蔣仲安 王露露 張中意
(北京科技大學土木與環(huán)境工程學院)
掘進巷道中長壓短抽條件下附壁風筒的實驗研究*
蔣仲安 王露露 張中意
(北京科技大學土木與環(huán)境工程學院)
為了解決掘進巷道中粉塵濃度的污染問題,采用了附壁風筒配合長壓短抽的通風方式,利用相似實驗方法構建實驗模型,對掘進工作面的流場和粉塵場的空間分布規(guī)律進行了研究。結果表明:附壁風筒配合長壓短抽的通風方式,能夠在巷道端頭形成一種有效防治粉塵擴散、旋轉前進的屏蔽流場,而壓抽比與抽風風筒位置則是影響附壁風筒流場屏蔽效果的關鍵。在相似實驗條件下,確定了在壓抽比1.2,抽風風筒位置距掘進面1.3 m、高度1.2 m、巷道中心位置時,能夠將粉塵有效控制在距掘進端頭2 m的范圍內。
掘進工作面 附壁風筒 流場 粉塵濃度 壓抽比
掘進巷道機械化程度較高,產生的粉塵污染嚴重,直接危害工人的身心健康及安全。目前混合式通風方式被廣泛應用,其中最常見的為長壓短抽式通風[1]。國內礦井巷道一般配備的風筒直徑最大為1 m,掘進工作面供風量也偏大,使得風筒末端出口風速較大,生產時產生的粉塵運動速度高,在空氣中分散度較大,不利于降塵工作的進行[2],不能從根本上控制和防止粉塵的擴散。本文通過模型實驗,利用附壁風筒配合長壓短抽通風,可有效控制粉塵的漂移和擴散[3-4]。采用相似實驗的方法,通過對比實驗可以得到掘進巷道的合理壓抽比以及較優(yōu)的抽風風筒位置[5-7]。
1.1 氣固兩相流動的運動方程
掘進工作面產生的粉塵顆粒隨氣流的運動、擴散以及沉降等,屬于氣固兩相流研究的范疇。
1.1.1 氣體運動方程
對于三維不可壓縮、黏性氣體的運動方程為:
(1)
1.1.2 粉塵在氣體中的運動方程
假定含塵氣流的運動只考慮氣固兩相相對運動引起的作用力,忽略其他作用力的影響,固體球形顆粒的運動方程為
(2)
1.2 相似準則數的導出
1.3 相似準則數的簡化
由于原型與相似模型的流場均穩(wěn)定,可不考慮H0;相似模型所使用的粉塵與實際情況亦相同,ρp/ρg可忽略;原型與相似模型中的粉塵粒徑都很小,可忽略Fr;粉塵顆粒在很短的時間內能充分加速到氣流速度的99%,ρp/ρg可近似等于1;根據雷諾數無關性理論:若流體流動過程的雷諾數達到某一臨界值時,即湍流進入成熟階段(阻力平方區(qū)),相似實驗將不再受到模型率的影響,所以只要保證所做實驗具有很大的雷諾數(Rec=5×104),則可忽略雷諾準則的影響[11-13]。根據掘進巷道的實際情況簡化后,獨立相似準則數有:Stk、Rep、Δ/D和δl。
圖1 掘進工作面模型(單位:m)
3.1 實驗參數的測定方法及測點布置
3.1.1 測定方法
巷道端頭中心處設置塵源,實驗用粉塵來自掘進工作面現場,發(fā)塵強度在實驗中保持穩(wěn)定。壓入式和抽出式風機均采用SWF混流式管道風機(可調風速)。風速測量選用testo425型風速儀(設定時間參數為20 s),測出的風速為20 s的平均值。粉塵濃度測量采用濾膜質量濃度法,使用FC-4型粉塵采樣儀進行采樣(采樣流量為0.02 m3/min、時間為2 min),最后由濾膜的質量增量和采氣量計算出空氣中總的粉塵濃度。
3.1.2 測點布置
3.1.2.1 風速測點布置
根據巷道模型長度,結合附壁風筒流場的理論,分縱向和橫向兩部分進行流場風速測定。測量沿巷道方向的風速時,在巷道模型內部選取17個待測面(所取待測面同下文粉塵待測面),待測面離巷道端頭越近布置的越密集,每個斷面布置6×4個風速測點,如圖2(a)所示;測量斷面的橫向風速時,在附壁風筒側向風口處(L=1.9~3.1 m)選取了5個待測面,測點布置如圖2(b)所示。
3.1.2.2 粉塵濃度測點布置
在巷道模型內部選取17個待測面,待測面離巷道端頭越近布置的越密集,每個斷面布置3×4個風速測點(高度方向與縱向流場測點布置相同),測量不同高度、不同斷面以及不同壓抽比條件下的粉塵濃度分布。對不同抽風風筒位置進行粉塵濃度測量時,只選取呼吸帶左側人行道中心線處(H=0.8 m,W=155 cm)進行測量,如圖3所示。
圖2 風速測點布置(單位:m)
圖3 粉塵濃度測點布置(單位:m)
3.2 風流流場分布
3.2.1 沿巷道方向的流場分布
實驗在壓風風筒風量為1.63 m3/s、壓抽比為1.2的條件下,研究巷道模型內縱向風流流場的分布。由于篇幅有限,此處只選取H=1.2 m及H=1.6 m 的平面進行風流流場分析。見圖4。
圖4 沿巷道方向風速變化
由圖4可以看出:
(1)H=1.2 m時,W=55 cm和155 cm位置由于在壓抽風筒的邊緣附近,在巷道端頭到風筒口的范圍內風速變化十分劇烈。軸向進風風流自壓入式風筒口射出后向回風側斜向運動,且對周圍氣流有卷吸作用,使得其余位置的風速在距工作面1.5 m以內也出現了峰值。
(2)H=1.2 m時,隨著與工作面距離的增加,受壓入式風筒和抽出式風筒共同作用的影響,各位置的風速均呈現出先增大后減小(在附壁風筒側向風口位置風速減到最小值),而后又稍有提升的變化趨勢,最終風速均穩(wěn)定在0.5 m/s左右,此即為掘進巷道的排塵風速。
(3)H=1.6 m時,側向風口的作用成為影響流場分布的主要因素,在L=1.9~3.1 m的各位置均出現了速度峰值,并且呈現出離側向風口越近峰值位置越靠后的變化趨勢,這是由于側向風口產生的屏蔽流場受到抽風風筒抽吸作用的影響,形成了一種旋轉前進屏蔽場的結果。在W=115~155 cm時,離側向出風口距離較遠,因此,風速明顯下降,屏蔽成了主導作用,在附壁風筒側向風口位置風速明顯減小。
3.2.2 側向風口處橫向風流的流場分布
側向流場的測量側重于不同斷面從左到右橫向的風速分布,這里僅對壓抽比為1.2時,H=1.6 m不同截面及L=2.5 m 不同高度的流場進行分析。見圖5。
圖5 巷道橫斷面風速
由圖5可知:
(1)H=1.6 m時,風速先增大后減小并逐漸趨于穩(wěn)定,風速出現峰值,是由于這些測點處在附壁風筒側向風口處所致。最后在W=180~200 cm處風速有小幅度的回升,是由于風流的附壁效應引起。
(2)H=1.6 m,在L=3.1 m處,風速呈現與其他位置不同的變化規(guī)律,說明在附壁風筒的側向風口處(L=2.3~3.3 m)風速分布并不均勻,并且,在起始段(L=3~3.3 m)時未形成屏蔽流場,側向風口的作用范圍為1.9~3 m,起始段過后,風速逐漸增大并趨于穩(wěn)定,在側向風口末端(L=2.5 m)風速達到最大值。
(3)L=2.5 m時,不同高度的風速大小順序為1.8 m>1.6 m>0.4 m>0.8 m,在各條曲線最后的位置風速均有所增大,這是由于附壁風筒后所形成的是外圍風速大、中心風速小的卷吸流場,而巷道下方點的峰值位置比較靠前,是屏蔽場范圍縮小的表現。H=1.6 m曲線在W=20 cm的峰值則是由于離側向風口較近所致。
3.2.3 不同壓抽比條件下的流場分布
保持壓風風量不變,調節(jié)抽風風量,測量不同壓抽比條件下巷道內的風速,以研究壓抽比與流場分布的關系。由于巷道斷面的上半部分流場變化比較明顯,易于比較,因此,僅研究H=1.2 m,W為95,115 cm,壓抽比為1.4,1.2,1,0.8,0.7情況下的流場分布,如圖6所示。
圖6 沿巷道方向風速變化
由于附壁風筒的加入,使得距掘進端頭1.9~3 m 沿巷道方向的風速有所下降??刂茐撼楸鹊哪康臑樾纬捎衅帘涡Ч牧鲌觯虼?,要求在附壁風筒側向風口位置附近沿巷道方向的風速應盡可能的小,由圖6可看出,壓抽比在1~1.4時風速下降較明顯。
由于壓抽比大小對橫向風流流場的作用不是很明顯,不同壓抽比時橫向風流流場變化規(guī)律大致相同,只在大小上有些許差異,在此便不再分析。
3.3 粉塵濃度分布
3.3.1 粉塵濃度空間分布
為了研究巷道模型內粉塵濃度空間分布情況,在壓風風筒風量為1.63 m3/s、壓抽比為1.2的條件下,對巷道模型空間粉塵濃度分布進行詳細測定。圖7為H=0.8 m平面內不同位置以及W=155 cm(左側人行道)時不同高度的粉塵濃度的沿程分布。從圖7中可以看出:
(1)H=0.8 m時,巷道中粉塵濃度大小順序為:抽風側>中部>壓風側,說明壓風側的粉塵更易沉降。另外,粉塵濃度除在巷道端頭1.2 m的范圍內比較紊亂外,之后均先增大后減小,最后穩(wěn)定在一個很小的值上,并且,這個值出現在附壁風筒側向風口的作用范圍內。
(2)W=155 cm時,除H=0.4 m其余位置的粉塵濃度都控制在L=2.5 m的范圍內,而H=0.4 m的粉塵濃度則呈現出先減小后增大的趨勢。這是由于該位置處于屏蔽流場下端的效果減弱區(qū),不僅流場對粉塵的控制效果逐漸變差,其余位置的粉塵也會順著風流從下端溢出,但最終該位置的粉塵被控制在了距掘進端頭3.5 m的范圍內。
圖7 不同高度粉塵濃度
3.3.2 不同壓抽比條件下粉塵濃度分布
通過測量不同壓抽比條件下巷道內的粉塵濃度,補充流場實驗的結果及縮小最優(yōu)壓抽比的范圍,選H=0.8 m的平面作為研究對象,沿巷道方向粉塵分布規(guī)律如圖8所示。
圖8 沿巷道方向粉塵濃度變化
(1)壓抽比在1以上時,壓風側及巷道中部的粉塵濃度先增大后迅速減小。當壓抽比從1.4變到1的過程中,粉塵濃度先減小后增大,減小是由于抽風風速變大,巷道內粉塵濃度降低;增大則是由于抽風風速過大,附壁風筒產生的流場屏蔽效果變差所致。
(2)壓抽比小于1時,壓風側(W=55 cm)及巷道中部(W=100 cm)粉塵濃度出現兩次明顯的峰值,第一次是在抽風風筒口附近,第二次是在附壁風筒側向風口處,這是由于隨著壓抽比不斷減小,抽風風速過大,破壞了附壁風筒側向風口附壁風流屏蔽作用的結果。
(3)綜合上述對附壁風筒流場與粉塵場的實驗研究,最終可以確定該通風系統(tǒng)合理的壓抽比為1~1.2。
3.3.3 不同抽風風筒位置下粉塵濃度分布
在壓抽比為1.2時,對抽風風筒的位置進行了一系列的優(yōu)化實驗,對H=0.8 m、W=155 cm(人行道呼吸帶)位置沿程的粉塵濃度進行了測量,結果如圖9所示。
圖9 W=155 cm時不同抽風風筒位置粉塵濃度
由圖9可知,在L=1.1~1.5 m,粉塵濃度隨著抽風風筒到掘進端頭距離的增加而增大,但控制效果先增強后減弱。在1.3 m處控制效果最好,在H=1~1.4 m,粉塵控制效果很好,但隨著風筒的上移,粉塵濃度稍有增大,控制效果變差。將抽風風筒移至W=1.0 m處(巷道中間),可以看出此時掘進端頭的粉塵濃度雖然稍有增加,但控塵效果有大幅提升。因此,抽風風筒的最佳位置為L=1.3 m,H=1~1.2 m,W=1.0 m。而實驗將風筒安在靠近巷道兩側是為了測得較完整的流場與粉塵場數據。
(1)長壓短抽通風方式中,在壓入式風筒末端加入附壁風筒,不僅保證了工作面正常的通風需求,還避免了工作面供風量過大,且在合理的參數范圍內,附壁風筒能夠形成穩(wěn)定的沿巷道方向前進的卷吸屏蔽流場,將粉塵控制在掘進端頭到附壁風筒側向風口的范圍內。
(2)壓抽比的變化會引起縱向風流流場分布的變化,但對橫向風流流場的影響不是很大,證明了壓抽比改變時附壁風筒側向風口處均能形成外圍風速大中心風速小屏蔽流場,只是壓抽比不同,系統(tǒng)屏蔽流場的屏蔽能力不同。
(3)壓抽比過小或過大都不利于粉塵的控制。過大時形成的屏蔽流場不足以控制大量向外擴散的粉塵;過小時會破壞屏蔽流場的穩(wěn)定性,使得屏蔽效果變差。壓抽比為1~1.2時,形成的流場能很好地減弱粉塵的擴散和沉降,并將粉塵有效控制在抽吸作用范圍內,最大程度地被吸風風流帶走。
(4)實驗發(fā)現,粉塵的運動軌跡會隨著流場的變化而變化,因此,優(yōu)化風筒位置對控制粉塵有重要的作用。實驗結果表明,在L=1.3 m,H=1~1.2 m,W=1.0 m條件時控塵效果最佳。
[1] 王 輝,蔣仲安,黃麗婷,等.掘進巷道中長壓短抽式通風合理壓抽比實驗研究[J].遼寧工程技術大學學報,2011,30(2):168-171.
[2] 王 寬,周福寶,劉應科,等.柔性附壁風筒輔助降塵技術在葛泉煤礦的應用[J].煤礦安全,2011,42(11):72-74.
[3] 張景松,閆小康,王 凱,等.環(huán)形旋轉射流屏蔽抽吸流場的數值模擬[J].中國礦業(yè)大學學報,2006,35(2):173-177.
[4] 程衛(wèi)民,聶 文,姚玉靜,等.綜掘工作面旋流氣幕抽吸控塵流場的數值模擬[J].煤炭學報,2011,36(8):1342-1348.
[5] 王曉珍,蔣仲安,王善文,等.煤巷掘進過程中粉塵濃度分布的數值模擬[J].煤炭學報,2007,32(4):386-390.
[6] 蔣仲安.通風除塵中氣固兩相流動相似理論研究[J].煤炭工程師,1993(4):12-15,42.
[7] 蔣仲安,金龍哲,袁緒忠,等.掘進巷道中粉塵分布規(guī)律的實驗研究[J].煤炭科學技術,2001,29(3):43-45.
[8] 杜翠鳳,王輝,蔣仲安,等.長壓短抽式通風綜掘工作面粉塵分布規(guī)律的數值模擬[J].北京科技大學學報,2010,32(8):957.
[9] 牛 偉,蔣仲安,劉 毅.綜采工作面粉塵運動規(guī)律數值模擬及應用[J].遼寧工程技術大學學報,2010,29(3):358-360.
[10] 陳舉師,蔣仲安,楊 斌,等.破碎硐室粉塵濃度空間分布規(guī)律的數值模擬[J].煤炭學報,2012,37(11):1865-1870.
[11] 秦躍平,張苗苗,崔麗潔,等.綜掘工作面粉塵運移的數值模擬及壓風分流降塵方式研究[J].北京科技大學學報,2011,33(7):790-794.
[12] 程衛(wèi)民,劉向升,阮國強,等.煤巷錨掘快速施工的封閉控塵理論與技術工藝[J].煤炭學報,2009,34(2):203-207.
[13] 朱慶仁.實驗流體力學[M].北京:國防工業(yè)出版社,2005.
Experimental Research on Wall Attaching Chimney Under the Long Press Short Extraction in Excavation Roadways
Jiang Zhong'an Wang Lulu Zhong Zhongyi
(School of Civil and Environmental Engineering, University of Science and Technology Beijing)
In order to deal with the pouution problem of excavation roadway dust concentration, the method of wall attaching chimney with mixed ventilation pattern is used and the similar experimental approach is used to build an experimental model system,so as to analyze the spatial distribution law of the flow field and tunneling working face dust field. The research results show that, the wall attaching chimney with mixed ventilation pattern can from a rotating forward shielding flow field which can effective prevention and control of dust diffusion in the end of tunnel. Pressure extraction ratio and convulsions ram position are the key parameters that influening coanda duct flow field shielding effects. Under the similar conditon, the dust can be effectively controlled from the driving end within 2 m by indentifying the pressure extraction ratio is 1.2, convulsions ram position away from the surface of 1.3 m, the height of 1.2 m.
Excavation face, Wall attaching chimney, Flow field, Dust concentration, Pressure extraction ratio
*國家自然科學基金資助項目(編號:51274024)。
2014-09-25)
蔣仲安(1963—),男,教授,博士生導師,100083 北京市海淀區(qū)學院路30號。