费小视频| 日本熟妇午夜| 日本五十路高清| 中文字幕人妻丝袜一区二区| 黄片大片在线免费观看| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 曰老女人黄片| 久久国产乱子伦精品免费另类| 午夜福利免费观看在线| 后天国语完整版免费观看| 日本三级黄在线观看| 成年版毛片免费区| 国产av在哪里看| 变态另类丝袜制服| 色播亚洲综合网| 日韩一卡2卡3卡4卡2021年| 黄色丝袜av网址大全| 一级毛片精品| 国产极品粉嫩免费观看在线| 国产欧美日韩一区二区三| 亚洲最大成人中文| 大香蕉久久成人网| 日韩精品免费视频一区二区三区| 99精品欧美一区二区三区四区| 久久中文字幕人妻熟女| 无人区码免费观看不卡| 国产精品电影一区二区三区| 国产精品亚洲一级av第二区| av天堂在线播放| 精品乱码久久久久久99久播| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 超碰成人久久| 亚洲 国产 在线| 亚洲av成人av| a在线观看视频网站| 久久久久国产一级毛片高清牌| 中文资源天堂在线| 日韩精品青青久久久久久| 变态另类丝袜制服| 国产精华一区二区三区| 久久伊人香网站| 天天一区二区日本电影三级| 日韩精品青青久久久久久| 亚洲精品美女久久av网站| 午夜福利在线观看吧| 亚洲成国产人片在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 大型黄色视频在线免费观看| 午夜免费观看网址| or卡值多少钱| 制服诱惑二区| 亚洲精品国产一区二区精华液| 在线国产一区二区在线| 久久精品人妻少妇| 久久中文看片网| 国产成人精品无人区| 夜夜夜夜夜久久久久| 一级毛片高清免费大全| 91在线观看av| 欧美av亚洲av综合av国产av| 久久亚洲真实| 亚洲精品久久成人aⅴ小说| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| xxxwww97欧美| 村上凉子中文字幕在线| 成年免费大片在线观看| 色在线成人网| 中出人妻视频一区二区| 美女午夜性视频免费| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 在线看三级毛片| 嫩草影视91久久| 最近在线观看免费完整版| 亚洲三区欧美一区| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 色精品久久人妻99蜜桃| 国产精品亚洲一级av第二区| 91国产中文字幕| 久久香蕉精品热| 视频在线观看一区二区三区| 曰老女人黄片| 午夜福利在线观看吧| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 欧美精品亚洲一区二区| 精品久久久久久久末码| 侵犯人妻中文字幕一二三四区| 免费搜索国产男女视频| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| 悠悠久久av| 久9热在线精品视频| 精品一区二区三区视频在线观看免费| 真人一进一出gif抽搐免费| 精品国产亚洲在线| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁观看日本| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 久久久久久亚洲精品国产蜜桃av| 搡老岳熟女国产| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 国产一区在线观看成人免费| 亚洲国产精品久久男人天堂| 亚洲第一青青草原| 看免费av毛片| or卡值多少钱| 不卡av一区二区三区| 精品免费久久久久久久清纯| 国产黄片美女视频| 国产成人影院久久av| 亚洲中文字幕日韩| 最近在线观看免费完整版| 悠悠久久av| 可以在线观看的亚洲视频| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美98| 在线视频色国产色| 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 制服人妻中文乱码| 在线天堂中文资源库| 麻豆一二三区av精品| 久久久久久大精品| 超碰成人久久| 久久天躁狠狠躁夜夜2o2o| 一边摸一边做爽爽视频免费| 最近在线观看免费完整版| 欧美一区二区精品小视频在线| bbb黄色大片| av天堂在线播放| 女人被狂操c到高潮| 国产真人三级小视频在线观看| 精品久久久久久成人av| 1024香蕉在线观看| 日日夜夜操网爽| a级毛片a级免费在线| 国产伦在线观看视频一区| 狠狠狠狠99中文字幕| 又黄又爽又免费观看的视频| a在线观看视频网站| 妹子高潮喷水视频| 日本一区二区免费在线视频| 久久国产乱子伦精品免费另类| 特大巨黑吊av在线直播 | 国产精品久久电影中文字幕| 久久中文看片网| 日韩大尺度精品在线看网址| videosex国产| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲性夜色夜夜综合| 香蕉久久夜色| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区mp4| 青草久久国产| 神马国产精品三级电影在线观看 | 欧美乱码精品一区二区三区| 亚洲精品中文字幕一二三四区| 老熟妇乱子伦视频在线观看| 国产色视频综合| 精品电影一区二区在线| 国产97色在线日韩免费| 男女做爰动态图高潮gif福利片| 丰满人妻熟妇乱又伦精品不卡| 黄片小视频在线播放| 日韩大尺度精品在线看网址| 极品教师在线免费播放| 国语自产精品视频在线第100页| 一本久久中文字幕| 丝袜在线中文字幕| 精品一区二区三区四区五区乱码| 中文字幕人成人乱码亚洲影| 男女那种视频在线观看| svipshipincom国产片| 男女下面进入的视频免费午夜 | 久久国产精品男人的天堂亚洲| 国产成人啪精品午夜网站| 免费在线观看完整版高清| 中文字幕av电影在线播放| 久久中文字幕人妻熟女| 国产精品99久久99久久久不卡| 91国产中文字幕| 好男人电影高清在线观看| 久久久国产成人精品二区| 在线观看一区二区三区| 国产成人av激情在线播放| 亚洲无线在线观看| 曰老女人黄片| 好男人在线观看高清免费视频 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人av| 搞女人的毛片| 一本久久中文字幕| 波多野结衣高清无吗| 99久久综合精品五月天人人| 黄片小视频在线播放| 真人做人爱边吃奶动态| 欧美zozozo另类| 在线观看www视频免费| 精品无人区乱码1区二区| 国产真人三级小视频在线观看| 91大片在线观看| 在线天堂中文资源库| 中文字幕精品免费在线观看视频| 99riav亚洲国产免费| 国产爱豆传媒在线观看 | 欧美日韩瑟瑟在线播放| 久久九九热精品免费| av天堂在线播放| 欧美中文综合在线视频| 一二三四社区在线视频社区8| 搡老熟女国产l中国老女人| 老鸭窝网址在线观看| 悠悠久久av| 久久精品国产99精品国产亚洲性色| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 一个人观看的视频www高清免费观看 | 99热6这里只有精品| 久久狼人影院| 免费在线观看日本一区| 黄频高清免费视频| 久久久久久免费高清国产稀缺| 97超级碰碰碰精品色视频在线观看| 久久亚洲精品不卡| 免费一级毛片在线播放高清视频| 满18在线观看网站| 免费在线观看影片大全网站| 国产精品爽爽va在线观看网站 | 91av网站免费观看| 熟女电影av网| 桃色一区二区三区在线观看| 欧美午夜高清在线| 91在线观看av| 日韩高清综合在线| 久久久久亚洲av毛片大全| 国产精品 欧美亚洲| 亚洲精品粉嫩美女一区| 成人国产综合亚洲| 精品熟女少妇八av免费久了| 一a级毛片在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产伦人伦偷精品视频| 国产一区二区三区视频了| 女人被狂操c到高潮| 日韩欧美三级三区| 又黄又粗又硬又大视频| 久久九九热精品免费| 村上凉子中文字幕在线| 黑人欧美特级aaaaaa片| 中文字幕另类日韩欧美亚洲嫩草| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| avwww免费| 黄色毛片三级朝国网站| 母亲3免费完整高清在线观看| 日韩免费av在线播放| 亚洲男人的天堂狠狠| 久久香蕉国产精品| 国产黄片美女视频| 中文字幕精品亚洲无线码一区 | 欧美黄色淫秽网站| 国产欧美日韩一区二区三| 丁香六月欧美| 中亚洲国语对白在线视频| 97碰自拍视频| 天堂影院成人在线观看| 叶爱在线成人免费视频播放| 精品国产超薄肉色丝袜足j| 少妇的丰满在线观看| 天堂动漫精品| 日韩精品中文字幕看吧| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| 亚洲av片天天在线观看| 十八禁人妻一区二区| 久久久国产欧美日韩av| 午夜免费鲁丝| cao死你这个sao货| 韩国精品一区二区三区| 精品久久久久久久久久久久久 | 丁香六月欧美| 最近最新免费中文字幕在线| 精品人妻1区二区| 久久热在线av| 亚洲七黄色美女视频| ponron亚洲| 色尼玛亚洲综合影院| 91成年电影在线观看| 熟女电影av网| 可以免费在线观看a视频的电影网站| 亚洲av成人av| 午夜激情av网站| 久久这里只有精品19| 国产精品,欧美在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国内精品久久久久久久电影| 免费电影在线观看免费观看| 欧美绝顶高潮抽搐喷水| 1024手机看黄色片| 日本 av在线| netflix在线观看网站| 一区二区三区精品91| 搡老岳熟女国产| 国产1区2区3区精品| 国产精品久久视频播放| 色在线成人网| 日日夜夜操网爽| 1024视频免费在线观看| 久久人人精品亚洲av| 免费在线观看日本一区| 色精品久久人妻99蜜桃| 国产亚洲精品第一综合不卡| 中文字幕久久专区| 啪啪无遮挡十八禁网站| 亚洲精品在线观看二区| 欧美一级a爱片免费观看看 | 日本在线视频免费播放| 欧美日韩亚洲综合一区二区三区_| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 俄罗斯特黄特色一大片| 每晚都被弄得嗷嗷叫到高潮| 国产精品永久免费网站| 国内毛片毛片毛片毛片毛片| 午夜视频精品福利| 中文在线观看免费www的网站 | 亚洲av电影不卡..在线观看| 成人亚洲精品一区在线观看| 动漫黄色视频在线观看| 精品久久久久久成人av| 听说在线观看完整版免费高清| 999精品在线视频| 国产精品永久免费网站| 午夜亚洲福利在线播放| 男人舔女人的私密视频| 国产精品一区二区免费欧美| 亚洲黑人精品在线| 国产av在哪里看| 成人一区二区视频在线观看|