葛 莉
(阜陽師范學(xué)院 數(shù)學(xué)與統(tǒng)計學(xué)院,安徽 阜陽 236032)
?
Fritz Carlson 模糊積分不等式的推廣
葛莉
(阜陽師范學(xué)院 數(shù)學(xué)與統(tǒng)計學(xué)院,安徽 阜陽 236032)
摘要:Caballero和Sadarangani在模糊積分框架下給出Fritz Carlson不等式,將此不等式的積分上限以及被積函數(shù)的冪延拓至一般的常數(shù),獲得更一般的結(jié)論.
關(guān)鍵詞:模糊測度; 模糊積分; Fritz Carlson不等式
1預(yù)備知識
模糊積分的概念自Sugeno[1]提出后,關(guān)于模糊積分的不等式研究工作受到眾多學(xué)者的關(guān)注,并得到廣泛研究. Ralescu和Adams[2]給出了模糊積分的等價定義,Wang和Klir[2]對模糊測度和模糊積分理論進(jìn)行了詳細(xì)概述.
近年來,許多學(xué)者研究了一些經(jīng)典不等式在模糊積分下的形式[4-13],研究的主要思路是將經(jīng)典的不等式推廣至模糊積分形式的不等式.Caballero和Sadarangani[9]討論了模糊積分下的Fritz Carlson不等式
(1)
其中,f:[0,1]→[0,+∞)為非減的μ可測函數(shù),且μ為R上的勒貝格測度.
不等式(1)的積分上限為常數(shù)1,被積函數(shù)的冪為常數(shù)2,本文的目的是將上述不等式的積分上限及被積函數(shù)的冪推廣至一般情形,獲得如下結(jié)果
(2)
設(shè)∑為R的子集構(gòu)成的σ-代數(shù),μ:∑→[0,+∞)為非負(fù)的廣義實值函數(shù),稱μ為模糊測度,當(dāng)且僅當(dāng)
1) μ(?)=0;
設(shè)(R,∑,μ)是模糊測度空間,F(xiàn)μ(R)為關(guān)于∑的非負(fù)可測函數(shù)類.
其中,∨,∧分別表示在[0,+∞)上的上、下確界.
模糊積分的以下性質(zhì)可參見文獻(xiàn)[3].
1) (S)∫Afdμ=μ(A);
2) (S) ∫Akdμ=k∧μ(A),k為非負(fù)常數(shù);
3) 若在A上f≤g,則(S)∫Afdμ≤(S)∫Agdμ;
4) 若A?B,則(S)∫Afdμ≤(S)∫Bgdμ;
5) μ(A∩{f≥α})≥α?(S)∫Afdμ≥α;
6) μ(A∩{f≥α})≤α?(S)∫Afdμ≤α;
7) (S)∫Afdμ<α??γ<α,使得μ(A∩{f≥γ})<α;
8) (S)∫Afdμ>α??γ>α,使得μ(A∩{f≥γ})>α.
注:考慮到A上f的分布函數(shù)F,F(xiàn)(α)=μ(A∩{f≥α}),根據(jù)性質(zhì)15)和6),可以得到
F(α)=α?(S)∫Afdμ=α.
因此,可以通過求解方程F(α)=α計算模糊積分的值.
2主要結(jié)論
在敘述主要定理之前,先給出一些引理.
μ([0,a]∩{fs≥γs})=μ([0,a]∩{f≥γ})>α>αs.
令n→∞,得
證明由引理1,知
從而
(3)
由引理2,得
(4)
結(jié)合式(3)和(4),得
從而
仿定理1的證明過程,即可證定理2.
參考文獻(xiàn):
[1] Sugeno M.Theory of fuzzy integrals and its applications[D].Tokyo:Tokyo Institute of Technology,1974.
[2] Ralescu D,Adams G. The fuzzy integral [J].Journal of Mathematical Analysis and Applications,1980,75:562-570.
[3] Wang Z,Klir G.Fuzzy Measure Theory[M].New York:Plenum,1992.
[4] Flores-Franulic A,Román-Flores H.Markov type inequality for fuzzy integrals[J].Applied Mathematics and Computation,2009,207:242-247.
[5] Flores-Franulic A,Román-Flores H,Chalco-Cano Y.A Chebyshev type inequality for fuzzy integrals[J].Applied Mathematics and Computation,2007,190:1 178-1 184.
[6] Mesiar R,Ouyang Y.General Chebyshev type inequality for fuzzy integrals[J].Fuzzy Sets and Systems,2009,160:58-64.
[7] Ouyang Y,Fang J.Sugeno interal of monotone functions based on Lebesgue measure[J].Computer and Mathematics with Applications,2008,56:367-374.
[8] Román-Flores H,Flores-Franulic A,Chalco-Cano Y.The fuzzy integral for montone function[J].Applied Mathematics and Computation,2007,185:492-498.
[9] Caballero J,Sadarangani K.Fritz Carlson’s inequallity for fuzzy integrals[J].Computer and Mathematics with Applications,2010,59:2 763-2 767.
[10] Caballero J,Sadarangani K.Chebyshev inequality for Sugeno integrals[J].Fuzzy Sets and Systems,2010,161:1 480-1 487.
[11] Hong D H.A Liapunov type inequality for Sugeno integrals[J]. Nonlinear Analysis,2011,74:7 296-7 303.
[12] Caballero J.A Cauchy-Schwarz type inequality for fuzzy integrals[J].Nonlinear Analysis,2010,73:3 329-3 335.
[13] Ouyang Y,Fang J,Wang L.Fuzzy Chebyshev type inequality[J].Intenational Journal of Approximate Reasoning,2008,48:829-835.
Generalization of Fritz Carlson Type Fuzzy Integral Inequality
Ge Li
(School of Mathematics and Statistics, Fuyang Normal College, Fuyang 236032,China)
Abstract:In the report, under the fuzzy integral framework, a new Fritz Carlson type inequality was proposed by Caballero and Sadarangani, the upper bound and the power of the integrand were both extended to general constants, and some new results were obtained.
Keywords:fuzzy measure; fuzzy integral; Fritz Carlson inequality
中圖分類號:O 159
文獻(xiàn)標(biāo)志碼:ADOl:10.15886/j.cnki.hdxbzkb.2015.0018
文章編號:1004-1729(2015)02-0100-04
收稿日期:------------------------ 2014-10-10基金項目: 安微省高校優(yōu)秀人才基金項目(2011SQRL099)
作者簡介:葛莉(1978-),女,安徽滁州人,碩士,副教授.