• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time constant of a hydraulic servo valve withdynamic pressure feedback

    2015-03-09 03:32:22LeiZHANGHongzhouJIANG
    機床與液壓 2015年6期
    關(guān)鍵詞:時間常數(shù)動壓層流

    Lei ZHANG,Hong-zhou JIANG

    (1 School of Physics and Electronics,Henan University,Kaifeng 475001,China)

    (2 School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China)

    Time constant of a hydraulic servo valve withdynamic pressure feedback

    Lei ZHANG1*,Hong-zhou JIANG2

    (1School of Physics and Electronics,Henan University,Kaifeng 475001,China)

    (2School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China)

    Dynamic pressure feedback(DPF)technology is usually used in a hydraulic servo system to improve its response characteristics.Themost reliable way to realize the feedback is to integrate amechanical DPF device in a flow control servo valve.However,as a key parameter,the time constant is usually big different between the desired and actual valve if the valve has been designed by traditionalmethod.We analyze this reason which is mainly caused by thewrong assumption thatoil jetting from feedback nozzles is in the turbulent flow region.Based on the theoretical analysis and experimental tests,it has been confirmed that the fluid flow is indeed in laminar flow region.Therefore,a new method to evaluate the time constant could be obtained,which will be very useful for the design of a DPF device.

    Servo valve,Dynamic pressure feedback,Time constant,Laminar flow,Design method

    *Corresponding author:Lei ZHANG,Associate Professor.

    E-mail:dr.zhanglei@126.com

    1 In troduction

    Electro-hydraulic servo valve is the core element in an electrohydraulic servo control system.Basic type is a flow control servovalve.It is very popular in position servo control.When amassive plant is controlled,the hydraulic natural frequency is relatively low [1].Damping ratio must be increased to achieve a quick response.Although a complex digital compensator could be designed to implement demands,the real effectmainly depends on the quality of feedback sensors.Reliability of this electrical system is not usually as high asmechanical system.In some critical applications,such as thrust vector servo control of carrier rocket,reliability becomes themost important.Therefore,dynamic pressure feedback(DPF)servovalve is designed to increase the damping ratio[2].The benefits of pressure feedback could be realized as damping for a resonant load,but statically the system retains the high resolution and stiffness characteristics obtained with a flow control servovalve[3].Even so,the result of traditional formulas is not satisfied by the experiments when the time constant of the core DPF device is evaluated,which is the key parameter for the design of DPF servovalve.Using the obtained time constant for design willmake actual dynamic characteristic large difference with the expected behavior.This might even lead to system unstable sometimes[4].So,newmethod which is accordancewith experiments should be studied to instruct the design of DPF device directly in the real industrial applications.

    This paper is to explore a new way to compute time constantwhich could help the design of DPF device.In traditional consideration,oil jetting from nozzles of DPF device is usually considered as turbulent flow.This appeared in the reference[3],in which time constantwas described as a changeable parameterwith load pressure.Based on this assumption,the time constant is usually about three times greater than that measured through experiment[5].But,based on the analysis in this paper,the flow status of oil is actually in laminar flow region.And this condition will derive the correct evaluation of time constant and it will be consistentwith that of the experiment results.

    Chapter two introduces the component and structure of DPF valve.Chapter three shows a traditionalmathematicsmodel for the DPF device.The revised model will be deduced in chapter four.Chapter five validates themodel by comparing the simulation results and experimental data.Finally,we concluded the advantageous of thismethod in a real engineering application.

    2 Dynam ic p ressure feedback valve

    DPF valve is composed of DPF device and a normal flow control valve.The DPF device is a hydraulic high pass filter which is made of capacitance piston,spring,and feedback nozzles,as shown in Fig.1.Capacitance piston will stop at somewhere when the load pressures of the two chambers are constant.It could adjust the position according to the change of differential load pressure.The reciprocating motion of piston will push oil jetting from the feedback nozzles.This could generate a feedback torque acting on flapper and armature.

    Fig.1 Com ponent and structure o f a DPF valve

    The schematic diagram of the DPF device is shown in Fig.2.A traditional opinion considers that oil jetting from nozzle of DPF device is in the turbulent flow region.Therefore,we will firstly deduce the transfer function of DPF device based on this assumption.

    3 Traditionalm odel

    Ifwe assume oil jetting from nozzles of DPF device is in the turbulent flow region and flapper is located on the left side at this time,the flow continuity equation[6]of the capacitance piston on the left side could be written as follows:

    Where,Cdis flapper-nozzle discharge coefficient,DNis nozzle diameter,xd0is flapper to nozzle distance at null,xfis displacement of flapper,Pris oil return pressure,Pd1is pressure of left chamber of capacitance piston,Pd2is pressure of right chamber of capacitance piston,Vtis volume of capacitance piston cavity,βeis bulk modulus of hydraulic oil,Adis effective piston area,ρis density of hydraulic fluid,and y is the piston position.

    Fig.2 Schem atic d iagram o f a DPF device

    The dynamics for capacitance piston[6]could be obtained through the following equation:

    Where,PL1is the left side pressure of capacitance piston,PL2is the right side pressure of capacitance piston,k is spring constant,bcis viscous damping coefficient,and m ismass of capacitance piston,and ALis effective action area of load pressure.

    In order to obtain the transfer function,we consider that the flapper is at its neutral position and omit the term of volume change on the pressure derivative in equation(1)and(2).Therefore,it yields:

    If the damping force and inertial force are ignored in(3),one could obtain the following equation:

    However,the time constant deduced by equations(7)and(8)is usually three times greater than the actual value measured by experiments.So,the assumption that the oil jetting from nozzles of DPF device is in turbulent flow region must not be correct.The computed time constant can not be used to instruct the design of DPF valve.

    Although control nozzle always jets turbulent flow due to the fact that large pressure difference exists in the nozzle and oil usually flows very fast,the feedback nozzle is in a different situation.Pressure difference between two sides of the nozzle is relatively small,and the oil flow quantity is small as well.Therefore,the Reynolds number of flow is very small and the oil flow is in the laminar flow region.Based on this deduction,amodified model could be proposed to evaluate the time constant.

    4 Modified model

    Flow from feedback nozzle is under low Reynolds number.The quantity of oil flow [7]is

    From next chapter,we can find that(18)is very appropriate for DPF valve design.And it is very consistentwith that of experimental data.

    5 Simu lation and experimen t test

    Time constant of DPF device is defined in(6).We use AMESim to build the nonlinear model which reflects relationship of PLand Pd.Mathematical equations in this AMESim model are followed the contents of chapter four.So,we can compare the simulation resultswith the experimental results to validate correction of the deduction of chapter four.

    AMESim is a unified platform ofmodeling and simulation software used in multidisciplinary field[11].It not only has intelligent solver and rich module libraries,but also provides perfect tools to analyze and optimize system[12].

    The DPF device described in AMESim is shown in Fig.3.The load pressure difference is as input signal acting on the capacitance piston.The pressure drives the piston to move and form a mass-spring-damping system.The dynamics of piston and flow rate are gov-erned by the internal equations of AMESim,which could be found in themanuals.

    Fig.3 Skeleton diagram o f the DPF device.

    Oil pushed out from the chamber of DPF devicewill flow into themodel of flapper nozzle valve.Thismodel contains the hidden equations from(9)to(16).It reflects the characteristics of feedback nozzle.Therefore,the pressure difference of the inlet ports of the two nozzle valve models is the feedback pressure difference,i.e.,Pd.

    By using the analysis tool of frequency response,one could obtain the characteristics of high pass filter of the DPF device.The input parameter is PLand the output parameter is Pd.Once the frequency response could be obtained,the time constant of the filter will be evaluated.

    Parameters in the simulation model are set according to a series ofmanufactured DPF valve[13].The parameters are divided in two groups,as shown in Table 1.The only difference of these two groups is the spring constant.

    Tab le 1 Param eters o f tw o valves

    We can use equation(7),the traditionalmethod to evaluate the time constants of the two valves.And then,the proposed new method,i.e.,equation(18),is used to obtain the corresponding time constants.On the other hand,AMESim simulationmodels were used to obtain the time constants.All the time constant results including the one measured from the experiments are shown in Table 2.

    Tab le 2 Tim e Constant o f Tw o Valves

    From Table 2,one could find that the time constant formula,i.e.,equation(18),could provide a good estimation and the precondition is quite right about that flow jetting from feedback nozzle is in laminar flow region.

    6 App lication

    Time constantτwill influence the dynamic performance of hydraulic system.Open loop transfer function from valve input signal to load flow could bewritten as follows

    Where,QLis servovalve flow to the load;I is differential current input to torque motor of servovalve;Kqis flow gain;ωhis natural frequency of servovalve;ζ'his damping ratio,which has been increased by DPF device for improving system performance.

    The damping ratioζ'hwill get increased with the increase ofτ.Damping capacity is relative good ifτis big.However,a big value ofτwill increase the interference error by external force.So,a properτ should satisfy the demands of system frequency response,transient response,system stiffness and precision.Generally speaking,in order to improve response performance and suppress disturbance,τis usually in the following range[3]:

    Where,ωnis resonant frequency of the hydraulic pow-er system.

    Since we obtained a precise formula to compute time constant of DPF device,we could use it to design a proper DPF valve.After setting up dimensions of nozzle and flapper by experience,dimensions of capacitance piston and spring constant could be computed based on constrain relationship of the time constant formula(18).

    7 Conclusion

    In this paper,we analyze the defects of traditional method to resolve time constant of DPF device.Oil jetting from feedback nozzle is in laminar flow region.Based on this deduction,a new formula of time constant is proposed.Experimental results confirmed that this formula could provide better results of time constant.Therefore,it could be used as DPF device design tool,which is significant to the real industrial applications.

    [1]Gray,Samuel A.Dynamic pressure feedback servo valve[P].U.S.Patent3042005,July 3,1962.

    [2]Welch T R.The Use of Derivative Pressure Feedback in High Performance Hydraulic Servomechanisms[Z].Transactions of the ASME,No 8,F(xiàn)ebruary,1962.

    [3]Thayer W J.Transfer functions for MOOG servovalves[Z].Technical Bulletin 103.New York:MOOG Inc.,1965.

    [4]Jelali M,Kroll A.Hydraulic Servo-Systems:Modelling,I-dentification,and Control[M].London:Springer,2003.

    [5]Zhao Jiangbo.Test Method for Dynamic Pressure Feedback Servo Valve[J].Acta Aeronautica Et Astronautica Sinica,2009(10):251-258.

    [6]Merritt,Herbert E,Hydraulic Control Systems[M].New York:Wiley,1967.

    [7]Guillon M.Hydraulic servo systems:analysis and design[J].Butterworths,1969

    [8]Morse A C.Electrohydraulic Servomechanisms.McGraw Hill[M].New York:[S.l.],1963.

    [9]Sheng Jingchao,Hydraulic Mechanics[M].BeiJing:China Machine Press,1980.

    [10]McCLOY D,MARTIN H.Control of Fluid Power:Analysis and design[M].Ellis Horwood Limited,1980.

    [11]LMS,LMS Imagine Lab AMESim Solution Guide.LMS International.Belgium.http://www.lmsintl.com/

    [12]Fu Y L,Qi X Y.System Modeling and Simulation Based on AMESim[D].Beijing:Beijing University of Aeronautics&Astronautics Press,2006.

    [13]Chen Zuxi.Research on Dynamic Feedback of Servo Valve and Test Method[D].Harbin:Harbin Institute of Technology,2009.

    動壓反饋伺服閥時間常數(shù)計算方法

    張 鐳1*,姜洪洲2

    1.河南大學(xué)物理與電子學(xué)院,河南 開封 475001
    2.哈爾濱工業(yè)大學(xué)機電學(xué)院,哈爾濱 150001

    動壓反饋技術(shù)應(yīng)用于噴嘴擋板伺服閥中可以顯著改善其響應(yīng)特性。在伺服閥中實現(xiàn)動壓反饋最可靠的方法是在其中增加一個動壓反饋裝置。但根據(jù)傳統(tǒng)設(shè)計方法,加工出的動壓反饋伺服閥中的關(guān)鍵變量時間常數(shù)通常與設(shè)計值相差很大,主要是因為傳統(tǒng)設(shè)計方法錯誤地將動壓反饋裝置中噴嘴出口處的油液認為是紊流。根據(jù)理論推導(dǎo)和實驗研究,證實了噴嘴出油其實為層流;進而對動壓反饋伺服閥時間常數(shù)的計算方法重新進行了梳理,該方法對于動壓反饋伺服閥的設(shè)計具有重要意義。

    伺服閥;動壓反饋;時間常數(shù);層流;設(shè)計方法

    10.3969/j.issn.1001-3881.2015.06.012 Document code:A

    TP211. 3;TH137.52

    7 August 2014;revised 24 November 2014;accepted 15 December 2014

    Thiswork is supported by the Department of Education of Henan Province,China.(Number:14A460024).

    猜你喜歡
    時間常數(shù)動壓層流
    層流輥道電機IP56防護等級結(jié)構(gòu)設(shè)計
    防爆電機(2022年5期)2022-11-18 07:40:18
    摻氫對二甲醚層流燃燒特性的影響
    國內(nèi)首個現(xiàn)代箔片氣體動壓軸承技術(shù)培訓(xùn)班在長沙成功舉辦
    層流切應(yīng)力誘導(dǎo)microRNA-101下調(diào)EZH2抑制血管新生
    熱電偶時間常數(shù)檢測分揀系統(tǒng)設(shè)計
    重型機械(2019年3期)2019-08-27 00:58:52
    南屯煤礦深部泵房硐室群動壓失穩(wěn)機理及控制對策
    強烈動壓巷道支護技術(shù)探討
    X80鋼層流冷卻溫度場的有限元模擬
    瞬變電磁視時間常數(shù)tau成像分析與應(yīng)用研究
    掌上透平彈性箔片動壓氣體軸承的試驗研究
    亚洲av一区综合| 亚洲熟妇中文字幕五十中出| 波多野结衣高清无吗| 波野结衣二区三区在线| 成人永久免费在线观看视频| 国产精品人妻久久久久久| 亚洲在线自拍视频| 天堂网av新在线| 真实男女啪啪啪动态图| 精品久久久久久成人av| 亚洲久久久久久中文字幕| 欧美极品一区二区三区四区| 无人区码免费观看不卡| 精品人妻熟女av久视频| 精品熟女少妇八av免费久了| 夜夜爽天天搞| 欧美xxxx黑人xx丫x性爽| 一区二区三区四区激情视频 | 国产黄a三级三级三级人| 色哟哟·www| 国产精品精品国产色婷婷| 欧美成人性av电影在线观看| 午夜福利在线观看吧| 毛片女人毛片| 99在线视频只有这里精品首页| 一进一出抽搐动态| 欧美中文日本在线观看视频| 亚洲第一电影网av| 亚洲在线自拍视频| 窝窝影院91人妻| 内射极品少妇av片p| 亚洲人成网站在线播放欧美日韩| 搡老岳熟女国产| 极品教师在线免费播放| 国产视频内射| 欧美精品啪啪一区二区三区| 午夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄无遮挡网站| 中文资源天堂在线| 免费看a级黄色片| 淫秽高清视频在线观看| 男人狂女人下面高潮的视频| 伦理电影大哥的女人| 久久国产乱子免费精品| 最近中文字幕高清免费大全6 | 精品久久久久久久久久久久久| 国产白丝娇喘喷水9色精品| 国产一区二区在线观看日韩| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久成人av| 亚洲av中文字字幕乱码综合| 中文亚洲av片在线观看爽| 日韩成人在线观看一区二区三区| 亚洲18禁久久av| 禁无遮挡网站| 国产欧美日韩精品一区二区| av在线观看视频网站免费| a级毛片a级免费在线| 国产精品美女特级片免费视频播放器| 亚洲一区二区三区不卡视频| 日本 av在线| 亚洲七黄色美女视频| 99久国产av精品| 99国产精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 老司机午夜福利在线观看视频| 久久精品国产亚洲av涩爱 | 国产又黄又爽又无遮挡在线| 国产精品一区二区性色av| 久久6这里有精品| 成年女人毛片免费观看观看9| 国产午夜精品论理片| 午夜影院日韩av| 国产精品精品国产色婷婷| 最新在线观看一区二区三区| 婷婷亚洲欧美| 91麻豆精品激情在线观看国产| 中国美女看黄片| 又爽又黄a免费视频| 国产老妇女一区| 久久中文看片网| 午夜福利视频1000在线观看| 免费一级毛片在线播放高清视频| 亚洲精品一区av在线观看| avwww免费| 日本a在线网址| 人妻久久中文字幕网| 欧美激情久久久久久爽电影| avwww免费| 一区二区三区免费毛片| 日韩欧美国产在线观看| 91久久精品电影网| 一级毛片久久久久久久久女| 级片在线观看| 欧美+亚洲+日韩+国产| 听说在线观看完整版免费高清| 97超级碰碰碰精品色视频在线观看| 国产午夜精品论理片| 亚洲成人中文字幕在线播放| 欧美黑人巨大hd| 国产精品永久免费网站| 两个人的视频大全免费| 色综合站精品国产| 极品教师在线视频| 欧美最新免费一区二区三区 | 特大巨黑吊av在线直播| 看十八女毛片水多多多| 国产精品一及| bbb黄色大片| 人人妻人人看人人澡| 午夜影院日韩av| 成人午夜高清在线视频| 又黄又爽又刺激的免费视频.| 国内精品美女久久久久久| 国产黄a三级三级三级人| 老司机午夜十八禁免费视频| 精品福利观看| 天堂动漫精品| 成年免费大片在线观看| 免费av不卡在线播放| 国产精品一及| 亚洲人与动物交配视频| 99国产精品一区二区三区| 久久精品国产亚洲av香蕉五月| 美女cb高潮喷水在线观看| 人妻丰满熟妇av一区二区三区| 国产爱豆传媒在线观看| 国产精品自产拍在线观看55亚洲| 人妻久久中文字幕网| 国产老妇女一区| 长腿黑丝高跟| 国产精品伦人一区二区| 亚洲专区国产一区二区| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 天天一区二区日本电影三级| 国产成年人精品一区二区| 18禁黄网站禁片午夜丰满| 好看av亚洲va欧美ⅴa在| 色噜噜av男人的天堂激情| 在线观看午夜福利视频| 中文字幕av在线有码专区| 精品久久久久久,| 18美女黄网站色大片免费观看| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 禁无遮挡网站| 特级一级黄色大片| 在线免费观看的www视频| 亚洲人与动物交配视频| h日本视频在线播放| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 特级一级黄色大片| 亚洲av成人av| 一级av片app| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲| 最近最新中文字幕大全电影3| 日韩人妻高清精品专区| 最近最新免费中文字幕在线| 在线观看舔阴道视频| 国内揄拍国产精品人妻在线| 午夜激情欧美在线| 伊人久久精品亚洲午夜| 免费高清视频大片| 精品午夜福利视频在线观看一区| 国产免费一级a男人的天堂| 国产一区二区三区在线臀色熟女| 国产aⅴ精品一区二区三区波| 91久久精品电影网| 午夜福利在线观看吧| 窝窝影院91人妻| 深夜a级毛片| 国模一区二区三区四区视频| 韩国av一区二区三区四区| 国内揄拍国产精品人妻在线| 欧美日韩福利视频一区二区| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 欧美日韩亚洲国产一区二区在线观看| 日韩人妻高清精品专区| 久久久久国内视频| 国产精品亚洲美女久久久| 久久99热这里只有精品18| 久久久国产成人免费| 欧美日韩国产亚洲二区| 精品一区二区免费观看| 国产成人欧美在线观看| 成人av一区二区三区在线看| 国产精品久久久久久人妻精品电影| 最近最新中文字幕大全电影3| 97碰自拍视频| 桃红色精品国产亚洲av| 亚洲,欧美,日韩| 国产欧美日韩一区二区三| 热99re8久久精品国产| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 亚洲美女搞黄在线观看 | 在线观看免费视频日本深夜| 亚洲最大成人av| 国产av一区在线观看免费| 91字幕亚洲| 日本 欧美在线| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 色视频www国产| 九九在线视频观看精品| 男女之事视频高清在线观看| 真人做人爱边吃奶动态| 深夜精品福利| 国内久久婷婷六月综合欲色啪| 日韩人妻高清精品专区| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 午夜福利欧美成人| 99久久精品国产亚洲精品| 国产老妇女一区| 国产精品精品国产色婷婷| 国产综合懂色| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片| 亚洲成av人片在线播放无| 色吧在线观看| 成人亚洲精品av一区二区| ponron亚洲| 亚洲av熟女| 窝窝影院91人妻| 亚洲美女视频黄频| 性欧美人与动物交配| 亚洲一区二区三区色噜噜| 一夜夜www| 怎么达到女性高潮| 高清日韩中文字幕在线| 亚洲成a人片在线一区二区| 亚洲最大成人手机在线| 精品福利观看| 日本免费a在线| 免费人成在线观看视频色| 午夜a级毛片| 非洲黑人性xxxx精品又粗又长| 女同久久另类99精品国产91| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 丰满的人妻完整版| 成人鲁丝片一二三区免费| 亚洲第一区二区三区不卡| 午夜亚洲福利在线播放| 久久久精品大字幕| 免费电影在线观看免费观看| 精品久久久久久成人av| 亚洲精品日韩av片在线观看| 国产日本99.免费观看| 中文亚洲av片在线观看爽| 最近中文字幕高清免费大全6 | 黄色一级大片看看| 国产一区二区亚洲精品在线观看| 国产高清三级在线| 色噜噜av男人的天堂激情| 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| 精品国内亚洲2022精品成人| 久久久久久久久久黄片| 婷婷丁香在线五月| 少妇人妻一区二区三区视频| 久9热在线精品视频| 亚洲色图av天堂| 极品教师在线免费播放| 色综合婷婷激情| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片 | 超碰av人人做人人爽久久| 日韩大尺度精品在线看网址| 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 精品久久久久久,| 一进一出抽搐动态| ponron亚洲| 俺也久久电影网| 欧美激情久久久久久爽电影| 嫩草影院新地址| 精品久久久久久久人妻蜜臀av| 亚洲激情在线av| 亚洲精品456在线播放app | 露出奶头的视频| 午夜精品一区二区三区免费看| 精品国产三级普通话版| 精品久久久久久成人av| 少妇丰满av| 两人在一起打扑克的视频| 三级国产精品欧美在线观看| 一本一本综合久久| 亚洲国产高清在线一区二区三| av视频在线观看入口| 国产精品人妻久久久久久| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 国产高清激情床上av| 在线看三级毛片| 久久久久久九九精品二区国产| 午夜老司机福利剧场| 日韩国内少妇激情av| 久久久精品欧美日韩精品| 怎么达到女性高潮| 国产精品,欧美在线| 成熟少妇高潮喷水视频| 日韩中字成人| 99久国产av精品| 人人妻人人澡欧美一区二区| 99在线视频只有这里精品首页| 欧美最新免费一区二区三区 | 91在线观看av| 国产三级黄色录像| 可以在线观看毛片的网站| 亚州av有码| 中文字幕人妻熟人妻熟丝袜美| 3wmmmm亚洲av在线观看| 亚洲欧美精品综合久久99| 国内少妇人妻偷人精品xxx网站| 亚洲成av人片免费观看| 国产精品1区2区在线观看.| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 噜噜噜噜噜久久久久久91| 看免费av毛片| 女生性感内裤真人,穿戴方法视频| 亚洲在线观看片| 国产精品久久久久久精品电影| 老司机福利观看| 亚洲精品日韩av片在线观看| 精品日产1卡2卡| 国产野战对白在线观看| 成年免费大片在线观看| 精品人妻视频免费看| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 99在线视频只有这里精品首页| 精品国产亚洲在线| 午夜福利视频1000在线观看| 身体一侧抽搐| 国产真实乱freesex| 色哟哟哟哟哟哟| 国产亚洲精品久久久com| 中文亚洲av片在线观看爽| 中国美女看黄片| 婷婷精品国产亚洲av| 夜夜爽天天搞| 国产精品亚洲一级av第二区| 日韩高清综合在线| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩高清专用| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 午夜福利在线在线| 美女高潮的动态| 国产三级在线视频| 成年免费大片在线观看| 搡老岳熟女国产| 亚洲第一欧美日韩一区二区三区| 色噜噜av男人的天堂激情| 老司机福利观看| 中文字幕人成人乱码亚洲影| 亚洲av电影不卡..在线观看| 国产免费av片在线观看野外av| 内地一区二区视频在线| 99久久精品热视频| 国产在视频线在精品| 黄色女人牲交| 天堂影院成人在线观看| 波多野结衣高清作品| 免费观看精品视频网站| 亚洲无线在线观看| 色5月婷婷丁香| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 精品久久久久久久末码| 午夜两性在线视频| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 久久久久性生活片| 日韩成人在线观看一区二区三区| 欧美另类亚洲清纯唯美| 国产蜜桃级精品一区二区三区| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 亚洲avbb在线观看| 黄色女人牲交| 久久久精品大字幕| a级毛片免费高清观看在线播放| 赤兔流量卡办理| 亚洲狠狠婷婷综合久久图片| 在线国产一区二区在线| 制服丝袜大香蕉在线| 欧美精品啪啪一区二区三区| 久久午夜福利片| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 亚洲成人久久性| 精品熟女少妇八av免费久了| 日本五十路高清| 亚洲一区高清亚洲精品| 欧美bdsm另类| 国产又黄又爽又无遮挡在线| 变态另类丝袜制服| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 在线天堂最新版资源| 亚洲最大成人手机在线| 大型黄色视频在线免费观看| 欧美3d第一页| 最新中文字幕久久久久| 国产色爽女视频免费观看| 天堂动漫精品| 99久久99久久久精品蜜桃| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 丝袜美腿在线中文| 99视频精品全部免费 在线| 午夜福利视频1000在线观看| 大型黄色视频在线免费观看| 久久精品国产99精品国产亚洲性色| 欧美在线黄色| av黄色大香蕉| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添av毛片 | 中出人妻视频一区二区| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看| 久久久久久久午夜电影| 欧美乱色亚洲激情| 男女视频在线观看网站免费| 成人特级黄色片久久久久久久| 麻豆成人午夜福利视频| 国产野战对白在线观看| 欧美极品一区二区三区四区| 97超视频在线观看视频| 国产在线男女| 日日干狠狠操夜夜爽| 欧美最新免费一区二区三区 | 久久国产精品影院| 精品欧美国产一区二区三| 国产高清视频在线播放一区| 99热这里只有是精品在线观看 | 天堂网av新在线| a级毛片免费高清观看在线播放| 欧美+日韩+精品| 女人十人毛片免费观看3o分钟| 国产老妇女一区| 日韩av在线大香蕉| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区精品| 久久人人精品亚洲av| 午夜福利成人在线免费观看| 我的女老师完整版在线观看| 丁香六月欧美| 观看美女的网站| 久久久久国产精品人妻aⅴ院| 午夜老司机福利剧场| 国产精品综合久久久久久久免费| 日本黄色片子视频| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 深爱激情五月婷婷| 一个人看的www免费观看视频| 国产亚洲av嫩草精品影院| 国产精品综合久久久久久久免费| 成年女人毛片免费观看观看9| 黄色女人牲交| 国产激情偷乱视频一区二区| 天美传媒精品一区二区| 一个人看的www免费观看视频| 亚洲av免费高清在线观看| 久久久久亚洲av毛片大全| 国产精品伦人一区二区| 精品乱码久久久久久99久播| 午夜日韩欧美国产| 嫩草影院入口| 一进一出抽搐gif免费好疼| 欧美黄色淫秽网站| 高清日韩中文字幕在线| 国产精品人妻久久久久久| 久久久久久久精品吃奶| 国内精品美女久久久久久| xxxwww97欧美| 久久久成人免费电影| 免费在线观看日本一区| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 少妇裸体淫交视频免费看高清| 91在线观看av| 18禁在线播放成人免费| a级一级毛片免费在线观看| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 国产伦人伦偷精品视频| 成年女人看的毛片在线观看| 免费在线观看成人毛片| 色综合亚洲欧美另类图片| 天堂av国产一区二区熟女人妻| 日本免费a在线| 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区 | 非洲黑人性xxxx精品又粗又长| 男女下面进入的视频免费午夜| 亚洲在线自拍视频| 偷拍熟女少妇极品色| 欧美区成人在线视频| 国产美女午夜福利| 国产主播在线观看一区二区| 99久久精品一区二区三区| 最近中文字幕高清免费大全6 | 国内精品美女久久久久久| 少妇人妻精品综合一区二区 | 热99re8久久精品国产| av欧美777| 精品国内亚洲2022精品成人| 男女之事视频高清在线观看| 亚洲一区二区三区色噜噜| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 成人精品一区二区免费| 毛片一级片免费看久久久久 | 国产高清视频在线播放一区| 人妻久久中文字幕网| 天堂√8在线中文| 少妇熟女aⅴ在线视频| 国产亚洲av嫩草精品影院| 色在线成人网| 欧美一级a爱片免费观看看| 99国产综合亚洲精品| 亚洲人成网站在线播放欧美日韩| 中文字幕精品亚洲无线码一区| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| 国产精品久久久久久人妻精品电影| 成人毛片a级毛片在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲自偷自拍三级| 国产午夜精品论理片| 免费观看的影片在线观看| 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 性色av乱码一区二区三区2| 国内精品美女久久久久久| 国产v大片淫在线免费观看| 长腿黑丝高跟| 免费无遮挡裸体视频| 亚洲人成电影免费在线| 婷婷六月久久综合丁香| 亚洲成av人片在线播放无| 高清毛片免费观看视频网站| 久久人人精品亚洲av| 精品一区二区三区av网在线观看| 日日干狠狠操夜夜爽| 老熟妇仑乱视频hdxx| 成人亚洲精品av一区二区| 国产精品日韩av在线免费观看| 亚洲av五月六月丁香网| 中文字幕精品亚洲无线码一区| 免费av毛片视频| 国产午夜精品论理片| 国产精品嫩草影院av在线观看 | 欧美黑人欧美精品刺激| 内射极品少妇av片p| 国产淫片久久久久久久久 | 国产精品亚洲av一区麻豆| 波多野结衣高清作品| 亚洲欧美日韩东京热| 欧美日韩福利视频一区二区| 精品一区二区免费观看| 国产精品亚洲美女久久久| 好男人在线观看高清免费视频| 一a级毛片在线观看| 亚洲中文日韩欧美视频| 嫁个100分男人电影在线观看| 亚洲国产精品sss在线观看| 精品国内亚洲2022精品成人| 亚洲精华国产精华精| 国产三级在线视频| 日韩大尺度精品在线看网址| 欧美黑人巨大hd| 最好的美女福利视频网| 人妻丰满熟妇av一区二区三区| 欧美在线一区亚洲| 午夜福利在线在线| 亚洲av成人精品一区久久| 91久久精品国产一区二区成人| 久久久久亚洲av毛片大全| 国产精品一区二区免费欧美| 69人妻影院| 日韩免费av在线播放| 国内久久婷婷六月综合欲色啪| 深爱激情五月婷婷| 悠悠久久av| 黄色丝袜av网址大全| 亚洲av一区综合| 日韩免费av在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲在线自拍视频| 亚洲国产精品成人综合色| 男人舔奶头视频| 淫妇啪啪啪对白视频| 亚洲aⅴ乱码一区二区在线播放| 久久久久亚洲av毛片大全| 亚洲欧美日韩高清在线视频| 老鸭窝网址在线观看| 无遮挡黄片免费观看| 脱女人内裤的视频| 一区二区三区免费毛片| 搡老岳熟女国产| 欧美高清成人免费视频www| 好男人在线观看高清免费视频|